inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium samarium tetra­kis­(poly­phosphate), NaSm(PO3)4

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 2 June 2010; accepted 12 June 2010; online 23 June 2010)

NaSm(PO3)4 has been prepared by solid state reactions. It belongs to type II of the structural family of MILnIII(PO3)4 compounds (MI = alkali metal and LnIII = rare earth metal) and is composed of (PO3)n]n polyphosphate chains with a repeating unit of four PO4 tetra­hedra. The chains extend parallel to [100] and share O atoms with irregular SmO8 polyhedra, forming a three-dimensional framework which delimits tunnels occupied by Na+ cations in a distorted octa­hedral environment.

Related literature

The unit cell of NaSm(PO3)4, derived from X-ray powder data, was reported by Ferid et al. (1984[Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149-154.]). For classification of MILnIII(PO3)4 structures, see: Palkina et al. (1981[Palkina, K. K., Chudinova, N. N., Litvin, B. N. & Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 1501-1503.]); Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.]). Structures, properties and applications of other members of this family were discussed by Ettis et al. (2003[Ettis, H., Naili, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599-602.]); Parreu et al. (2007[Parreu, I., Sole, R., Massons, J., Diaz, F. & Aguilo, M. (2007). Cryst. Growth Des. 7, 557-563.]); Zhao et al. (2008[Zhao, D., Zhang, H., Huang, S. P., Fang, M., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2008). J. Mol. Struct. 892, 8-12.], 2010[Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i3.]); Zhu et al. (2009[Zhu, J., Cheng, W.-D. & Zhang, H. (2009). Acta Cryst. E65, i70.]).

Experimental

Crystal data
  • NaSm(PO3)4

  • Mr = 489.22

  • Monoclinic, P 21 /n

  • a = 7.1924 (13) Å

  • b = 13.091 (2) Å

  • c = 9.8480 (17) Å

  • β = 90.396 (10)°

  • V = 927.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.14 mm−1

  • T = 293 K

  • 0.20 × 0.02 × 0.02 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.329, Tmax = 0.870

  • 7036 measured reflections

  • 2111 independent reflections

  • 1868 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.068

  • S = 1.15

  • 2111 reflections

  • 163 parameters

  • Δρmax = 2.38 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

P1—O10 1.482 (4)
P1—O5 1.494 (4)
P1—O11 1.584 (4)
P1—O7 1.586 (4)
P2—O9 1.477 (4)
P2—O4 1.481 (4)
P2—O7i 1.574 (4)
P2—O6ii 1.598 (4)
P3—O1 1.482 (4)
P3—O12 1.486 (4)
P3—O6 1.591 (4)
P3—O3 1.596 (4)
P4—O8 1.479 (4)
P4—O2 1.487 (4)
P4—O11 1.594 (4)
P4—O3i 1.595 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, alkali rare earth polyphosphates with general formula MILnIII(PO3)4 (MI = alkali metal, LnIII = rare earth metal) have been studied mainly due to their rich structural chemistry and interesting physical and chemical properties, such as high luminescence efficiency (Durif, 1995). The nomenclature of MILnIII(PO3)4 compounds has been proposed by Palkina et al. (1981) and is generally accepted today. Many compounds of this family have been reported, for example, LiLn(PO3)4 (Ln =Y, Sm, Dy) (Zhao et al., 2008, 2010), KGdP4O12 (Ettis et al., 2003), KNd(PO3)4 (Parreu et al., 2007) and CsEu(PO3)4 (Zhu et al., 2009). For the compound NaSm(PO3)4 only unit-cell parameters have been reported on basis of refined X-ray powder diffraction data (Ferid et al., 1984).

The structure of NaSm(PO3)4 is characterized by a three-dimensional framework built up of irregular SmO8 polyhedra linked with polyphosphate chains via Sm–O–P bridges, as show in Fig. 2. The undulated [(PO3)n]n- chains have a repeating unit of four corner-sharing PO4 tetrahedra and extend parallel to the a-axis. Furthermore, the framework delimits tunnels in which the Na+ ions are located. They are 6-coordinated by O atoms with Na—O distances ranging from 2.386 (5)—2.741 (5) Å in a distorted octahedral arrangement.

Related literature top

The unit cell of NaSm(PO3)4, derived from X-ray powder data, was reported by Ferid et al. (1984). For classification of MILnIII(PO3)4 structures, see: Palkina et al. (1981); Durif (1995). Structures, properties and applications of other members of this family were discussed by Ettis et al. (2003); Parreu et al. (2007); Zhao et al. (2008, 2010); Zhu et al. (2009).

Experimental top

The finely ground reagents Na2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Na: Sm: P = 7: 1: 10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 673 K at a rate of 4 K h-1, and finally quenched to room temperature. A few yellow crystals of the title compound with prismatic shape were obtained.

Refinement top

The highest peak in the difference electron density map is located 1.49 Å from atom Sm1 while the deepest hole is 1.98 Å from atom O8.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the structure of NaSm(PO3)4 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal structure of NaSm(PO3)4 in a projection down [010].
Sodium samarium tetrakis(polyphosphate) top
Crystal data top
NaSm(PO3)4F(000) = 916
Mr = 489.22Dx = 3.504 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2180 reflections
a = 7.1924 (13) Åθ = 2.1–27.5°
b = 13.091 (2) ŵ = 7.14 mm1
c = 9.8480 (17) ÅT = 293 K
β = 90.396 (10)°Prism, yellow
V = 927.2 (3) Å30.20 × 0.02 × 0.02 mm
Z = 4
Data collection top
Rigaku Mercury70 CCD
diffractometer
2111 independent reflections
Radiation source: fine-focus sealed tube1868 reflections with I > 2σ(I)
Rigaku Graphite Monochromator DIFFRACTOMETER TYPE monochromatorRint = 0.041
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1517
Tmin = 0.329, Tmax = 0.870l = 1212
7036 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Secondary atom site location: difference Fourier map
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2111 reflectionsΔρmax = 2.38 e Å3
163 parametersΔρmin = 0.80 e Å3
Crystal data top
NaSm(PO3)4V = 927.2 (3) Å3
Mr = 489.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1924 (13) ŵ = 7.14 mm1
b = 13.091 (2) ÅT = 293 K
c = 9.8480 (17) Å0.20 × 0.02 × 0.02 mm
β = 90.396 (10)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
2111 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1868 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.870Rint = 0.041
7036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037163 parameters
wR(F2) = 0.0680 restraints
S = 1.15Δρmax = 2.38 e Å3
2111 reflectionsΔρmin = 0.80 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.0002 (4)0.7220 (2)0.5648 (3)0.0210 (6)
Sm10.51300 (4)0.71807 (2)0.47634 (3)0.00716 (10)
P10.2493 (2)0.60065 (11)0.74392 (15)0.0064 (3)
P20.8781 (2)0.61480 (12)0.26404 (15)0.0063 (3)
P30.2690 (2)0.59026 (12)0.19783 (15)0.0065 (3)
P40.6463 (2)0.62775 (12)0.80511 (15)0.0065 (3)
O10.2374 (6)0.6610 (3)0.0824 (4)0.0117 (9)
O20.7180 (5)0.7105 (3)0.8947 (4)0.0099 (9)
O30.2829 (6)0.4784 (3)0.1343 (4)0.0091 (9)
O40.8029 (6)0.6454 (3)0.3976 (4)0.0095 (9)
O50.0936 (6)0.6652 (3)0.7951 (4)0.0103 (9)
O60.0886 (6)0.5804 (3)0.2895 (4)0.0105 (9)
O70.2159 (6)0.4860 (3)0.7898 (4)0.0098 (9)
O80.6799 (6)0.6328 (3)0.6572 (4)0.0100 (9)
O90.8672 (6)0.6896 (3)0.1519 (4)0.0105 (9)
O100.2860 (6)0.6073 (3)0.5963 (4)0.0102 (9)
O110.4284 (6)0.6243 (3)0.8331 (4)0.0082 (9)
O120.4293 (6)0.6102 (3)0.2901 (4)0.0135 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0172 (14)0.0309 (16)0.0149 (12)0.0063 (13)0.0028 (11)0.0029 (12)
Sm10.00640 (16)0.00857 (15)0.00651 (15)0.00002 (13)0.00033 (11)0.00033 (13)
P10.0049 (7)0.0065 (7)0.0078 (7)0.0001 (6)0.0001 (6)0.0006 (6)
P20.0055 (7)0.0053 (7)0.0082 (7)0.0002 (6)0.0012 (6)0.0002 (6)
P30.0046 (7)0.0064 (7)0.0084 (7)0.0013 (6)0.0000 (6)0.0001 (6)
P40.0053 (7)0.0059 (7)0.0084 (7)0.0007 (6)0.0001 (6)0.0007 (6)
O10.010 (2)0.013 (2)0.012 (2)0.0027 (18)0.0012 (18)0.0029 (18)
O20.005 (2)0.009 (2)0.016 (2)0.0013 (17)0.0032 (17)0.0044 (18)
O30.014 (2)0.005 (2)0.009 (2)0.0016 (17)0.0019 (17)0.0014 (17)
O40.007 (2)0.012 (2)0.009 (2)0.0009 (17)0.0012 (17)0.0007 (17)
O50.005 (2)0.013 (2)0.013 (2)0.0014 (17)0.0020 (17)0.0007 (18)
O60.008 (2)0.015 (2)0.008 (2)0.0019 (18)0.0034 (17)0.0022 (18)
O70.014 (2)0.005 (2)0.011 (2)0.0042 (17)0.0001 (18)0.0013 (16)
O80.010 (2)0.013 (2)0.0064 (19)0.0015 (18)0.0028 (17)0.0026 (17)
O90.011 (2)0.008 (2)0.012 (2)0.0023 (17)0.0018 (18)0.0028 (17)
O100.012 (2)0.010 (2)0.009 (2)0.0015 (18)0.0019 (18)0.0004 (17)
O110.007 (2)0.010 (2)0.0076 (19)0.0012 (17)0.0028 (17)0.0021 (16)
O120.008 (2)0.015 (2)0.017 (2)0.0020 (18)0.0044 (18)0.0047 (18)
Geometric parameters (Å, º) top
Na1—O4i2.386 (5)P2—O6vii1.598 (4)
Na1—O1ii2.438 (5)P3—O11.482 (4)
Na1—O2iii2.468 (5)P3—O121.486 (4)
Na1—O52.475 (5)P3—O61.591 (4)
Na1—O102.565 (5)P3—O31.596 (4)
Na1—O8i2.741 (5)P4—O81.479 (4)
Na1—O9ii3.005 (5)P4—O21.487 (4)
Sm1—O9ii2.362 (4)P4—O111.594 (4)
Sm1—O122.389 (4)P4—O3vi1.595 (4)
Sm1—O82.415 (4)O1—Na1iv2.438 (5)
Sm1—O5iv2.423 (4)O1—Sm1iii2.486 (4)
Sm1—O42.424 (4)O2—Sm1v2.449 (4)
Sm1—O2iii2.449 (4)O2—Na1v2.468 (5)
Sm1—O1v2.486 (4)O3—P4vi1.595 (4)
Sm1—O102.488 (4)O4—Na1vii2.386 (5)
P1—O101.482 (4)O5—Sm1ii2.423 (4)
P1—O51.494 (4)O6—P2i1.598 (4)
P1—O111.584 (4)O7—P2vi1.574 (4)
P1—O71.586 (4)O8—Na1vii2.741 (5)
P2—O91.477 (4)O9—Sm1iv2.362 (4)
P2—O41.481 (4)O9—Na1iv3.005 (5)
P2—O7vi1.574 (4)
O4i—Na1—O1ii81.77 (16)O10—P1—O5115.9 (2)
O4i—Na1—O2iii93.40 (16)O10—P1—O11112.5 (2)
O1ii—Na1—O2iii108.62 (17)O5—P1—O11108.1 (2)
O4i—Na1—O5131.55 (19)O10—P1—O7111.3 (2)
O1ii—Na1—O5109.24 (16)O5—P1—O7108.9 (2)
O2iii—Na1—O5123.97 (17)O11—P1—O798.7 (2)
O4i—Na1—O10108.05 (17)O9—P2—O4117.8 (2)
O1ii—Na1—O10168.60 (18)O9—P2—O7vi106.5 (2)
O2iii—Na1—O1077.17 (15)O4—P2—O7vi111.6 (2)
O5—Na1—O1060.02 (14)O9—P2—O6vii110.5 (2)
O4i—Na1—O8i63.56 (14)O4—P2—O6vii106.8 (2)
O1ii—Na1—O8i65.92 (15)O7vi—P2—O6vii102.8 (2)
O2iii—Na1—O8i156.55 (17)O1—P3—O12118.2 (3)
O5—Na1—O8i78.01 (15)O1—P3—O6111.4 (2)
O10—Na1—O8i112.69 (17)O12—P3—O6107.4 (2)
O4i—Na1—O9ii151.14 (16)O1—P3—O3106.4 (2)
O1ii—Na1—O9ii114.66 (17)O12—P3—O3110.5 (2)
O2iii—Na1—O9ii59.56 (14)O6—P3—O3101.6 (2)
O5—Na1—O9ii67.70 (14)O8—P4—O2119.5 (3)
O10—Na1—O9ii59.17 (13)O8—P4—O11109.8 (2)
O8i—Na1—O9ii143.89 (15)O2—P4—O11104.8 (2)
P1—Na1—O9ii60.64 (10)O8—P4—O3vi110.7 (2)
O9ii—Sm1—O12138.95 (15)O2—P4—O3vi107.7 (2)
O9ii—Sm1—O885.27 (14)O11—P4—O3vi102.9 (2)
O12—Sm1—O8114.50 (15)P3—O1—Sm1iii144.7 (2)
O9ii—Sm1—O5iv109.05 (14)Na1iv—O1—Sm1iii94.05 (16)
O12—Sm1—O5iv82.37 (15)P4—O2—Sm1v140.3 (2)
O8—Sm1—O5iv135.61 (14)P4—O2—Na1v116.4 (2)
O9ii—Sm1—O4145.34 (14)Sm1v—O2—Na1v101.18 (16)
O12—Sm1—O474.63 (14)P4vi—O3—P3132.3 (3)
O8—Sm1—O468.31 (13)P2—O4—Na1vii120.5 (2)
O5iv—Sm1—O478.51 (14)P2—O4—Sm1135.3 (2)
O9ii—Sm1—O2iii69.92 (14)Na1vii—O4—Sm197.01 (16)
O12—Sm1—O2iii76.16 (14)P1—O5—Sm1ii142.1 (2)
O8—Sm1—O2iii147.54 (13)P1—O5—Na193.5 (2)
O5iv—Sm1—O2iii74.25 (14)Sm1ii—O5—Na1114.88 (18)
O4—Sm1—O2iii142.17 (13)P3—O6—P2i131.6 (3)
O9ii—Sm1—O1v69.91 (14)P2vi—O7—P1139.8 (3)
O12—Sm1—O1v149.17 (14)P4—O8—Sm1131.5 (2)
O8—Sm1—O1v70.50 (14)P4—O8—Na1vii119.3 (2)
O5iv—Sm1—O1v75.54 (14)Sm1—O8—Na1vii88.43 (14)
O4—Sm1—O1v80.05 (14)P2—O9—Sm1iv149.9 (3)
O2iii—Sm1—O1v116.94 (14)P2—O9—Na1iv120.7 (2)
O9ii—Sm1—O1069.79 (14)Sm1iv—O9—Na1iv89.30 (14)
O12—Sm1—O1081.81 (14)P1—O10—Sm1128.5 (2)
O8—Sm1—O1072.84 (14)P1—O10—Na190.3 (2)
O5iv—Sm1—O10151.45 (14)Sm1—O10—Na197.49 (15)
O4—Sm1—O10119.46 (14)P1—O11—P4135.0 (3)
O2iii—Sm1—O1078.97 (14)P3—O12—Sm1139.8 (3)
O1v—Sm1—O10126.71 (13)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaNaSm(PO3)4
Mr489.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1924 (13), 13.091 (2), 9.8480 (17)
β (°) 90.396 (10)
V3)927.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.14
Crystal size (mm)0.20 × 0.02 × 0.02
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.329, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
7036, 2111, 1868
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.068, 1.15
No. of reflections2111
No. of parameters163
Δρmax, Δρmin (e Å3)2.38, 0.80

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
P1—O101.482 (4)P3—O11.482 (4)
P1—O51.494 (4)P3—O121.486 (4)
P1—O111.584 (4)P3—O61.591 (4)
P1—O71.586 (4)P3—O31.596 (4)
P2—O91.477 (4)P4—O81.479 (4)
P2—O41.481 (4)P4—O21.487 (4)
P2—O7i1.574 (4)P4—O111.594 (4)
P2—O6ii1.598 (4)P4—O3i1.595 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.  Google Scholar
First citationEttis, H., Naili, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602.  Web of Science CrossRef CAS Google Scholar
First citationFerid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPalkina, K. K., Chudinova, N. N., Litvin, B. N. & Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 1501–1503.  CAS Google Scholar
First citationParreu, I., Sole, R., Massons, J., Diaz, F. & Aguilo, M. (2007). Cryst. Growth Des. 7, 557–563.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i3.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhao, D., Zhang, H., Huang, S. P., Fang, M., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2008). J. Mol. Struct. 892, 8–12.  Web of Science CrossRef CAS Google Scholar
First citationZhu, J., Cheng, W.-D. & Zhang, H. (2009). Acta Cryst. E65, i70.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds