metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m822-m823

(μ-Oxalato-κ4O1,O2:O1′,O2′)bis­­[bis­­(2,2′-bi­pyridine-κ2N,N′)cobalt(II)] μ6-oxido-dodeca-μ2-oxido-hexa­oxido-hexa­tungstate(VI)

aAdvanced Material Institute of Research, Department of Chemistry, Qilu Normal University, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 27 May 2010; accepted 15 June 2010; online 18 June 2010)

The asymmetric unit of the title compound, [Co2(C2O4)(C10H8N2)4][W6O19], consists of one half of the complex [Co2(C2O4)(C10H8N2)4]2+ cation and one half of the Lindqvist-type [W6O19]2− isopolyanion. Both constituents are completed by crystallographic inversion symmetry. In the dimeric cation, the CoII atom is surrounded in a distorted octa­hedral coordination by four N atoms from two chelating 2,2′-bipyridine ligands and by two O atoms from the chelating oxalate anion. The Lindqvist-type anion exhibits the characteristic W—O bond-length distribution, with the shortest bonds being the W—Oterminal bonds and the longest being those to the central O atom.

Related literature

For general background to polyoxidometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxidometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]); Zhang et al. (2010[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26-m27.]). For another structure comprising a Lindqvist-type isopolyanion, see: Meng et al. (2006[Meng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem. 25, 837-843.]). For a related structure, see: Li & Xu (2009[Li, P.-Z. & Xu, Q. (2009). Acta Cryst. E65, m508.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C2O4)(C10H8N2)4][W6O19]

  • Mr = 2237.72

  • Triclinic, [P \overline 1]

  • a = 9.4876 (15) Å

  • b = 9.8548 (15) Å

  • c = 14.174 (2) Å

  • α = 90.769 (2)°

  • β = 91.576 (2)°

  • γ = 91.113 (2)°

  • V = 1324.3 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 13.67 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.291, Tmax = 0.408

  • 9331 measured reflections

  • 4613 independent reflections

  • 3755 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.00

  • 4613 reflections

  • 368 parameters

  • H-atom parameters constrained

  • Δρmax = 2.41 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.104 (6)
Co1—N1 2.101 (7)
Co1—N4 2.105 (6)
Co1—N2 2.114 (6)
Co1—N3 2.119 (7)
Co1—O2 2.134 (6)
O3—W2 1.690 (6)
O4—W2 1.919 (6)
O4—W3 1.926 (6)
O5—W3 1.904 (5)
O5—W2i 1.935 (5)
O6—W3 1.698 (6)
O7—W3 1.915 (6)
O7—W1 1.931 (6)
O8—W3i 2.3185 (4)
O8—W3 2.3185 (4)
O8—W1 2.3240 (4)
O8—W1i 2.3240 (4)
O8—W2i 2.3252 (5)
O8—W2 2.3252 (5)
O9—W2 1.912 (6)
O9—W1 1.915 (5)
O10—W1 1.914 (6)
O10—W3i 1.914 (6)
O11—W1 1.696 (6)
O12—W1 1.922 (5)
O12—W2i 1.920 (6)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been extensive interest in polyoxidometalates, owing to their fascinating properties and great potential applications in many fields such in catalysis, material science, medicine and magnetochemistry (Pope & Müller, 1991). Organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxidomolybdates or heteropolyoxidomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009; Zhang et al., 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of a binuclear complex [Co2(C2O4)(C10H8N2)4]2+ cation, and one Lindqvist-type [W6O19]2- isopolyanion. Both constituents exhibit 1 symmetry. The Co2+ cation is surrounded in a distorted octahedral coordination by four N atoms from two chelating 2,2'-bipyridine ligands and two O atoms from a chelating oxalate anion. The Co—N and Co—O bond lengths are in the range of 2.101 (7)—2.119 (7) and 2.104 (6)—2.134 (6) Å, respectively, and are in good agreement with the bond lenghts observed for catena-poly[[(2,2'-bipyridine-κN,N')cobalt(II)]-µ-oxalato- κ4O1,O2:O1',O2'] (Li & Xu, 2009).

The [W6O19]2- polyoxidoanion, possessing the well known Lindquist structure, is formed by six WO6 octahedra connected with each other through edge-sharing oxygen atoms. This anion approaches an approximate Oh symmetry, but actually has 1 symmetry. Three different kinds of oxygen atoms exist in the cluster, viz. terminal Oa, double-bridging Ob, and central Oc oxygen atoms. Therefore, W—O bond lengths can be grouped into three sets: W—Oa: 1.690 (6)—1.698 (6) Å; W—Ob: 1.904 (5)—1.935 (5) Å; W—Oc: 2.3185 (4)—2.3252 (5) Å; these bond lengths strictly follow the rule W—Oa < W—Ob < W—Oc, which is in agreement with the Lindqvist-type polyoxidotungstate reported by Meng et al. (2006).

Related literature top

For general background to polyoxidometalates, see: Pope & Müller (1991). For polyoxidometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009); Zhang et al. (2010). For another structure comprising a Lindqvist-type isopolyanion, see: Meng et al. (2006). For a related structure, see: Li & Xu (2009).

Experimental top

2,2'-bipyridine (0.5 mmoL 0.07 g) and p-carboxyphenylboronic acid were purchased from Jinan Henghua Science & Technology Co. Ltd. A mixture of 2,2'-bipyridine (0.5 mmol 0.07 g), tungstic acid (0.4 mmoL, 0.10 g), oxalic aicd (10 mmol, 0.09), p-carboxyphenylboronic acid (0.3 mmol, 0.05 g), and cobalt(II) sulfate heptahydrate (0.2 mmol, 0.05 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Red crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C42H32Co2N8O23W6: C, 22.53; H, 1.43; N, 5.01. Found: C, 22.26; H, 1.33; N, 4.85%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq(C). In the final difference Fourier map the highest peak is 2.60 Å from atom H1 and the deepest hole is 0.81 Å from atom W3. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
(µ-Oxalato-κ4O1,O2:O1',O2')bis[bis(2,2'- bipyridine-κ2N,N')cobalt(II)] µ6-oxido-dodeca-µ2-oxido-hexaoxido-hexatungstate(VI) top
Crystal data top
[Co2(C2O4)(C10H8N2)4][W6O19]Z = 1
Mr = 2237.72F(000) = 1022
Triclinic, P1Dx = 2.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4876 (15) ÅCell parameters from 3530 reflections
b = 9.8548 (15) Åθ = 2.5–27.3°
c = 14.174 (2) ŵ = 13.67 mm1
α = 90.769 (2)°T = 293 K
β = 91.576 (2)°Block, red
γ = 91.113 (2)°0.12 × 0.10 × 0.08 mm
V = 1324.3 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4613 independent reflections
Radiation source: fine-focus sealed tube3755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.291, Tmax = 0.408k = 1111
9331 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.9139P]
where P = (Fo2 + 2Fc2)/3
4613 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 2.41 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
[Co2(C2O4)(C10H8N2)4][W6O19]γ = 91.113 (2)°
Mr = 2237.72V = 1324.3 (4) Å3
Triclinic, P1Z = 1
a = 9.4876 (15) ÅMo Kα radiation
b = 9.8548 (15) ŵ = 13.67 mm1
c = 14.174 (2) ÅT = 293 K
α = 90.769 (2)°0.12 × 0.10 × 0.08 mm
β = 91.576 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4613 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3755 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.408Rint = 0.027
9331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.00Δρmax = 2.41 e Å3
4613 reflectionsΔρmin = 1.10 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5864 (9)0.5558 (9)0.7481 (6)0.039 (2)
H10.65570.54230.70400.046*
C20.4503 (10)0.5210 (10)0.7228 (7)0.050 (3)
H20.42750.48310.66380.060*
C30.3498 (10)0.5440 (10)0.7869 (7)0.050 (3)
H30.25620.52200.77140.060*
C40.3841 (9)0.5996 (10)0.8753 (6)0.045 (2)
H40.31500.61500.91920.054*
C50.5239 (8)0.6314 (8)0.8957 (5)0.0262 (18)
C60.5713 (9)0.6925 (8)0.9874 (5)0.031 (2)
C70.4828 (10)0.7231 (11)1.0590 (7)0.050 (3)
H70.38690.70281.05210.061*
C80.5343 (12)0.7834 (12)1.1405 (7)0.062 (3)
H80.47470.80671.18890.074*
C90.6775 (12)0.8085 (12)1.1486 (7)0.064 (3)
H90.71570.84881.20350.077*
C100.7625 (11)0.7754 (10)1.0781 (6)0.046 (2)
H100.85890.79311.08510.055*
C110.8337 (10)0.9655 (10)0.8619 (7)0.046 (2)
H110.78160.96410.91660.055*
C120.8660 (11)1.0894 (10)0.8234 (7)0.052 (3)
H120.83961.17050.85150.062*
C130.9399 (12)1.0868 (11)0.7404 (8)0.062 (3)
H130.96211.16760.71050.074*
C140.9796 (10)0.9684 (10)0.7032 (7)0.047 (2)
H141.02990.96690.64780.057*
C150.9459 (8)0.8496 (9)0.7469 (6)0.0306 (19)
C160.9845 (8)0.7135 (9)0.7095 (6)0.0294 (19)
C171.0644 (9)0.6960 (10)0.6295 (6)0.040 (2)
H171.10000.77090.59810.048*
C181.0897 (9)0.5675 (10)0.5977 (6)0.043 (2)
H181.14280.55410.54430.052*
C191.0363 (9)0.4584 (10)0.6452 (6)0.043 (2)
H191.05220.37030.62430.051*
C200.9589 (9)0.4815 (9)0.7240 (6)0.035 (2)
H200.92300.40760.75640.042*
C211.0517 (8)0.5600 (8)1.0069 (5)0.0255 (18)
Co10.83213 (11)0.65380 (11)0.88211 (7)0.0263 (3)
N10.6258 (7)0.6078 (7)0.8323 (4)0.0302 (16)
N20.7116 (7)0.7170 (7)0.9974 (5)0.0328 (17)
N30.8729 (7)0.8481 (7)0.8254 (5)0.0325 (16)
N40.9334 (7)0.6070 (7)0.7558 (4)0.0269 (15)
O11.0227 (6)0.6668 (6)0.9616 (4)0.0350 (14)
O20.8466 (5)0.4532 (6)0.9359 (4)0.0318 (13)
O30.4860 (7)0.8809 (7)0.7694 (4)0.0521 (18)
O40.3221 (6)1.0289 (6)0.6381 (4)0.0362 (14)
O50.3335 (6)1.1440 (6)0.3892 (4)0.0369 (15)
O60.1293 (7)1.1836 (7)0.5300 (5)0.0540 (18)
O70.2326 (6)0.9278 (6)0.4737 (4)0.0383 (15)
O80.50001.00000.50000.0219 (16)
O90.3985 (6)0.7844 (6)0.5844 (4)0.0342 (14)
O100.5765 (6)0.7561 (6)0.4464 (4)0.0373 (14)
O110.2952 (7)0.6576 (7)0.4139 (5)0.0528 (18)
O120.4107 (6)0.8997 (6)0.3357 (4)0.0338 (14)
W10.38156 (4)0.80202 (4)0.45023 (2)0.03214 (12)
W20.49167 (4)0.92799 (4)0.65534 (2)0.03134 (12)
W30.28645 (4)1.10717 (4)0.51619 (2)0.03216 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (5)0.051 (6)0.025 (4)0.002 (5)0.004 (4)0.011 (4)
C20.047 (6)0.057 (7)0.044 (6)0.004 (5)0.018 (5)0.008 (5)
C30.028 (5)0.061 (7)0.058 (6)0.010 (5)0.014 (5)0.004 (5)
C40.031 (5)0.063 (7)0.041 (5)0.004 (5)0.000 (4)0.002 (5)
C50.024 (4)0.028 (5)0.027 (4)0.000 (4)0.003 (3)0.001 (3)
C60.032 (5)0.031 (5)0.030 (4)0.001 (4)0.012 (4)0.001 (4)
C70.038 (6)0.064 (7)0.049 (6)0.004 (5)0.011 (5)0.014 (5)
C80.057 (7)0.074 (8)0.055 (7)0.002 (6)0.027 (5)0.027 (6)
C90.072 (8)0.083 (9)0.036 (6)0.003 (7)0.003 (5)0.030 (5)
C100.052 (6)0.051 (6)0.036 (5)0.007 (5)0.003 (4)0.014 (5)
C110.044 (6)0.039 (6)0.056 (6)0.007 (5)0.010 (5)0.002 (5)
C120.064 (7)0.023 (5)0.067 (7)0.006 (5)0.001 (6)0.008 (5)
C130.066 (8)0.044 (7)0.074 (8)0.007 (6)0.002 (6)0.013 (6)
C140.053 (6)0.042 (6)0.047 (6)0.007 (5)0.006 (5)0.001 (5)
C150.021 (4)0.038 (5)0.033 (4)0.002 (4)0.006 (3)0.001 (4)
C160.016 (4)0.038 (5)0.034 (4)0.009 (4)0.009 (3)0.002 (4)
C170.039 (5)0.049 (6)0.031 (5)0.001 (5)0.011 (4)0.009 (4)
C180.036 (5)0.056 (7)0.038 (5)0.002 (5)0.009 (4)0.005 (5)
C190.047 (6)0.044 (6)0.037 (5)0.004 (5)0.003 (4)0.015 (4)
C200.034 (5)0.028 (5)0.042 (5)0.000 (4)0.002 (4)0.002 (4)
C210.016 (4)0.029 (5)0.032 (4)0.004 (3)0.005 (3)0.005 (4)
Co10.0243 (6)0.0289 (6)0.0258 (6)0.0001 (5)0.0035 (4)0.0003 (5)
N10.026 (4)0.034 (4)0.031 (4)0.001 (3)0.005 (3)0.001 (3)
N20.034 (4)0.031 (4)0.033 (4)0.003 (3)0.006 (3)0.011 (3)
N30.034 (4)0.027 (4)0.037 (4)0.001 (3)0.004 (3)0.004 (3)
N40.026 (4)0.028 (4)0.027 (3)0.001 (3)0.003 (3)0.002 (3)
O10.030 (3)0.037 (4)0.038 (3)0.002 (3)0.003 (3)0.007 (3)
O20.023 (3)0.036 (4)0.035 (3)0.004 (3)0.005 (2)0.004 (3)
O30.065 (5)0.059 (5)0.033 (3)0.007 (4)0.004 (3)0.003 (3)
O40.032 (3)0.048 (4)0.029 (3)0.001 (3)0.014 (2)0.008 (3)
O50.037 (3)0.041 (4)0.032 (3)0.009 (3)0.000 (3)0.000 (3)
O60.039 (4)0.068 (5)0.055 (4)0.010 (4)0.002 (3)0.014 (4)
O70.028 (3)0.053 (4)0.034 (3)0.002 (3)0.002 (3)0.008 (3)
O80.021 (4)0.024 (4)0.021 (4)0.004 (3)0.006 (3)0.003 (3)
O90.035 (3)0.033 (4)0.035 (3)0.004 (3)0.008 (3)0.000 (3)
O100.047 (4)0.027 (3)0.039 (3)0.007 (3)0.006 (3)0.006 (3)
O110.054 (4)0.042 (4)0.061 (4)0.016 (3)0.009 (3)0.013 (3)
O120.033 (3)0.046 (4)0.022 (3)0.002 (3)0.003 (2)0.008 (3)
W10.0353 (2)0.0295 (2)0.0313 (2)0.00686 (16)0.00560 (15)0.00922 (15)
W20.0381 (2)0.0338 (2)0.02229 (18)0.00114 (16)0.00478 (14)0.00123 (14)
W30.0274 (2)0.0368 (2)0.0325 (2)0.00719 (16)0.00465 (14)0.00600 (15)
Geometric parameters (Å, º) top
C1—N11.333 (10)C19—C201.373 (11)
C1—C21.366 (13)C19—H190.9300
C1—H10.9300C20—N41.340 (10)
C2—C31.355 (13)C20—H200.9300
C2—H20.9300C21—O2i1.254 (9)
C3—C41.388 (13)C21—O11.271 (9)
C3—H30.9300C21—C21i1.528 (15)
C4—C51.379 (11)Co1—O12.104 (6)
C4—H40.9300Co1—N12.101 (7)
C5—N11.360 (9)Co1—N42.105 (6)
C5—C61.479 (11)Co1—N22.114 (6)
C6—N21.351 (10)Co1—N32.119 (7)
C6—C71.370 (11)Co1—O22.134 (6)
C7—C81.366 (13)O2—C21i1.254 (9)
C7—H70.9300O3—W21.690 (6)
C8—C91.378 (15)O4—W21.919 (6)
C8—H80.9300O4—W31.926 (6)
C9—C101.343 (12)O5—W31.904 (5)
C9—H90.9300O5—W2ii1.935 (5)
C10—N21.346 (10)O6—W31.698 (6)
C10—H100.9300O7—W31.915 (6)
C11—N31.325 (11)O7—W11.931 (6)
C11—C121.377 (13)O8—W3ii2.3185 (4)
C11—H110.9300O8—W32.3185 (4)
C12—C131.386 (14)O8—W12.3240 (4)
C12—H120.9300O8—W1ii2.3240 (4)
C13—C141.339 (14)O8—W2ii2.3252 (5)
C13—H130.9300O8—W22.3252 (5)
C14—C151.368 (12)O9—W21.912 (6)
C14—H140.9300O9—W11.915 (5)
C15—N31.327 (10)O10—W11.914 (6)
C15—C161.491 (11)O10—W3ii1.914 (6)
C16—N41.336 (10)O11—W11.696 (6)
C16—C171.391 (11)O12—W11.922 (5)
C17—C181.367 (12)O12—W2ii1.920 (6)
C17—H170.9300W2—O12ii1.920 (6)
C18—C191.372 (12)W2—O5ii1.935 (5)
C18—H180.9300W3—O10ii1.914 (6)
N1—C1—C2124.0 (8)C1—N1—Co1127.4 (5)
N1—C1—H1118.0C5—N1—Co1114.6 (5)
C2—C1—H1118.0C10—N2—C6118.9 (7)
C3—C2—C1117.5 (9)C10—N2—Co1126.0 (6)
C3—C2—H2121.3C6—N2—Co1115.1 (5)
C1—C2—H2121.3C11—N3—C15118.4 (8)
C2—C3—C4121.2 (9)C11—N3—Co1125.9 (6)
C2—C3—H3119.4C15—N3—Co1115.7 (6)
C4—C3—H3119.4C20—N4—C16119.2 (7)
C3—C4—C5117.8 (8)C20—N4—Co1125.2 (6)
C3—C4—H4121.1C16—N4—Co1115.4 (5)
C5—C4—H4121.1C21—O1—Co1114.2 (5)
N1—C5—C4121.5 (7)C21i—O2—Co1113.0 (5)
N1—C5—C6116.4 (7)W2—O4—W3117.6 (2)
C4—C5—C6122.1 (7)W3—O5—W2ii117.3 (3)
N2—C6—C7120.6 (8)W3—O7—W1117.5 (3)
N2—C6—C5115.4 (6)W3ii—O8—W3180.0
C7—C6—C5124.0 (8)W3ii—O8—W189.833 (16)
C8—C7—C6120.4 (9)W3—O8—W190.167 (16)
C8—C7—H7119.8W3ii—O8—W1ii90.167 (16)
C6—C7—H7119.8W3—O8—W1ii89.833 (16)
C7—C8—C9117.8 (9)W1—O8—W1ii180.0
C7—C8—H8121.1W3ii—O8—W2ii90.173 (13)
C9—C8—H8121.1W3—O8—W2ii89.827 (13)
C10—C9—C8120.7 (10)W1—O8—W2ii90.203 (14)
C10—C9—H9119.7W1ii—O8—W2ii89.797 (14)
C8—C9—H9119.7W3ii—O8—W289.827 (13)
N2—C10—C9121.6 (10)W3—O8—W290.173 (13)
N2—C10—H10119.2W1—O8—W289.797 (14)
C9—C10—H10119.2W1ii—O8—W290.203 (14)
N3—C11—C12123.5 (9)W2ii—O8—W2180.0
N3—C11—H11118.2W2—O9—W1118.1 (3)
C12—C11—H11118.2W1—O10—W3ii117.8 (3)
C13—C12—C11116.4 (9)W1—O12—W2ii118.0 (3)
C13—C12—H12121.8O11—W1—O10103.9 (3)
C11—C12—H12121.8O11—W1—O9104.0 (3)
C14—C13—C12120.2 (10)O10—W1—O986.9 (2)
C14—C13—H13119.9O11—W1—O12104.1 (3)
C12—C13—H13119.9O10—W1—O1286.8 (2)
C13—C14—C15119.8 (9)O9—W1—O12151.9 (2)
C13—C14—H14120.1O11—W1—O7104.1 (3)
C15—C14—H14120.1O10—W1—O7152.1 (2)
N3—C15—C14121.6 (8)O9—W1—O786.5 (2)
N3—C15—C16115.2 (7)O12—W1—O786.3 (2)
C14—C15—C16123.2 (8)O11—W1—O8180.0 (3)
N4—C16—C17121.1 (8)O10—W1—O876.11 (17)
N4—C16—C15115.8 (7)O9—W1—O876.06 (17)
C17—C16—C15123.0 (8)O12—W1—O875.87 (17)
C18—C17—C16119.2 (8)O7—W1—O875.96 (18)
C18—C17—H17120.4O3—W2—O9105.6 (3)
C16—C17—H17120.4O3—W2—O4103.1 (3)
C17—C18—C19119.5 (8)O9—W2—O487.0 (2)
C17—C18—H18120.2O3—W2—O12ii102.5 (3)
C19—C18—H18120.2O9—W2—O12ii152.0 (2)
C18—C19—C20118.9 (8)O4—W2—O12ii86.6 (2)
C18—C19—H19120.6O3—W2—O5ii104.7 (3)
C20—C19—H19120.6O9—W2—O5ii86.7 (2)
N4—C20—C19122.1 (8)O4—W2—O5ii152.2 (2)
N4—C20—H20118.9O12ii—W2—O5ii86.3 (2)
C19—C20—H20118.9O3—W2—O8178.2 (2)
O2i—C21—O1125.8 (7)O9—W2—O876.08 (16)
O2i—C21—C21i117.7 (9)O4—W2—O876.11 (15)
O1—C21—C21i116.4 (9)O12ii—W2—O875.88 (15)
O1—Co1—N1164.8 (2)O5ii—W2—O876.08 (16)
O1—Co1—N493.3 (2)O6—W3—O5104.3 (3)
N1—Co1—N496.6 (2)O6—W3—O7103.2 (3)
O1—Co1—N292.9 (2)O5—W3—O787.2 (2)
N1—Co1—N278.4 (3)O6—W3—O10ii104.2 (3)
N4—Co1—N2172.1 (3)O5—W3—O10ii87.1 (2)
O1—Co1—N390.4 (2)O7—W3—O10ii152.6 (2)
N1—Co1—N3103.0 (3)O6—W3—O4102.7 (3)
N4—Co1—N377.4 (3)O5—W3—O4153.0 (2)
N2—Co1—N397.7 (3)O7—W3—O486.6 (2)
O1—Co1—O278.3 (2)O10ii—W3—O486.3 (2)
N1—Co1—O289.4 (2)O6—W3—O8178.8 (2)
N4—Co1—O294.3 (2)O5—W3—O876.81 (16)
N2—Co1—O291.7 (2)O7—W3—O876.38 (16)
N3—Co1—O2165.6 (2)O10ii—W3—O876.26 (16)
C1—N1—C5118.0 (7)O4—W3—O876.16 (15)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C2O4)(C10H8N2)4][W6O19]
Mr2237.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4876 (15), 9.8548 (15), 14.174 (2)
α, β, γ (°)90.769 (2), 91.576 (2), 91.113 (2)
V3)1324.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)13.67
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.291, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
9331, 4613, 3755
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.00
No. of reflections4613
No. of parameters368
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.41, 1.10

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.104 (6)O8—W3i2.3185 (4)
Co1—N12.101 (7)O8—W32.3185 (4)
Co1—N42.105 (6)O8—W12.3240 (4)
Co1—N22.114 (6)O8—W1i2.3240 (4)
Co1—N32.119 (7)O8—W2i2.3252 (5)
Co1—O22.134 (6)O8—W22.3252 (5)
O3—W21.690 (6)O9—W21.912 (6)
O4—W21.919 (6)O9—W11.915 (5)
O4—W31.926 (6)O10—W11.914 (6)
O5—W31.904 (5)O10—W3i1.914 (6)
O5—W2i1.935 (5)O11—W11.696 (6)
O6—W31.698 (6)O12—W11.922 (5)
O7—W31.915 (6)O12—W2i1.920 (6)
O7—W11.931 (6)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Financial support from the 973 Key Program of the MOST (2006CB932905 and 2007CB81532), the National Natural Science Foundation of China (20873160), the Chinese Academy of Sciences (KJCX2-YW—M02), Shandong Provincial Education Department and Shandong Institute of Education is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, P.-Z. & Xu, Q. (2009). Acta Cryst. E65, m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem. 25, 837–843.  CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m822-m823
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds