metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m859-m860

Tetra­ethyl­ammonium bromidotricarbon­yl(tropolonato)rhenate(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 8 June 2010; accepted 23 June 2010; online 26 June 2010)

In the title salt, (C8H20N)[ReBr(C7H5O2)(CO)3], the ReI atom is octa­hedrally surrounded by three facially orientated carbonyl ligands, one bidendate tropolonate ligand and a bromide ligand. The small O—Re—O bite angle of 74.88 (12)° leads to a distortion of the octa­hedral coordination sphere. The bromide ligand and the axial carbonyl ligand are substitutionally disordered over two positions in a 0.922 (3):0.078 (3) ratio. An array of C—H⋯O and C—H⋯Br hydrogen-bonding inter­actions between the cations and neighbouring rhenate anions stabilizes the crystal packing.

Related literature

For the synthesis of the ReI-tricarbonyl synthon, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). A range of related rhenium bidentate complexes have been characterized by Schutte & Visser (2008[Schutte, M. & Visser, H. G. (2008). Acta Cryst. E64, m1226-m1227.]); Alberto et al. (1992[Alberto, R., Herrmann, W. A., Kiprof, P. & Baumgartner, F. (1992). Inorg. Chem. 31, 895-899.], 1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.], 1998[Alberto, R., Egli, A., Schibli, R., Abram, U., Kaden, T. A., Schaffland, A. O., Schwarzbath, R. & Schubiger, P. A. (1998). Q. J. Nucl. Med. 42(suppl), 9.]); Abram et al. (1996[Abram, U., Abram, S., Alberto, R. & Schibli, R. (1996). Inorg. Chim. Acta, 248, 193-202.]); Findeisen & Schmidt (1991[Findeisen, B. L. M. & Schmidt, K. (1991). Isot. Environ. Health Stud. 27, 5-11.]); Egli et al. (1997[Egli, A., Alberto, R., Schibli, R., Schaffland, A. O., Abram, U., Abram, S., Kaden, T. A. & Schubiger, P. A. (1997). J. Labelled Compds Radiopharm. 39, 443-452.]), Brasey et al. (2004[Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964-967.]); Gibson et al. (1999[Gibson, D. H., Ding, Y., Miller, R. L., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1999). Polyhedron, 18, 1189-1200.]); Bochkova et al. (1987[Bochkova, R. I., Zakharov, L. N., Patrikeeva, N. V., Shal'nova, K. G., Abakumov, G. A. & Cherkasov, V. K. (1987). Koord. Khim. 13, 702-705.]); Cheng et al. (1988[Cheng, C. P., Wang, S. R., Lin, J. C. & Wang, S.-L. (1988). J. Organomet. Chem. 349, 375-382.]); Mundwiler et al. (2004[Mundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]). For similar structures, see: Schutte et al. (2007[Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195-m3196.], 2008[Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610-m1611.]) and for comparable Re—Br distances, see: Schutte et al. (2007[Schutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195-m3196.], 2009[Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575-m1576.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[ReBr(C7H5O2)(CO)3]

  • Mr = 601.5

  • Monoclinic, P 21 /n

  • a = 12.334 (5) Å

  • b = 10.754 (5) Å

  • c = 16.053 (5) Å

  • β = 101.983 (5)°

  • V = 2082.9 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.78 mm−1

  • T = 100 K

  • 0.58 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.196, Tmax = 0.273

  • 16808 measured reflections

  • 5160 independent reflections

  • 4700 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.13

  • 5160 reflections

  • 251 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 3.16 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Selected bond lengths (Å)

C1—Re1 1.906 (5)
C2—Re1 1.903 (5)
O11—Re1 2.126 (3)
O12—Re1 2.135 (3)
Re1—C3A 1.861 (7)
Re1—C3B 1.923 (18)
Re1—Br1B 2.467 (16)
Re1—Br1A 2.6334 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3Ai 0.93 2.43 3.344 (7) 169
C25—H25A⋯Br1Aii 0.97 2.89 3.809 (5) 158
C26—H26C⋯O11 0.96 2.58 3.542 (7) 176
C27—H27B⋯O11 0.97 2.57 3.401 (6) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound forms part of an ongoing study involving various bidentate ligands on the rhenium tricarbonyl core and the effects thereof, crystallographically as well as kinetically (Schutte & Visser, 2008; Schutte et al., 2009). Various of these bidentate complexes have been synthesized before (Alberto et al., 1992, 1996, 1998; Abram et al., 1996; Findeisen & Schmidt, 1991; Egli et al., 1997; Brasey et al., 2004; Gibson et al., 1999; Bochkova et al., 1987; Cheng et al., 1988; Mundwiler et al., 2004). However, only a few O,O' bidentate ligands are known in literature.

The octahedral geometry around the ReI metal centre is slightly distorted (Fig. 1) due to the effect of the small bite angle of 74.9 (1) °. Good correlations regarding bond distances and angles are found with related structures (Schutte et al., 2007, 2008). The Re—Br bond distance of 2.6334 (9) Å compares well with 2.6270 (3) Å (Schutte et al., 2007). The Re—O(bidentate) distances of 2.137 (3) Å and 2.125 (4) Å are well within the range of 2.123 (4) Å to 2.146 (4) Å observed for similar structures (Schutte et al., 2007, 2008). Also the bite angles of 74.1 (2)° and 73.6 (7) °, (Schutte et al., 2007, 2008) compare well with 74.88 (12)° found in the title structure.

An array of C—H···O and C—H···Br hydrogen-bonding interactions between rhenate anions and neighbouring cations stabilizes the crystal packing (Fig. 2).

Related literature top

For the synthesis of the ReI-tricarbonyl synthon, see: Alberto et al. (1996). A range of related rhenium bidentate complexes have been characterized by Schutte & Visser (2008); Alberto et al. (1992, 1996, 1998); Abram et al. (1996); Findeisen & Schmidt (1991); Egli et al. (1997), Brasey et al. (2004); Gibson et al. (1999); Bochkova et al. (1987); Cheng et al. (1988); Mundwiler et al. (2004). For similar structures, see: Schutte et al. (2007, 2008) and for comparable Re—Br distances, see: Schutte et al. (2007, 2009).

Experimental top

0.04 mmol tropolone was dissolved in 3 ml of methanol and heated to 323 K. 0.039 mmol [NEt4]2[Re(CO)3Br3] (synthesized according to Alberto et al. (1996)) were added to the solution and left to stir overnight. The reaction mixture was left to stand and crystals suitable for single-crystal X-ray crystallography formed. The crystals were orange cuboids with a maximum edge length of about 0.6 mm.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The aliphatic H atoms were place in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene carbon atoms and Uiso(H) = 1.5Ueq(C) for methyl atoms. Substitutional disorder between the bromide ligand and and the trans carbonyl ligand was observed in a 0.922 (3):0.078 (3) ratio. Such a kind of disorder has been observed in similar complexes and in Rh-Vaska compounds. The highest peak and the deepest hole in the final difference map are located 0.86 Å and 0.65 Å from Re1.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Representation of the hydrogen-bonding interactions and the packing of the title structure (only one orientation of the disordered Br/CO groups is shown).
Tetraethylammonium bromidotricarbonyl(tropolonato)rhenate(I) top
Crystal data top
(C8H20N)[ReBr(C7H5O2)(CO)3]F(000) = 1160
Mr = 601.5Dx = 1.918 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9467 reflections
a = 12.334 (5) Åθ = 2.3–28.3°
b = 10.754 (5) ŵ = 7.78 mm1
c = 16.053 (5) ÅT = 100 K
β = 101.983 (5)°Cuboid, orange
V = 2082.9 (14) Å30.58 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.196, Tmax = 0.273k = 1412
16808 measured reflectionsl = 2121
5160 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0337P)2 + 6.0941P]
where P = (Fo2 + 2Fc2)/3
5160 reflections(Δ/σ)max = 0.002
251 parametersΔρmax = 3.16 e Å3
3 restraintsΔρmin = 1.41 e Å3
Crystal data top
(C8H20N)[ReBr(C7H5O2)(CO)3]V = 2082.9 (14) Å3
Mr = 601.5Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.334 (5) ŵ = 7.78 mm1
b = 10.754 (5) ÅT = 100 K
c = 16.053 (5) Å0.58 × 0.18 × 0.17 mm
β = 101.983 (5)°
Data collection top
Bruker SMART CCD
diffractometer
5160 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4700 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.273Rint = 0.047
16808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.13Δρmax = 3.16 e Å3
5160 reflectionsΔρmin = 1.41 e Å3
251 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8439 (4)0.5302 (5)0.5663 (3)0.0181 (9)
C20.9102 (4)0.7076 (5)0.4752 (3)0.0199 (10)
C110.5498 (4)0.5523 (4)0.3763 (3)0.0148 (9)
C120.5849 (4)0.6462 (4)0.3215 (3)0.0149 (9)
C130.5209 (4)0.6930 (5)0.2455 (3)0.0197 (10)
H130.55520.75460.21960.024*
C140.4145 (4)0.6621 (6)0.2027 (3)0.0274 (12)
H140.38960.70470.1520.033*
C150.3397 (4)0.5777 (6)0.2239 (3)0.0310 (13)
H150.27240.56970.18540.037*
C160.3543 (4)0.5036 (6)0.2965 (3)0.0247 (11)
H160.29490.45240.30060.03*
C170.4455 (4)0.4958 (5)0.3636 (3)0.0205 (10)
H170.43550.4440.40770.025*
C210.5919 (4)0.0054 (5)0.3394 (3)0.0208 (10)
H21A0.60320.00010.28140.025*
H21B0.62630.06710.36980.025*
C220.4687 (4)0.0006 (6)0.3370 (3)0.0253 (11)
H22A0.43310.07060.30560.038*
H22B0.45630.0030.3940.038*
H22C0.43850.0750.30980.038*
C230.7703 (4)0.1180 (5)0.3677 (3)0.0212 (10)
H23A0.76890.11530.30710.025*
H23B0.80660.19470.38980.025*
C240.8381 (5)0.0097 (6)0.4099 (4)0.0290 (12)
H24A0.80410.06680.38720.044*
H24B0.84160.01250.47020.044*
H24C0.91170.01460.39910.044*
C250.6461 (4)0.1209 (5)0.4744 (3)0.0208 (10)
H25A0.6730.04130.49870.025*
H25B0.56930.12850.4790.025*
C260.7123 (5)0.2234 (6)0.5273 (3)0.0303 (12)
H26A0.7890.21580.52470.045*
H26B0.70450.21610.58540.045*
H26C0.6850.3030.50520.045*
C270.5946 (4)0.2388 (5)0.3406 (3)0.0218 (10)
H27A0.52180.24420.35440.026*
H27B0.63730.30970.36640.026*
C280.5810 (5)0.2483 (5)0.2445 (3)0.0261 (11)
H28A0.54530.32540.22510.039*
H28B0.53660.18020.21780.039*
H28C0.65250.24520.22980.039*
N10.6509 (3)0.1205 (4)0.3806 (3)0.0175 (8)
O10.8829 (3)0.4790 (4)0.6285 (2)0.0295 (9)
O20.9905 (3)0.7658 (4)0.4826 (2)0.0278 (8)
O110.6230 (3)0.5185 (3)0.44163 (19)0.0156 (6)
O120.6850 (3)0.6885 (3)0.34718 (19)0.0158 (6)
Re10.778478 (14)0.611175 (17)0.462429 (10)0.01392 (7)
Br1A0.66965 (4)0.77746 (5)0.53345 (3)0.01591 (18)0.922 (3)
C3A0.8454 (5)0.4916 (7)0.4061 (4)0.0190 (12)0.922 (3)
O3A0.8876 (5)0.4139 (5)0.3694 (3)0.0257 (10)0.922 (3)
Br1B0.8340 (11)0.4525 (12)0.3685 (8)0.043 (3)0.078 (3)
C3B0.718 (5)0.741 (4)0.522 (3)0.0190 (12)0.078 (3)
O3B0.679 (5)0.816 (4)0.554 (4)0.0257 (10)0.078 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (2)0.020 (3)0.017 (2)0.0019 (18)0.0063 (16)0.0018 (17)
C20.022 (2)0.022 (3)0.015 (2)0.002 (2)0.0019 (17)0.0011 (17)
C110.019 (2)0.015 (2)0.0106 (18)0.0009 (18)0.0040 (15)0.0007 (16)
C120.019 (2)0.012 (2)0.0143 (19)0.0004 (18)0.0061 (16)0.0004 (16)
C130.020 (2)0.025 (3)0.015 (2)0.0010 (19)0.0069 (17)0.0039 (17)
C140.021 (3)0.040 (3)0.019 (2)0.000 (2)0.0005 (18)0.013 (2)
C150.014 (2)0.050 (4)0.026 (3)0.003 (2)0.0043 (19)0.013 (2)
C160.016 (2)0.035 (3)0.023 (2)0.003 (2)0.0035 (18)0.004 (2)
C170.021 (2)0.025 (3)0.017 (2)0.002 (2)0.0064 (17)0.0021 (19)
C210.027 (2)0.016 (2)0.021 (2)0.001 (2)0.0083 (18)0.0033 (18)
C220.024 (3)0.029 (3)0.024 (2)0.003 (2)0.0067 (19)0.005 (2)
C230.019 (2)0.019 (3)0.029 (2)0.0013 (19)0.0124 (19)0.0008 (19)
C240.026 (3)0.027 (3)0.034 (3)0.005 (2)0.006 (2)0.002 (2)
C250.024 (3)0.022 (3)0.018 (2)0.000 (2)0.0079 (18)0.0031 (18)
C260.044 (3)0.024 (3)0.021 (2)0.005 (2)0.004 (2)0.001 (2)
C270.029 (3)0.018 (3)0.020 (2)0.004 (2)0.0085 (18)0.0035 (18)
C280.032 (3)0.026 (3)0.022 (2)0.005 (2)0.009 (2)0.005 (2)
N10.020 (2)0.014 (2)0.0201 (19)0.0030 (16)0.0089 (15)0.0022 (15)
O10.0248 (19)0.042 (3)0.0206 (17)0.0058 (17)0.0027 (14)0.0102 (16)
O20.0224 (19)0.029 (2)0.0307 (19)0.0054 (16)0.0031 (14)0.0015 (16)
O110.0141 (15)0.0185 (18)0.0134 (14)0.0016 (13)0.0009 (11)0.0031 (12)
O120.0149 (15)0.0179 (18)0.0149 (14)0.0020 (13)0.0036 (11)0.0022 (12)
Re10.01479 (11)0.01596 (11)0.01091 (9)0.00006 (7)0.00243 (6)0.00038 (6)
Br1A0.0174 (3)0.0161 (3)0.0149 (3)0.0001 (2)0.00479 (18)0.00174 (17)
C3A0.022 (3)0.021 (3)0.015 (3)0.006 (2)0.004 (2)0.005 (2)
O3A0.025 (3)0.025 (3)0.029 (2)0.008 (2)0.012 (2)0.0041 (18)
Br1B0.048 (7)0.039 (7)0.045 (6)0.014 (5)0.017 (6)0.010 (5)
C3B0.022 (3)0.021 (3)0.015 (3)0.006 (2)0.004 (2)0.005 (2)
O3B0.025 (3)0.025 (3)0.029 (2)0.008 (2)0.012 (2)0.0041 (18)
Geometric parameters (Å, º) top
C1—O11.153 (6)C23—H23A0.97
C1—Re11.906 (5)C23—H23B0.97
C2—O21.156 (6)C24—H24A0.96
C2—Re11.903 (5)C24—H24B0.96
C11—O111.286 (5)C24—H24C0.96
C11—C171.398 (7)C25—N11.520 (6)
C11—C121.462 (6)C25—C261.521 (7)
C12—O121.300 (5)C25—H25A0.97
C12—C131.402 (6)C25—H25B0.97
C13—C141.389 (7)C26—H26A0.96
C13—H130.93C26—H26B0.96
C14—C151.385 (8)C26—H26C0.96
C14—H140.93C27—C281.520 (6)
C15—C161.392 (7)C27—N11.525 (6)
C15—H150.93C27—H27A0.97
C16—C171.390 (7)C27—H27B0.97
C16—H160.93C28—H28A0.96
C17—H170.93C28—H28B0.96
C21—C221.513 (7)C28—H28C0.96
C21—N11.517 (6)O11—Re12.126 (3)
C21—H21A0.97O12—Re12.135 (3)
C21—H21B0.97Re1—C3A1.861 (7)
C22—H22A0.96Re1—C3B1.923 (18)
C22—H22B0.96Re1—Br1B2.467 (16)
C22—H22C0.96Re1—Br1A2.6334 (9)
C23—C241.510 (7)C3A—O3A1.201 (9)
C23—N11.529 (6)C3B—O3B1.123 (18)
O1—C1—Re1178.7 (5)H26A—C26—H26B109.5
O2—C2—Re1179.5 (5)C25—C26—H26C109.5
O11—C11—C17117.7 (4)H26A—C26—H26C109.5
O11—C11—C12116.1 (4)H26B—C26—H26C109.5
C17—C11—C12126.2 (4)C28—C27—N1115.3 (4)
O12—C12—C13118.4 (4)C28—C27—H27A108.4
O12—C12—C11115.6 (4)N1—C27—H27A108.4
C13—C12—C11126.0 (4)C28—C27—H27B108.4
C14—C13—C12130.4 (5)N1—C27—H27B108.4
C14—C13—H13114.8H27A—C27—H27B107.5
C12—C13—H13114.8C27—C28—H28A109.5
C15—C14—C13130.1 (5)C27—C28—H28B109.5
C15—C14—H14114.9H28A—C28—H28B109.5
C13—C14—H14114.9C27—C28—H28C109.5
C14—C15—C16127.1 (5)H28A—C28—H28C109.5
C14—C15—H15116.5H28B—C28—H28C109.5
C16—C15—H15116.5C21—N1—C25108.7 (4)
C17—C16—C15128.8 (5)C21—N1—C27111.2 (4)
C17—C16—H16115.6C25—N1—C27107.9 (4)
C15—C16—H16115.6C21—N1—C23108.3 (4)
C16—C17—C11131.3 (5)C25—N1—C23111.8 (4)
C16—C17—H17114.4C27—N1—C23109.0 (4)
C11—C17—H17114.4C11—O11—Re1116.9 (3)
C22—C21—N1115.3 (4)C12—O12—Re1116.4 (3)
C22—C21—H21A108.4C3A—Re1—C288.5 (2)
N1—C21—H21A108.4C3A—Re1—C187.7 (2)
C22—C21—H21B108.4C2—Re1—C187.6 (2)
N1—C21—H21B108.4C3A—Re1—C3B176 (2)
H21A—C21—H21B107.5C2—Re1—C3B88 (2)
C21—C22—H22A109.5C1—Re1—C3B92.1 (19)
C21—C22—H22B109.5C3A—Re1—O1194.4 (2)
H22A—C22—H22B109.5C2—Re1—O11174.40 (17)
C21—C22—H22C109.5C1—Re1—O1197.33 (17)
H22A—C22—H22C109.5C3B—Re1—O1189 (2)
H22B—C22—H22C109.5C3A—Re1—O1293.6 (2)
C24—C23—N1114.4 (4)C2—Re1—O12100.19 (16)
C24—C23—H23A108.7C1—Re1—O12172.18 (16)
N1—C23—H23A108.7C3B—Re1—O1287.1 (18)
C24—C23—H23B108.7O11—Re1—O1274.88 (12)
N1—C23—H23B108.7C3A—Re1—Br1B10.7 (4)
H23A—C23—H23B107.6C2—Re1—Br1B96.0 (3)
C23—C24—H24A109.5C1—Re1—Br1B95.6 (3)
C23—C24—H24B109.5C3B—Re1—Br1B171.5 (19)
H24A—C24—H24B109.5O11—Re1—Br1B86.3 (3)
C23—C24—H24C109.5O12—Re1—Br1B84.8 (3)
H24A—C24—H24C109.5C3A—Re1—Br1A175.61 (19)
H24B—C24—H24C109.5C2—Re1—Br1A94.80 (15)
N1—C25—C26115.4 (4)C1—Re1—Br1A95.34 (14)
N1—C25—H25A108.4C3B—Re1—Br1A7.5 (19)
C26—C25—H25A108.4O11—Re1—Br1A82.07 (9)
N1—C25—H25B108.4O12—Re1—Br1A83.01 (9)
C26—C25—H25B108.4Br1B—Re1—Br1A165.0 (3)
H25A—C25—H25B107.5O3A—C3A—Re1179.3 (6)
C25—C26—H26A109.5O3B—C3B—Re1177 (6)
C25—C26—H26B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3Ai0.932.433.344 (7)169
C25—H25A···Br1Aii0.972.893.809 (5)158
C26—H26C···O110.962.583.542 (7)176
C27—H27B···O110.972.573.401 (6)143
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[ReBr(C7H5O2)(CO)3]
Mr601.5
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.334 (5), 10.754 (5), 16.053 (5)
β (°) 101.983 (5)
V3)2082.9 (14)
Z4
Radiation typeMo Kα
µ (mm1)7.78
Crystal size (mm)0.58 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.196, 0.273
No. of measured, independent and
observed [I > 2σ(I)] reflections
16808, 5160, 4700
Rint0.047
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.13
No. of reflections5160
No. of parameters251
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.16, 1.41

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—Re11.906 (5)Re1—C3A1.861 (7)
C2—Re11.903 (5)Re1—C3B1.923 (18)
O11—Re12.126 (3)Re1—Br1B2.467 (16)
O12—Re12.135 (3)Re1—Br1A2.6334 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3Ai0.932.433.344 (7)169
C25—H25A···Br1Aii0.972.893.809 (5)157.7
C26—H26C···O110.962.583.542 (7)176.2
C27—H27B···O110.972.573.401 (6)143.4
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

The University of the Free State is acknowledged for funding.

References

First citationAbram, U., Abram, S., Alberto, R. & Schibli, R. (1996). Inorg. Chim. Acta, 248, 193–202.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlberto, R., Egli, A., Schibli, R., Abram, U., Kaden, T. A., Schaffland, A. O., Schwarzbath, R. & Schubiger, P. A. (1998). Q. J. Nucl. Med. 42(suppl), 9.  Google Scholar
First citationAlberto, R., Herrmann, W. A., Kiprof, P. & Baumgartner, F. (1992). Inorg. Chem. 31, 895–899.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBochkova, R. I., Zakharov, L. N., Patrikeeva, N. V., Shal'nova, K. G., Abakumov, G. A. & Cherkasov, V. K. (1987). Koord. Khim. 13, 702–705.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964–967.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. P., Wang, S. R., Lin, J. C. & Wang, S.-L. (1988). J. Organomet. Chem. 349, 375–382.  CSD CrossRef CAS Web of Science Google Scholar
First citationEgli, A., Alberto, R., Schibli, R., Schaffland, A. O., Abram, U., Abram, S., Kaden, T. A. & Schubiger, P. A. (1997). J. Labelled Compds Radiopharm. 39, 443–452.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFindeisen, B. L. M. & Schmidt, K. (1991). Isot. Environ. Health Stud. 27, 5–11.  Google Scholar
First citationGibson, D. H., Ding, Y., Miller, R. L., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1999). Polyhedron, 18, 1189–1200.  Web of Science CSD CrossRef CAS Google Scholar
First citationMundwiler, S., Kundig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationSchutte, M. & Visser, H. G. (2008). Acta Cryst. E64, m1226–m1227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Steyl, G. (2007). Acta Cryst. E63, m3195–m3196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m859-m860
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds