inorganic compounds
The quinternary thiophosphate Cs0.5Ag0.5Nb2PS10
aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr
The quinternary thiophosphate Cs0.5Ag0.5Nb2PS10, cesium silver tris(disulfido)[tetrathiophosphato(V)]diniobate(IV), has been prepared from the elements using a CsCl The is made up of ∞1[Nb2PS10] chains expanding along [010]. These chains are built up from bicapped trigonal-prismatic [Nb2S12] units and tetrahedral [PS4] groups and are linked through a linear S—Ag—S bridge, forming a two-dimensional layer. These layers then stack on top of each other, completing the three-dimensional structure with an undulating van der Waals gap. The disordered Cs+ ions reside on sites with half-occupation in the voids of this arrangement. Short [2.8843 (5) Å] and long [3.7316 (4) Å] Nb—Nb distances alternate along the chains, and anionic S22− and S2− species are observed. The charge balance of the compound can be represented by the formula [Cs+]0.5[Ag+]0.5[Nb4+]2[PS43−][S22−]3.
Related literature
For Nb2PS10-related quaternary thiophosphates, see: Do & Yun (1996) for KNb2PS10, Kim & Yun (2002) for RbNb2PS10, Kwak et al. (2007) for CsNb2PS10, Bang et al. (2008) for TlNb2PS10, and Do & Yun (2009) for Ag0.88Nb2PS10. For quintenary thiophosphates, see: Kwak & Yun (2008) for K0.34Cu0.5Nb2PS10, Dong et al. (2005a) for K0.5Ag0.5Nb2PS10, and Dong et al. (2005b) for Rb0.38Ag0.5Nb2PS10. PLATON (Spek, 2009) was used for structure validation. For typical Nb—P and P—S bond length, see: Brec et al. (1983), and for typical Nb4+–Nb4+ bond lengths, see: Angenault et al. (2000). For general background, see: Lee et al. (1988).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2006); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810021768/wm2357sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021768/wm2357Isup2.hkl
Cs0.5Ag0.5Nb2PS10 was prepared by the reaction of elemental powders, using the reactive halide-flux technique. Ag powder (CERAC 99.999%), Nb powder (CERAC 99.8%), P powder (CERAC 99.5%) and S powder (Aldrich 99.999%) were mixed in a fused silica tube in a molar ratio of Ag:Nb:P:S=1:2:1:10 and then CsCl was added in a weight ratio of AgNb2PS10:CsCl=1:3. The tube was evacuated to 0.133 Pa, sealed and heated gradually (50 K/h) to 973 K, where it was kept for 72 h. The tube was cooled to room temperature at the rate of 4 K/h. The excess halide was removed with distilled water and dark red needle-shaped crystals were obtained. The crystals are stable in air and water. A qualitative
of the needles indicated the presence of Cs, Ag, Nb, P, and S. The composition of the compound was determined by single-crystal X-ray diffraction.Refinement went smoothly but the anisotropic displacement parameters (ADPs) of the Cs (Wyckoff position 4e) and Ag (2a) atoms were large compared with those of the other atoms. Because non-stoichiometry in these phases is sometimes observed and the distance between Cs atoms is too short if full occupancy is assumed, the occupancies of each metal atom were checked by refining the site occupation factors (SOFs) while those of the other atoms were fixed. With the non-stoichiometric model, the SOF of the Cs site was reduced significantly from 1 to 0.49 and the residuals improved also. As no evidence was found for ordering of the Cs site at
2c, a statistically disordered structure was finally modelled. The final difference Fourier map showed that the highest residual electron density (1.18 e/Å3) is 0.94 Å from the Nb2 site and the deepest hole (-1.27 e/Å3) is 0.84 Å from the Nb2 site. No additional symmetry, as tested by PLATON (Spek, 2009), has been detected in this structure.Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A view of the Cs0.5Ag0.5Nb2PS10 structure. Anisotropic displacement ellipsoids are drawn at the 90% probability level. Symmetry codes are given in Table 1. |
Cs0.5Ag0.5Nb2PS10 | F(000) = 1232 |
Mr = 657.78 | Dx = 3.353 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8832 reflections |
a = 7.3594 (3) Å | θ = 3.2–27.5° |
b = 12.8534 (4) Å | µ = 5.54 mm−1 |
c = 13.7788 (6) Å | T = 290 K |
β = 91.0886 (12)° | Needle, dark brown |
V = 1303.15 (8) Å3 | 0.30 × 0.06 × 0.04 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 2430 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.602, Tmax = 1.000 | k = −16→14 |
12389 measured reflections | l = −17→17 |
2991 independent reflections |
Refinement on F2 | 133 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0248P)2 + 3.4157P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 1.18 e Å−3 |
2991 reflections | Δρmin = −1.27 e Å−3 |
Cs0.5Ag0.5Nb2PS10 | V = 1303.15 (8) Å3 |
Mr = 657.78 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3594 (3) Å | µ = 5.54 mm−1 |
b = 12.8534 (4) Å | T = 290 K |
c = 13.7788 (6) Å | 0.30 × 0.06 × 0.04 mm |
β = 91.0886 (12)° |
Rigaku R-AXIS RAPID diffractometer | 2991 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2430 reflections with I > 2σ(I) |
Tmin = 0.602, Tmax = 1.000 | Rint = 0.049 |
12389 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 133 parameters |
wR(F2) = 0.075 | 0 restraints |
S = 1.08 | Δρmax = 1.18 e Å−3 |
2991 reflections | Δρmin = −1.27 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cs | −0.0009 (4) | 0.02093 (15) | 0.48715 (19) | 0.0512 (5) | 0.5 |
Ag | 0 | 0 | 0 | 0.0539 (2) | |
Nb1 | 0.42651 (5) | 0.03565 (3) | 0.24995 (3) | 0.01333 (11) | |
Nb2 | 0.43445 (5) | 0.32590 (3) | 0.25353 (3) | 0.01280 (11) | |
P | 0.11427 (16) | 0.18631 (9) | 0.14370 (10) | 0.0170 (3) | |
S1 | −0.03805 (19) | 0.18878 (10) | 0.02229 (11) | 0.0292 (3) | |
S2 | 0.07865 (16) | 0.05281 (9) | 0.22287 (10) | 0.0210 (3) | |
S3 | 0.08568 (16) | 0.31790 (9) | 0.22464 (10) | 0.0207 (3) | |
S4 | 0.33249 (16) | 0.47121 (9) | 0.35994 (9) | 0.0187 (3) | |
S5 | 0.38477 (17) | 0.18131 (9) | 0.37848 (9) | 0.0190 (3) | |
S6 | 0.39304 (16) | 0.18214 (8) | 0.11963 (9) | 0.0161 (2) | |
S7 | 0.42828 (17) | 0.44324 (9) | 0.10942 (9) | 0.0194 (3) | |
S8 | 0.58572 (16) | 0.41695 (9) | 0.39426 (9) | 0.0184 (3) | |
S9 | 0.63765 (16) | 0.17797 (9) | 0.31795 (9) | 0.0189 (3) | |
S10 | 0.67972 (16) | 0.38737 (9) | 0.14538 (9) | 0.0204 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs | 0.0270 (3) | 0.0779 (16) | 0.0489 (13) | −0.0003 (11) | 0.0060 (7) | −0.0283 (10) |
Ag | 0.0518 (4) | 0.0298 (3) | 0.0800 (6) | −0.0028 (3) | 0.0017 (4) | −0.0287 (4) |
Nb1 | 0.0150 (2) | 0.00814 (18) | 0.0168 (2) | 0.00081 (16) | −0.00185 (16) | 0.00082 (16) |
Nb2 | 0.0145 (2) | 0.00802 (19) | 0.0158 (2) | −0.00071 (16) | −0.00210 (16) | −0.00048 (16) |
P | 0.0157 (5) | 0.0115 (5) | 0.0235 (7) | 0.0014 (5) | −0.0057 (5) | −0.0025 (5) |
S1 | 0.0325 (7) | 0.0228 (6) | 0.0316 (8) | 0.0023 (6) | −0.0168 (6) | −0.0038 (6) |
S2 | 0.0181 (5) | 0.0140 (5) | 0.0310 (7) | −0.0014 (5) | −0.0023 (5) | 0.0030 (5) |
S3 | 0.0168 (5) | 0.0146 (5) | 0.0305 (7) | 0.0023 (5) | −0.0034 (5) | −0.0073 (5) |
S4 | 0.0190 (5) | 0.0146 (5) | 0.0225 (7) | −0.0007 (5) | 0.0017 (5) | −0.0031 (5) |
S5 | 0.0256 (6) | 0.0126 (5) | 0.0189 (6) | 0.0001 (5) | 0.0008 (5) | 0.0007 (5) |
S6 | 0.0186 (5) | 0.0104 (5) | 0.0193 (6) | 0.0019 (5) | −0.0015 (5) | −0.0007 (5) |
S7 | 0.0269 (6) | 0.0131 (5) | 0.0180 (6) | −0.0009 (5) | −0.0044 (5) | 0.0004 (5) |
S8 | 0.0233 (6) | 0.0124 (5) | 0.0195 (6) | −0.0013 (5) | −0.0043 (5) | 0.0000 (5) |
S9 | 0.0185 (5) | 0.0128 (5) | 0.0251 (7) | −0.0001 (5) | −0.0054 (5) | 0.0009 (5) |
S10 | 0.0217 (6) | 0.0152 (5) | 0.0244 (7) | −0.0003 (5) | 0.0048 (5) | −0.0021 (5) |
Cs—Csi | 0.644 (3) | Nb2—S8 | 2.5075 (12) |
Cs—S10ii | 3.444 (3) | Nb2—S5 | 2.5643 (13) |
Cs—S10iii | 3.469 (3) | Nb2—S9 | 2.5670 (12) |
Cs—S7iv | 3.536 (3) | Nb2—S3 | 2.5920 (12) |
Cs—S7v | 3.581 (3) | Nb2—S6 | 2.6250 (12) |
Cs—S2 | 3.722 (3) | Nb2—Nb1viii | 2.8843 (5) |
Cs—S1v | 3.773 (2) | P—S1 | 1.9962 (18) |
Cs—S5 | 3.835 (3) | P—S3 | 2.0391 (17) |
Cs—S3v | 3.915 (3) | P—S2 | 2.0527 (17) |
Cs—S3iv | 3.956 (3) | P—S6 | 2.0851 (17) |
Cs—S9vi | 4.044 (3) | S1—Csix | 3.773 (2) |
Cs—S2i | 4.157 (3) | S2—Csi | 4.157 (3) |
Ag—S1 | 2.4625 (13) | S3—Csix | 3.915 (3) |
Ag—S1vii | 2.4625 (13) | S3—Csx | 3.956 (3) |
Nb1—S4iii | 2.4953 (13) | S4—S8 | 2.0371 (17) |
Nb1—S7iii | 2.4958 (12) | S4—Nb1viii | 2.4953 (13) |
Nb1—S8iii | 2.5055 (13) | S5—S9 | 2.0542 (18) |
Nb1—S10iii | 2.5231 (13) | S7—S10 | 2.0372 (17) |
Nb1—S9 | 2.5658 (12) | S7—Nb1viii | 2.4958 (12) |
Nb1—S2 | 2.5895 (12) | S7—Csx | 3.536 (3) |
Nb1—S5 | 2.5993 (13) | S7—Csix | 3.581 (3) |
Nb1—S6 | 2.6103 (12) | S8—Nb1viii | 2.5055 (13) |
Nb1—Nb2iii | 2.8843 (5) | S9—Csxi | 4.044 (3) |
Nb2—S10 | 2.4910 (13) | S10—Nb1viii | 2.5231 (13) |
Nb2—S7 | 2.4932 (13) | S10—Csxii | 3.444 (3) |
Nb2—S4 | 2.4985 (12) | S10—Csviii | 3.469 (3) |
Csi—Cs—S10ii | 86.8 (5) | S9—Nb1—Nb2iii | 117.38 (3) |
Csi—Cs—S10iii | 82.5 (5) | S2—Nb1—Nb2iii | 115.30 (3) |
S10ii—Cs—S10iii | 169.32 (5) | S5—Nb1—Nb2iii | 136.98 (3) |
Csi—Cs—S7iv | 88.8 (5) | S6—Nb1—Nb2iii | 133.76 (3) |
S10ii—Cs—S7iv | 73.85 (7) | S10—Nb2—S7 | 48.25 (4) |
S10iii—Cs—S7iv | 105.80 (8) | S10—Nb2—S4 | 110.06 (4) |
Csi—Cs—S7v | 80.9 (5) | S7—Nb2—S4 | 90.81 (4) |
S10ii—Cs—S7v | 105.35 (8) | S10—Nb2—S8 | 89.91 (4) |
S10iii—Cs—S7v | 73.00 (7) | S7—Nb2—S8 | 109.55 (4) |
S7iv—Cs—S7v | 169.64 (5) | S4—Nb2—S8 | 48.02 (4) |
Csi—Cs—S2 | 128.9 (5) | S10—Nb2—S5 | 138.22 (4) |
S10ii—Cs—S2 | 134.71 (8) | S7—Nb2—S5 | 166.52 (4) |
S10iii—Cs—S2 | 54.41 (5) | S4—Nb2—S5 | 95.72 (4) |
S7iv—Cs—S2 | 79.52 (6) | S8—Nb2—S5 | 83.45 (4) |
S7v—Cs—S2 | 107.01 (8) | S10—Nb2—S9 | 91.02 (4) |
Csi—Cs—S1v | 139.1 (6) | S7—Nb2—S9 | 136.48 (4) |
S10ii—Cs—S1v | 61.86 (5) | S4—Nb2—S9 | 122.02 (4) |
S10iii—Cs—S1v | 127.50 (7) | S8—Nb2—S9 | 80.28 (4) |
S7iv—Cs—S1v | 105.15 (7) | S5—Nb2—S9 | 47.20 (4) |
S7v—Cs—S1v | 82.99 (6) | S10—Nb2—S3 | 130.35 (5) |
S2—Cs—S1v | 91.71 (4) | S7—Nb2—S3 | 84.19 (4) |
Csi—Cs—S5 | 131.1 (6) | S4—Nb2—S3 | 79.18 (4) |
S10ii—Cs—S5 | 125.61 (7) | S8—Nb2—S3 | 124.13 (4) |
S10iii—Cs—S5 | 62.86 (5) | S5—Nb2—S3 | 85.47 (4) |
S7iv—Cs—S5 | 131.64 (7) | S9—Nb2—S3 | 126.33 (4) |
S7v—Cs—S5 | 57.45 (5) | S10—Nb2—S6 | 83.03 (4) |
S2—Cs—S5 | 55.08 (4) | S7—Nb2—S6 | 82.29 (4) |
S1v—Cs—S5 | 64.82 (4) | S4—Nb2—S6 | 155.03 (4) |
Csi—Cs—S3v | 88.9 (5) | S8—Nb2—S6 | 156.36 (4) |
S10ii—Cs—S3v | 52.55 (5) | S5—Nb2—S6 | 86.88 (4) |
S10iii—Cs—S3v | 126.89 (9) | S9—Nb2—S6 | 77.33 (4) |
S7iv—Cs—S3v | 126.40 (9) | S3—Nb2—S6 | 76.27 (4) |
S7v—Cs—S3v | 53.89 (5) | S10—Nb2—Nb1viii | 55.41 (3) |
S2—Cs—S3v | 137.18 (6) | S7—Nb2—Nb1viii | 54.72 (3) |
S1v—Cs—S3v | 51.72 (4) | S4—Nb2—Nb1viii | 54.67 (3) |
S5—Cs—S3v | 86.11 (6) | S8—Nb2—Nb1viii | 54.84 (3) |
Csi—Cs—S3iv | 81.7 (5) | S5—Nb2—Nb1viii | 138.05 (3) |
S10ii—Cs—S3iv | 126.35 (9) | S9—Nb2—Nb1viii | 119.58 (3) |
S10iii—Cs—S3iv | 52.02 (5) | S3—Nb2—Nb1viii | 112.65 (3) |
S7iv—Cs—S3iv | 53.79 (5) | S6—Nb2—Nb1viii | 133.06 (3) |
S7v—Cs—S3iv | 123.87 (8) | S1—P—S3 | 112.52 (8) |
S2—Cs—S3iv | 51.42 (5) | S1—P—S2 | 112.54 (8) |
S1v—Cs—S3iv | 137.41 (7) | S3—P—S2 | 112.78 (8) |
S5—Cs—S3iv | 100.03 (7) | S1—P—S6 | 113.93 (9) |
S3v—Cs—S3iv | 170.63 (4) | S3—P—S6 | 102.73 (7) |
Csi—Cs—S9vi | 137.7 (6) | S2—P—S6 | 101.48 (7) |
S10ii—Cs—S9vi | 75.21 (6) | P—S1—Ag | 91.46 (6) |
S10iii—Cs—S9vi | 113.01 (7) | P—S1—Csix | 94.72 (7) |
S7iv—Cs—S9vi | 49.70 (4) | Ag—S1—Csix | 161.76 (7) |
S7v—Cs—S9vi | 140.51 (6) | P—S2—Nb1 | 90.68 (5) |
S2—Cs—S9vi | 59.66 (4) | P—S2—Cs | 129.50 (7) |
S1v—Cs—S9vi | 62.08 (4) | Nb1—S2—Cs | 91.32 (6) |
S5—Cs—S9vi | 89.44 (4) | P—S2—Csi | 136.28 (7) |
S3v—Cs—S9vi | 108.21 (6) | Nb1—S2—Csi | 89.76 (5) |
S3iv—Cs—S9vi | 79.11 (6) | P—S3—Nb2 | 90.27 (5) |
Csi—Cs—S2i | 44.2 (5) | P—S3—Csix | 89.92 (6) |
S10ii—Cs—S2i | 50.32 (4) | Nb2—S3—Csix | 104.61 (6) |
S10iii—Cs—S2i | 120.06 (6) | P—S3—Csx | 99.22 (6) |
S7iv—Cs—S2i | 99.18 (6) | Nb2—S3—Csx | 103.24 (6) |
S7v—Cs—S2i | 73.35 (5) | S8—S4—Nb1viii | 66.22 (5) |
S2—Cs—S2i | 173.07 (6) | S8—S4—Nb2 | 66.22 (5) |
S1v—Cs—S2i | 95.19 (7) | Nb1viii—S4—Nb2 | 70.56 (3) |
S5—Cs—S2i | 127.91 (8) | S9—S5—Nb2 | 66.47 (5) |
S3v—Cs—S2i | 48.73 (4) | S9—S5—Nb1 | 65.71 (5) |
S3iv—Cs—S2i | 122.41 (5) | Nb2—S5—Nb1 | 92.55 (4) |
S9vi—Cs—S2i | 124.54 (8) | S9—S5—Cs | 146.11 (7) |
S1—Ag—S1vii | 180.00 (10) | Nb2—S5—Cs | 140.15 (6) |
S4iii—Nb1—S7iii | 90.82 (4) | Nb1—S5—Cs | 88.67 (5) |
S4iii—Nb1—S8iii | 48.08 (4) | P—S6—Nb1 | 89.39 (5) |
S7iii—Nb1—S8iii | 109.54 (4) | P—S6—Nb2 | 88.37 (5) |
S4iii—Nb1—S10iii | 109.13 (4) | Nb1—S6—Nb2 | 90.92 (4) |
S7iii—Nb1—S10iii | 47.89 (4) | S10—S7—Nb2 | 65.82 (5) |
S8iii—Nb1—S10iii | 89.23 (4) | S10—S7—Nb1viii | 66.76 (5) |
S4iii—Nb1—S9 | 91.47 (4) | Nb2—S7—Nb1viii | 70.64 (3) |
S7iii—Nb1—S9 | 78.95 (4) | S10—S7—Csx | 171.29 (7) |
S8iii—Nb1—S9 | 137.40 (4) | Nb2—S7—Csx | 118.24 (6) |
S10iii—Nb1—S9 | 121.46 (4) | Nb1viii—S7—Csx | 121.50 (5) |
S4iii—Nb1—S2 | 130.77 (4) | S10—S7—Csix | 161.56 (7) |
S7iii—Nb1—S2 | 124.06 (4) | Nb2—S7—Csix | 117.07 (6) |
S8iii—Nb1—S2 | 85.24 (4) | Nb1viii—S7—Csix | 131.67 (5) |
S10iii—Nb1—S2 | 80.24 (4) | S4—S8—Nb1viii | 65.70 (5) |
S9—Nb1—S2 | 125.60 (4) | S4—S8—Nb2 | 65.76 (5) |
S4iii—Nb1—S5 | 138.34 (4) | Nb1viii—S8—Nb2 | 70.25 (3) |
S7iii—Nb1—S5 | 82.43 (4) | S5—S9—Nb1 | 67.42 (5) |
S8iii—Nb1—S5 | 167.42 (4) | S5—S9—Nb2 | 66.33 (5) |
S10iii—Nb1—S5 | 96.47 (4) | Nb1—S9—Nb2 | 93.27 (4) |
S9—Nb1—S5 | 46.87 (4) | S5—S9—Csxi | 111.56 (7) |
S2—Nb1—S5 | 84.69 (4) | Nb1—S9—Csxi | 104.00 (5) |
S4iii—Nb1—S6 | 83.16 (4) | Nb2—S9—Csxi | 160.34 (6) |
S7iii—Nb1—S6 | 155.62 (4) | S7—S10—Nb2 | 65.93 (5) |
S8iii—Nb1—S6 | 83.80 (4) | S7—S10—Nb1viii | 65.35 (5) |
S10iii—Nb1—S6 | 155.76 (4) | Nb2—S10—Nb1viii | 70.23 (3) |
S9—Nb1—S6 | 77.61 (4) | S7—S10—Csxii | 110.68 (8) |
S2—Nb1—S6 | 76.07 (4) | Nb2—S10—Csxii | 176.58 (7) |
S5—Nb1—S6 | 86.46 (4) | Nb1viii—S10—Csxii | 109.02 (5) |
S4iii—Nb1—Nb2iii | 54.77 (3) | S7—S10—Csviii | 108.80 (8) |
S7iii—Nb1—Nb2iii | 54.64 (3) | Nb2—S10—Csviii | 168.71 (5) |
S8iii—Nb1—Nb2iii | 54.91 (3) | Nb1viii—S10—Csviii | 98.55 (4) |
S10iii—Nb1—Nb2iii | 54.37 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) x, −y+1/2, z+1/2; (vi) x−1, y, z; (vii) −x, −y, −z; (viii) −x+1, y+1/2, −z+1/2; (ix) x, −y+1/2, z−1/2; (x) −x, y+1/2, −z+1/2; (xi) x+1, y, z; (xii) x+1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Cs0.5Ag0.5Nb2PS10 |
Mr | 657.78 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 7.3594 (3), 12.8534 (4), 13.7788 (6) |
β (°) | 91.0886 (12) |
V (Å3) | 1303.15 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.54 |
Crystal size (mm) | 0.30 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.602, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12389, 2991, 2430 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.075, 1.08 |
No. of reflections | 2991 |
No. of parameters | 133 |
Δρmax, Δρmin (e Å−3) | 1.18, −1.27 |
Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), locally modified version of ORTEP (Johnson, 1965), WinGX (Farrugia, 1999).
Ag—S1 | 2.4625 (13) | Nb2—S4 | 2.4985 (12) |
Nb1—S4i | 2.4953 (13) | Nb2—S8 | 2.5075 (12) |
Nb1—S7i | 2.4958 (12) | Nb2—S5 | 2.5643 (13) |
Nb1—S8i | 2.5055 (13) | Nb2—S9 | 2.5670 (12) |
Nb1—S10i | 2.5231 (13) | Nb2—S3 | 2.5920 (12) |
Nb1—S9 | 2.5658 (12) | Nb2—S6 | 2.6250 (12) |
Nb1—S2 | 2.5895 (12) | P—S1 | 1.9962 (18) |
Nb1—S5 | 2.5993 (13) | P—S3 | 2.0391 (17) |
Nb1—S6 | 2.6103 (12) | P—S2 | 2.0527 (17) |
Nb2—S10 | 2.4910 (13) | P—S6 | 2.0851 (17) |
Nb2—S7 | 2.4932 (13) | ||
S1—Ag—S1ii | 180.00 (10) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y, −z. |
Acknowledgements
This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2009–0094047). Use was made of the X-ray facilities supported by Ajou University.
References
Angenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55–65. Web of Science CrossRef CAS Google Scholar
Bang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978–1802. Web of Science CrossRef Google Scholar
Brec, R., Grenouilleau, P., Evain, M. & Rouxel, J. (1983). Rev. Chim. Mineral. 20, 295–304. CAS Google Scholar
Do, J. & Yun, H. (1996). Inorg. Chem. 35, 3729–3730. CrossRef PubMed CAS Web of Science Google Scholar
Do, J. & Yun, H. (2009). Acta Cryst. E65, i56–i57. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25–i26. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26, 309–311. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53–i54. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701–704. CAS Google Scholar
Kwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273–275. CAS Google Scholar
Lee, S., Colombet, P., Ouvrard, G. & Brec, R. (1988). Inorg. Chem. 27, 1291–1294. CrossRef CAS Web of Science Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During an effort to expand representatives of group 5 transition metal thiophosphates by substituting various monovalent cations, we were able to prepare a new derivative in this system. Here we report the synthesis and characterization of the new layered quinternary thiophosphate, Cs0.5Ag0.5Nb2PS10.
The title compound is isostructural with the previously reported K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008). The ∞1[Nb2PS10] chains found in this structure are composed of the typical biprismatic [Nb2S12] and tetrahedral [PS4] units. The Nb atoms are surrounded by 8 S atoms in a bicapped trigonal-prismatic fashion. Two prisms are sharing a rectangular face to form the [Nb2S12] unit. These units are bound through the S—S prism edges and through one of the capping sulfur atoms to make ∞1[Nb2S9] chains. One of the S atoms at the prism edge and two other capping S atoms are bound to the P atom to which an additional S atom (S1) is attached to complete the ∞1[Nb2PS10] chains. These anionic chains propagate parallel to [010] and are linked through the linear S—Ag—S bridge to form a two-dimensional layer along (201). These layers then stack on top of each other to complete the three-dimensional structure with an undulating van der Waals gap. The disordered Cs+ cations reside in the voids of this arrangement.
The Nb—S and P—S distances are in agreement with those found in other related phases (Brec et al., 1983). Along the chain, The Nb(1)···Nb(2) interactions alternate in the sequence of one short (2.8843 (5) Å) and one long (3.7316 (4) Å) distance. The short distance is close to that of the typical Nb4+—Nb4+ bond (Angenault et al., 2000), and the long Nb···Nb distance shows that there is no significant intermetallic bonding interaction. Such an arrangement is consistent with the high electric resistivity of the crystal along the needle axis (b axis).
The coordination around the Ag atom (1 symmetry) can be described as a [2 + 4] interaction. Four S atoms are bound to the Ag atoms in the plane (Ag—S6, 3.139 (3) Å, Ag—S9, 3.232 (3) Å), whereas two trans S atoms are coordinated to the Ag atom at short distances of Ag—S1 = 2.4625 (13) Å. The large ADPs of Ag could be explained by the second-order Jahn-Teller coupling between the filled Ag eg and the empty s orbitals (Lee et al., 1988), which is a common trend of d10 elements. The charge balance of the compound can be represented by the formula [Cs+]0.5[Ag+]0.5[Nb4+]2[PS43-][S22-]3.
For Nb2PS10-related quaternary thiophosphates, see: Do & Yun (1996) for KNb2PS10, Kim & Yun (2002) for RbNb2PS10, Kwak et al. (2007) for CsNb2PS10, Bang et al. (2008) for TlNb2PS10, and Do & Yun (2009) for Ag0.88Nb2PS10; for quinternary thiophosphates, see: Kwak & Yun (2008) for K0.34Cu0.5Nb2PS10, Dong et al. (2005a) for K0.5Ag0.5Nb2PS10, and Dong et al. (2005b) for Rb0.38Ag0.5Nb2PS10.