organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Cyano-3-(tri­fluoro­meth­yl)phen­yl]-2-eth­­oxy­benzamide

aDepartment of Physics, Sri Bhagawan Mahaveer Jain College of Engineering, Jain University, Bangalore 562 112, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 20 May 2010; accepted 26 May 2010; online 5 June 2010)

In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the eth­oxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯F hydrogen bonds.

Related literature

For background to the biological activity of ethoxy­benzamides, see: Mantelingu et al. (2007[Mantelingu, K., Kishore, A. H., Balasubramanyam, K., Kumar, G. V., Altaf, M., Swamy, S. N., Selvi, R., Das, C., Narayana, C., Rangappa, K. S. & Kundu, T. K. (2007). J. Phys. Chem. B, 111, 4527-4534.]). For related structures, see: Ma et al. (2009[Ma, P.-H., Zhou, K.-Z., Sun, M.-L., Zhao, X.-M. & Xiao, X. (2009). Acta Cryst. E65, o1314.]); Saeed et al. (2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911-o912.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13F3N2O2

  • Mr = 334.29

  • Monoclinic, P 21 /n

  • a = 10.5010 (13) Å

  • b = 12.8830 (16) Å

  • c = 11.6130 (14) Å

  • β = 101.653 (6)°

  • V = 1538.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.27 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • 5043 measured reflections

  • 2704 independent reflections

  • 1896 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.176

  • S = 1.02

  • 2704 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H1⋯O15 0.96 1.82 2.661 (2) 145
C1—H16⋯N19i 0.96 2.47 3.377 (3) 157
C13—H18⋯F23ii 0.96 2.50 3.365 (3) 150
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y-1, z.

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Histone acetyl transfereses (HAT) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring the acetyl group from acetyl CoA to form ε-N-acetyl lysine. HAT functions to promote transcriptional activation and has significant histone acetyl transferase activity with core histones (H3 and H4), and also with nucleosome core particles. In addition, HAT inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A. A literature survey revealed that the small molecule KCN weakly activated the p300 histone acetyl transferase (Mantelingu et al. 2007). With this background, the title compound was synthesized and we report its crystal structure here.

A perspective view of the title compound is shown in Fig. 1. The bond lengths and bond angles are normal and are comparable with values reported earlier for N-(3,4-diethoxyphenyl)acetamide (Ma et al. 2009). The dihedral angle between the two aromatic rings is 2.78 (12)°, indicating that the two aromatic rings are essentially coplanar. This value differs from the value of 55.69 (3)° reported earlier (Saeed et al. 2010). The carbamide group connecting the two rings is -anti-periplanar, as indicated by the torsion angle value of -177.2 (2)° for C5—N7—C8—C9. The non-H atoms of the ethoxy group lie within the plane of the aromatic ring, as confirmed by the torsion angle value of 174.3 (2)° for C14—O15—C16—C17. In the crystal structure, the molecules exhibit both intramolecular N—H···O and intermolecular hydrogen bonds of the type C—H···N and C—H···F. The molecules exhibit layered stacking when viewed down the b axis, as shown in Fig. 2.

Related literature top

For background to the biological activity [of what?], see: Mantelingu et al. (2007). For related structures, see: Ma et al. (2009); Saeed et al. (2010).

Experimental top

N-(4-Cyano-3-(trifluoromethyl)phenyl)-2-ethoxybenzamide was synthesized according to the procedure reported earlier (Mantelingu et al. 2007). The final product was obtained by crystallization using methanol as solvent. Slow evaporation of the solvent yielded colorless crystals after three days.

Refinement top

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H and N—H distances set equal to 0.96 Å; Uiso(H) = 1.2Ueq(carrier atom) for all H atoms.

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the molecules, viewed down the b axis. The dashed lines represent hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
N-(4-cyano-3-(trifluromethyl)phenyl)-2-ethoxybenzamide top
Crystal data top
C17H13F3N2O2Z = 4
Mr = 334.29F(000) = 688
Monoclinic, P21/nDx = 1.443 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5010 (13) ŵ = 0.12 mm1
b = 12.8830 (16) ÅT = 293 K
c = 11.6130 (14) ÅBlock, colorless
β = 101.653 (6)°0.32 × 0.30 × 0.27 mm
V = 1538.7 (3) Å3
Data collection top
MacScience DIPLabo 32001
diffractometer
1896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
Detector resolution: 10.0 pixels mm-1h = 1212
ω scank = 1515
5043 measured reflectionsl = 1313
2704 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1179P)2]
where P = (Fo2 + 2Fc2)/3
2704 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H13F3N2O2V = 1538.7 (3) Å3
Mr = 334.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5010 (13) ŵ = 0.12 mm1
b = 12.8830 (16) ÅT = 293 K
c = 11.6130 (14) Å0.32 × 0.30 × 0.27 mm
β = 101.653 (6)°
Data collection top
MacScience DIPLabo 32001
diffractometer
1896 reflections with I > 2σ(I)
5043 measured reflectionsRint = 0.036
2704 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2704 reflectionsΔρmin = 0.19 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N70.87506 (17)0.12966 (13)0.60529 (15)0.0493 (5)
H10.89910.06850.65190.059*
O240.7968 (2)0.17185 (12)0.41408 (15)0.0740 (6)
O150.89269 (17)0.07252 (11)0.65288 (15)0.0610 (5)
F210.75451 (17)0.57018 (11)0.62234 (16)0.0844 (5)
F220.79874 (19)0.49654 (12)0.47046 (14)0.0996 (7)
C60.9373 (2)0.23273 (17)0.7779 (2)0.0566 (6)
H60.96020.17010.82200.068*
C140.8480 (2)0.09241 (16)0.5358 (2)0.0513 (6)
C50.8896 (2)0.22760 (15)0.6581 (2)0.0474 (5)
C90.8176 (2)0.00775 (16)0.45831 (19)0.0489 (5)
C20.9212 (2)0.41873 (16)0.7744 (2)0.0537 (6)
C80.8285 (2)0.10574 (17)0.4903 (2)0.0501 (6)
F230.94844 (17)0.57372 (11)0.59172 (17)0.0881 (6)
C100.7724 (2)0.0286 (2)0.3392 (2)0.0608 (6)
H130.75060.02770.28470.073*
C40.8589 (2)0.31994 (16)0.5946 (2)0.0516 (6)
H140.82740.31670.51110.062*
C180.9345 (2)0.51680 (19)0.8361 (2)0.0638 (6)
C10.9528 (2)0.32671 (18)0.8361 (2)0.0602 (6)
H160.98460.32790.91960.072*
C30.8748 (2)0.41397 (16)0.6531 (2)0.0519 (6)
C130.8323 (3)0.19283 (18)0.4910 (2)0.0645 (7)
H180.85070.25100.54330.077*
N190.9424 (3)0.59476 (17)0.8833 (2)0.0817 (7)
C200.8439 (3)0.51243 (18)0.5837 (2)0.0641 (7)
C160.9363 (3)0.15806 (18)0.7317 (2)0.0650 (7)
H21A0.86350.20190.73580.078*
H21B1.00020.19700.70140.078*
C110.7590 (3)0.1291 (2)0.2959 (2)0.0684 (7)
H220.72900.14100.21330.082*
C120.7889 (3)0.2104 (2)0.3733 (3)0.0699 (7)
H230.78020.28040.34440.084*
C170.9919 (3)0.1132 (2)0.8500 (2)0.0771 (8)
H24A1.02260.16740.90540.092*
H24B0.92640.07360.87710.092*
H24C1.06310.06860.84260.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N70.0650 (11)0.0285 (9)0.0529 (11)0.0026 (8)0.0082 (8)0.0020 (7)
O240.1173 (15)0.0391 (9)0.0591 (11)0.0047 (9)0.0021 (10)0.0044 (8)
O150.0839 (11)0.0346 (8)0.0620 (11)0.0028 (8)0.0085 (8)0.0058 (7)
F210.0949 (11)0.0477 (9)0.1143 (14)0.0226 (8)0.0300 (10)0.0033 (8)
F220.1628 (18)0.0520 (9)0.0731 (11)0.0248 (10)0.0023 (10)0.0071 (8)
C60.0748 (15)0.0384 (12)0.0545 (14)0.0010 (11)0.0080 (11)0.0026 (10)
C140.0574 (13)0.0365 (11)0.0605 (14)0.0025 (9)0.0134 (10)0.0019 (9)
C50.0554 (12)0.0329 (10)0.0547 (13)0.0006 (9)0.0129 (9)0.0007 (9)
C90.0533 (12)0.0353 (11)0.0585 (14)0.0004 (9)0.0118 (10)0.0014 (10)
C20.0624 (13)0.0408 (12)0.0594 (15)0.0033 (10)0.0159 (11)0.0071 (10)
C80.0585 (13)0.0361 (11)0.0557 (14)0.0011 (9)0.0117 (10)0.0022 (10)
F230.1009 (12)0.0474 (8)0.1229 (15)0.0056 (8)0.0386 (10)0.0167 (8)
C100.0701 (15)0.0484 (13)0.0618 (15)0.0015 (11)0.0080 (11)0.0035 (11)
C40.0682 (14)0.0342 (11)0.0521 (13)0.0048 (10)0.0116 (10)0.0004 (9)
C180.0779 (16)0.0476 (14)0.0669 (15)0.0019 (12)0.0174 (12)0.0099 (12)
C10.0761 (16)0.0492 (13)0.0534 (13)0.0027 (11)0.0084 (11)0.0021 (11)
C30.0587 (13)0.0338 (11)0.0657 (15)0.0021 (9)0.0187 (11)0.0008 (10)
C130.0798 (16)0.0325 (11)0.0818 (18)0.0040 (11)0.0178 (13)0.0010 (11)
N190.110 (2)0.0529 (13)0.0824 (17)0.0022 (12)0.0193 (14)0.0211 (12)
C200.0848 (17)0.0377 (12)0.0706 (17)0.0092 (12)0.0173 (13)0.0013 (11)
C160.0742 (15)0.0465 (13)0.0750 (17)0.0069 (12)0.0167 (13)0.0178 (12)
C110.0798 (17)0.0554 (15)0.0681 (16)0.0080 (13)0.0105 (13)0.0169 (13)
C120.0812 (17)0.0438 (13)0.086 (2)0.0117 (12)0.0192 (14)0.0166 (13)
C170.0840 (18)0.0718 (18)0.0721 (18)0.0127 (15)0.0080 (14)0.0129 (14)
Geometric parameters (Å, º) top
N7—C81.362 (3)F23—C201.340 (3)
N7—C51.398 (3)C10—C111.386 (3)
N7—H10.9600C10—H130.9600
O24—C81.225 (3)C4—C31.382 (3)
O15—C141.370 (3)C4—H140.9598
O15—C161.447 (3)C18—N191.139 (3)
F21—C201.344 (3)C1—H160.9599
F22—C201.321 (3)C3—C201.503 (3)
C6—C11.380 (3)C13—C121.370 (4)
C6—C51.381 (3)C13—H180.9600
C6—H60.9600C16—C171.496 (4)
C14—C131.392 (3)C16—H21A0.9600
C14—C91.409 (3)C16—H21B0.9599
C5—C41.403 (3)C11—C121.374 (4)
C9—C101.395 (3)C11—H220.9600
C9—C81.507 (3)C12—H230.9601
C2—C11.390 (3)C17—H24A0.9600
C2—C31.395 (3)C17—H24B0.9600
C2—C181.445 (3)C17—H24C0.9600
C8—N7—C5128.36 (18)C2—C1—H16120.3
C8—N7—H1111.7C4—C3—C2121.2 (2)
C5—N7—H1120.0C4—C3—C20119.0 (2)
C14—O15—C16119.14 (18)C2—C3—C20119.9 (2)
C1—C6—C5121.2 (2)C12—C13—C14121.1 (2)
C1—C6—H6118.9C12—C13—H18119.2
C5—C6—H6119.9C14—C13—H18119.7
O15—C14—C13122.4 (2)F22—C20—F23106.6 (2)
O15—C14—C9118.49 (19)F22—C20—F21106.5 (2)
C13—C14—C9119.1 (2)F23—C20—F21105.6 (2)
C6—C5—N7118.07 (19)F22—C20—C3113.5 (2)
C6—C5—C4119.1 (2)F23—C20—C3112.1 (2)
N7—C5—C4122.8 (2)F21—C20—C3112.2 (2)
C10—C9—C14118.1 (2)O15—C16—C17107.6 (2)
C10—C9—C8115.14 (19)O15—C16—H21A109.1
C14—C9—C8126.7 (2)C17—C16—H21A110.4
C1—C2—C3118.8 (2)O15—C16—H21B108.7
C1—C2—C18120.0 (2)C17—C16—H21B111.5
C3—C2—C18121.2 (2)H21A—C16—H21B109.5
O24—C8—N7122.9 (2)C12—C11—C10118.8 (2)
O24—C8—C9120.1 (2)C12—C11—H22121.2
N7—C8—C9117.08 (18)C10—C11—H22120.1
C11—C10—C9122.0 (2)C13—C12—C11120.9 (2)
C11—C10—H13118.2C13—C12—H23119.5
C9—C10—H13119.8C11—C12—H23119.7
C3—C4—C5119.5 (2)C16—C17—H24A110.5
C3—C4—H14121.1C16—C17—H24B109.5
C5—C4—H14119.4H24A—C17—H24B109.5
N19—C18—C2178.5 (3)C16—C17—H24C108.4
C6—C1—C2120.2 (2)H24A—C17—H24C109.5
C6—C1—H16119.4H24B—C17—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H1···O150.961.822.661 (2)145
C1—H16···N19i0.962.473.377 (3)157
C13—H18···F23ii0.962.503.365 (3)150
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H13F3N2O2
Mr334.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.5010 (13), 12.8830 (16), 11.6130 (14)
β (°) 101.653 (6)
V3)1538.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.30 × 0.27
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5043, 2704, 1896
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.176, 1.02
No. of reflections2704
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: XPRESS (MacScience, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H1···O150.961.822.661 (2)145
C1—H16···N19i0.962.473.377 (3)157
C13—H18···F23ii0.962.503.365 (3)150
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z.
 

Acknowledgements

The authors are grateful to the DST and Government of India project SP/I2/FOO/93, also the University of Mysore, Mysore for financial assistance. HRM thanks the UGC-BRS and the University of Mysore for the award of a fellowship.

References

First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMa, P.-H., Zhou, K.-Z., Sun, M.-L., Zhao, X.-M. & Xiao, X. (2009). Acta Cryst. E65, o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMantelingu, K., Kishore, A. H., Balasubramanyam, K., Kumar, G. V., Altaf, M., Swamy, S. N., Selvi, R., Das, C., Narayana, C., Rangappa, K. S. & Kundu, T. K. (2007). J. Phys. Chem. B, 111, 4527–4534.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds