inorganic compounds
Sodium samarium tetrakis(polyphosphate), NaSm(PO3)4
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
NaSm(PO3)4 has been prepared by solid state reactions. It belongs to type II of the structural family of MILnIII(PO3)4 compounds (MI = alkali metal and LnIII = rare earth metal) and is composed of ∞(PO3)n]n− polyphosphate chains with a repeating unit of four PO4 tetrahedra. The chains extend parallel to [100] and share O atoms with irregular SmO8 polyhedra, forming a three-dimensional framework which delimits tunnels occupied by Na+ cations in a distorted octahedral environment.
Related literature
The 3)4, derived from X-ray powder data, was reported by Ferid et al. (1984). For classification of MILnIII(PO3)4 structures, see: Palkina et al. (1981); Durif (1995). Structures, properties and applications of other members of this family were discussed by Ettis et al. (2003); Parreu et al. (2007); Zhao et al. (2008, 2010); Zhu et al. (2009).
of NaSm(POExperimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2004); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536810022543/wm2360sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022543/wm2360Isup2.hkl
The finely ground reagents Na2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Na: Sm: P = 7: 1: 10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 673 K at a rate of 4 K h-1, and finally quenched to room temperature. A few yellow crystals of the title compound with prismatic shape were obtained.
The highest peak in the difference
is located 1.49 Å from atom Sm1 while the deepest hole is 1.98 Å from atom O8.Data collection: CrystalClear (Rigaku, 2004); cell
CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Asymmetric unit of the structure of NaSm(PO3)4 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. View of the crystal structure of NaSm(PO3)4 in a projection down [010]. |
NaSm(PO3)4 | F(000) = 916 |
Mr = 489.22 | Dx = 3.504 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2180 reflections |
a = 7.1924 (13) Å | θ = 2.1–27.5° |
b = 13.091 (2) Å | µ = 7.14 mm−1 |
c = 9.8480 (17) Å | T = 293 K |
β = 90.396 (10)° | Prism, yellow |
V = 927.2 (3) Å3 | 0.20 × 0.02 × 0.02 mm |
Z = 4 |
Rigaku Mercury70 CCD diffractometer | 2111 independent reflections |
Radiation source: fine-focus sealed tube | 1868 reflections with I > 2σ(I) |
Rigaku Graphite Monochromator DIFFRACTOMETER TYPE monochromator | Rint = 0.041 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 2.6° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −15→17 |
Tmin = 0.329, Tmax = 0.870 | l = −12→12 |
7036 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.037 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2111 reflections | Δρmax = 2.38 e Å−3 |
163 parameters | Δρmin = −0.80 e Å−3 |
NaSm(PO3)4 | V = 927.2 (3) Å3 |
Mr = 489.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1924 (13) Å | µ = 7.14 mm−1 |
b = 13.091 (2) Å | T = 293 K |
c = 9.8480 (17) Å | 0.20 × 0.02 × 0.02 mm |
β = 90.396 (10)° |
Rigaku Mercury70 CCD diffractometer | 2111 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1868 reflections with I > 2σ(I) |
Tmin = 0.329, Tmax = 0.870 | Rint = 0.041 |
7036 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 163 parameters |
wR(F2) = 0.068 | 0 restraints |
S = 1.15 | Δρmax = 2.38 e Å−3 |
2111 reflections | Δρmin = −0.80 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | −0.0002 (4) | 0.7220 (2) | 0.5648 (3) | 0.0210 (6) | |
Sm1 | 0.51300 (4) | 0.71807 (2) | 0.47634 (3) | 0.00716 (10) | |
P1 | 0.2493 (2) | 0.60065 (11) | 0.74392 (15) | 0.0064 (3) | |
P2 | 0.8781 (2) | 0.61480 (12) | 0.26404 (15) | 0.0063 (3) | |
P3 | 0.2690 (2) | 0.59026 (12) | 0.19783 (15) | 0.0065 (3) | |
P4 | 0.6463 (2) | 0.62775 (12) | 0.80511 (15) | 0.0065 (3) | |
O1 | 0.2374 (6) | 0.6610 (3) | 0.0824 (4) | 0.0117 (9) | |
O2 | 0.7180 (5) | 0.7105 (3) | 0.8947 (4) | 0.0099 (9) | |
O3 | 0.2829 (6) | 0.4784 (3) | 0.1343 (4) | 0.0091 (9) | |
O4 | 0.8029 (6) | 0.6454 (3) | 0.3976 (4) | 0.0095 (9) | |
O5 | 0.0936 (6) | 0.6652 (3) | 0.7951 (4) | 0.0103 (9) | |
O6 | 0.0886 (6) | 0.5804 (3) | 0.2895 (4) | 0.0105 (9) | |
O7 | 0.2159 (6) | 0.4860 (3) | 0.7898 (4) | 0.0098 (9) | |
O8 | 0.6799 (6) | 0.6328 (3) | 0.6572 (4) | 0.0100 (9) | |
O9 | 0.8672 (6) | 0.6896 (3) | 0.1519 (4) | 0.0105 (9) | |
O10 | 0.2860 (6) | 0.6073 (3) | 0.5963 (4) | 0.0102 (9) | |
O11 | 0.4284 (6) | 0.6243 (3) | 0.8331 (4) | 0.0082 (9) | |
O12 | 0.4293 (6) | 0.6102 (3) | 0.2901 (4) | 0.0135 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0172 (14) | 0.0309 (16) | 0.0149 (12) | 0.0063 (13) | −0.0028 (11) | 0.0029 (12) |
Sm1 | 0.00640 (16) | 0.00857 (15) | 0.00651 (15) | −0.00002 (13) | 0.00033 (11) | −0.00033 (13) |
P1 | 0.0049 (7) | 0.0065 (7) | 0.0078 (7) | −0.0001 (6) | −0.0001 (6) | −0.0006 (6) |
P2 | 0.0055 (7) | 0.0053 (7) | 0.0082 (7) | 0.0002 (6) | 0.0012 (6) | 0.0002 (6) |
P3 | 0.0046 (7) | 0.0064 (7) | 0.0084 (7) | 0.0013 (6) | 0.0000 (6) | −0.0001 (6) |
P4 | 0.0053 (7) | 0.0059 (7) | 0.0084 (7) | −0.0007 (6) | 0.0001 (6) | −0.0007 (6) |
O1 | 0.010 (2) | 0.013 (2) | 0.012 (2) | 0.0027 (18) | 0.0012 (18) | 0.0029 (18) |
O2 | 0.005 (2) | 0.009 (2) | 0.016 (2) | −0.0013 (17) | −0.0032 (17) | −0.0044 (18) |
O3 | 0.014 (2) | 0.005 (2) | 0.009 (2) | 0.0016 (17) | −0.0019 (17) | −0.0014 (17) |
O4 | 0.007 (2) | 0.012 (2) | 0.009 (2) | 0.0009 (17) | 0.0012 (17) | −0.0007 (17) |
O5 | 0.005 (2) | 0.013 (2) | 0.013 (2) | 0.0014 (17) | 0.0020 (17) | −0.0007 (18) |
O6 | 0.008 (2) | 0.015 (2) | 0.008 (2) | −0.0019 (18) | 0.0034 (17) | 0.0022 (18) |
O7 | 0.014 (2) | 0.005 (2) | 0.011 (2) | −0.0042 (17) | −0.0001 (18) | −0.0013 (16) |
O8 | 0.010 (2) | 0.013 (2) | 0.0064 (19) | 0.0015 (18) | 0.0028 (17) | 0.0026 (17) |
O9 | 0.011 (2) | 0.008 (2) | 0.012 (2) | 0.0023 (17) | 0.0018 (18) | 0.0028 (17) |
O10 | 0.012 (2) | 0.010 (2) | 0.009 (2) | −0.0015 (18) | 0.0019 (18) | −0.0004 (17) |
O11 | 0.007 (2) | 0.010 (2) | 0.0076 (19) | −0.0012 (17) | −0.0028 (17) | −0.0021 (16) |
O12 | 0.008 (2) | 0.015 (2) | 0.017 (2) | −0.0020 (18) | −0.0044 (18) | −0.0047 (18) |
Na1—O4i | 2.386 (5) | P2—O6vii | 1.598 (4) |
Na1—O1ii | 2.438 (5) | P3—O1 | 1.482 (4) |
Na1—O2iii | 2.468 (5) | P3—O12 | 1.486 (4) |
Na1—O5 | 2.475 (5) | P3—O6 | 1.591 (4) |
Na1—O10 | 2.565 (5) | P3—O3 | 1.596 (4) |
Na1—O8i | 2.741 (5) | P4—O8 | 1.479 (4) |
Na1—O9ii | 3.005 (5) | P4—O2 | 1.487 (4) |
Sm1—O9ii | 2.362 (4) | P4—O11 | 1.594 (4) |
Sm1—O12 | 2.389 (4) | P4—O3vi | 1.595 (4) |
Sm1—O8 | 2.415 (4) | O1—Na1iv | 2.438 (5) |
Sm1—O5iv | 2.423 (4) | O1—Sm1iii | 2.486 (4) |
Sm1—O4 | 2.424 (4) | O2—Sm1v | 2.449 (4) |
Sm1—O2iii | 2.449 (4) | O2—Na1v | 2.468 (5) |
Sm1—O1v | 2.486 (4) | O3—P4vi | 1.595 (4) |
Sm1—O10 | 2.488 (4) | O4—Na1vii | 2.386 (5) |
P1—O10 | 1.482 (4) | O5—Sm1ii | 2.423 (4) |
P1—O5 | 1.494 (4) | O6—P2i | 1.598 (4) |
P1—O11 | 1.584 (4) | O7—P2vi | 1.574 (4) |
P1—O7 | 1.586 (4) | O8—Na1vii | 2.741 (5) |
P2—O9 | 1.477 (4) | O9—Sm1iv | 2.362 (4) |
P2—O4 | 1.481 (4) | O9—Na1iv | 3.005 (5) |
P2—O7vi | 1.574 (4) | ||
O4i—Na1—O1ii | 81.77 (16) | O10—P1—O5 | 115.9 (2) |
O4i—Na1—O2iii | 93.40 (16) | O10—P1—O11 | 112.5 (2) |
O1ii—Na1—O2iii | 108.62 (17) | O5—P1—O11 | 108.1 (2) |
O4i—Na1—O5 | 131.55 (19) | O10—P1—O7 | 111.3 (2) |
O1ii—Na1—O5 | 109.24 (16) | O5—P1—O7 | 108.9 (2) |
O2iii—Na1—O5 | 123.97 (17) | O11—P1—O7 | 98.7 (2) |
O4i—Na1—O10 | 108.05 (17) | O9—P2—O4 | 117.8 (2) |
O1ii—Na1—O10 | 168.60 (18) | O9—P2—O7vi | 106.5 (2) |
O2iii—Na1—O10 | 77.17 (15) | O4—P2—O7vi | 111.6 (2) |
O5—Na1—O10 | 60.02 (14) | O9—P2—O6vii | 110.5 (2) |
O4i—Na1—O8i | 63.56 (14) | O4—P2—O6vii | 106.8 (2) |
O1ii—Na1—O8i | 65.92 (15) | O7vi—P2—O6vii | 102.8 (2) |
O2iii—Na1—O8i | 156.55 (17) | O1—P3—O12 | 118.2 (3) |
O5—Na1—O8i | 78.01 (15) | O1—P3—O6 | 111.4 (2) |
O10—Na1—O8i | 112.69 (17) | O12—P3—O6 | 107.4 (2) |
O4i—Na1—O9ii | 151.14 (16) | O1—P3—O3 | 106.4 (2) |
O1ii—Na1—O9ii | 114.66 (17) | O12—P3—O3 | 110.5 (2) |
O2iii—Na1—O9ii | 59.56 (14) | O6—P3—O3 | 101.6 (2) |
O5—Na1—O9ii | 67.70 (14) | O8—P4—O2 | 119.5 (3) |
O10—Na1—O9ii | 59.17 (13) | O8—P4—O11 | 109.8 (2) |
O8i—Na1—O9ii | 143.89 (15) | O2—P4—O11 | 104.8 (2) |
P1—Na1—O9ii | 60.64 (10) | O8—P4—O3vi | 110.7 (2) |
O9ii—Sm1—O12 | 138.95 (15) | O2—P4—O3vi | 107.7 (2) |
O9ii—Sm1—O8 | 85.27 (14) | O11—P4—O3vi | 102.9 (2) |
O12—Sm1—O8 | 114.50 (15) | P3—O1—Sm1iii | 144.7 (2) |
O9ii—Sm1—O5iv | 109.05 (14) | Na1iv—O1—Sm1iii | 94.05 (16) |
O12—Sm1—O5iv | 82.37 (15) | P4—O2—Sm1v | 140.3 (2) |
O8—Sm1—O5iv | 135.61 (14) | P4—O2—Na1v | 116.4 (2) |
O9ii—Sm1—O4 | 145.34 (14) | Sm1v—O2—Na1v | 101.18 (16) |
O12—Sm1—O4 | 74.63 (14) | P4vi—O3—P3 | 132.3 (3) |
O8—Sm1—O4 | 68.31 (13) | P2—O4—Na1vii | 120.5 (2) |
O5iv—Sm1—O4 | 78.51 (14) | P2—O4—Sm1 | 135.3 (2) |
O9ii—Sm1—O2iii | 69.92 (14) | Na1vii—O4—Sm1 | 97.01 (16) |
O12—Sm1—O2iii | 76.16 (14) | P1—O5—Sm1ii | 142.1 (2) |
O8—Sm1—O2iii | 147.54 (13) | P1—O5—Na1 | 93.5 (2) |
O5iv—Sm1—O2iii | 74.25 (14) | Sm1ii—O5—Na1 | 114.88 (18) |
O4—Sm1—O2iii | 142.17 (13) | P3—O6—P2i | 131.6 (3) |
O9ii—Sm1—O1v | 69.91 (14) | P2vi—O7—P1 | 139.8 (3) |
O12—Sm1—O1v | 149.17 (14) | P4—O8—Sm1 | 131.5 (2) |
O8—Sm1—O1v | 70.50 (14) | P4—O8—Na1vii | 119.3 (2) |
O5iv—Sm1—O1v | 75.54 (14) | Sm1—O8—Na1vii | 88.43 (14) |
O4—Sm1—O1v | 80.05 (14) | P2—O9—Sm1iv | 149.9 (3) |
O2iii—Sm1—O1v | 116.94 (14) | P2—O9—Na1iv | 120.7 (2) |
O9ii—Sm1—O10 | 69.79 (14) | Sm1iv—O9—Na1iv | 89.30 (14) |
O12—Sm1—O10 | 81.81 (14) | P1—O10—Sm1 | 128.5 (2) |
O8—Sm1—O10 | 72.84 (14) | P1—O10—Na1 | 90.3 (2) |
O5iv—Sm1—O10 | 151.45 (14) | Sm1—O10—Na1 | 97.49 (15) |
O4—Sm1—O10 | 119.46 (14) | P1—O11—P4 | 135.0 (3) |
O2iii—Sm1—O10 | 78.97 (14) | P3—O12—Sm1 | 139.8 (3) |
O1v—Sm1—O10 | 126.71 (13) |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+3/2, z+1/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) x+1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | NaSm(PO3)4 |
Mr | 489.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.1924 (13), 13.091 (2), 9.8480 (17) |
β (°) | 90.396 (10) |
V (Å3) | 927.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.14 |
Crystal size (mm) | 0.20 × 0.02 × 0.02 |
Data collection | |
Diffractometer | Rigaku Mercury70 CCD diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.329, 0.870 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7036, 2111, 1868 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.068, 1.15 |
No. of reflections | 2111 |
No. of parameters | 163 |
Δρmax, Δρmin (e Å−3) | 2.38, −0.80 |
Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).
P1—O10 | 1.482 (4) | P3—O1 | 1.482 (4) |
P1—O5 | 1.494 (4) | P3—O12 | 1.486 (4) |
P1—O11 | 1.584 (4) | P3—O6 | 1.591 (4) |
P1—O7 | 1.586 (4) | P3—O3 | 1.596 (4) |
P2—O9 | 1.477 (4) | P4—O8 | 1.479 (4) |
P2—O4 | 1.481 (4) | P4—O2 | 1.487 (4) |
P2—O7i | 1.574 (4) | P4—O11 | 1.594 (4) |
P2—O6ii | 1.598 (4) | P4—O3i | 1.595 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Acknowledgements
The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).
References
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press. Google Scholar
Ettis, H., Naili, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602. Web of Science CrossRef CAS Google Scholar
Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem. 53, 149–154. CrossRef CAS Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Palkina, K. K., Chudinova, N. N., Litvin, B. N. & Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 1501–1503. CAS Google Scholar
Parreu, I., Sole, R., Massons, J., Diaz, F. & Aguilo, M. (2007). Cryst. Growth Des. 7, 557–563. Web of Science CrossRef CAS Google Scholar
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i3. Web of Science CrossRef IUCr Journals Google Scholar
Zhao, D., Zhang, H., Huang, S. P., Fang, M., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2008). J. Mol. Struct. 892, 8–12. Web of Science CrossRef CAS Google Scholar
Zhu, J., Cheng, W.-D. & Zhang, H. (2009). Acta Cryst. E65, i70. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, alkali rare earth polyphosphates with general formula MILnIII(PO3)4 (MI = alkali metal, LnIII = rare earth metal) have been studied mainly due to their rich structural chemistry and interesting physical and chemical properties, such as high luminescence efficiency (Durif, 1995). The nomenclature of MILnIII(PO3)4 compounds has been proposed by Palkina et al. (1981) and is generally accepted today. Many compounds of this family have been reported, for example, LiLn(PO3)4 (Ln =Y, Sm, Dy) (Zhao et al., 2008, 2010), KGdP4O12 (Ettis et al., 2003), KNd(PO3)4 (Parreu et al., 2007) and CsEu(PO3)4 (Zhu et al., 2009). For the compound NaSm(PO3)4 only unit-cell parameters have been reported on basis of refined X-ray powder diffraction data (Ferid et al., 1984).
The structure of NaSm(PO3)4 is characterized by a three-dimensional framework built up of irregular SmO8 polyhedra linked with polyphosphate chains via Sm–O–P bridges, as show in Fig. 2. The undulated [(PO3)n]n- chains have a repeating unit of four corner-sharing PO4 tetrahedra and extend parallel to the a-axis. Furthermore, the framework delimits tunnels in which the Na+ ions are located. They are 6-coordinated by O atoms with Na—O distances ranging from 2.386 (5)—2.741 (5) Å in a distorted octahedral arrangement.