organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Dimeth­­oxy­benzaldehyde [2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl]hydrazone

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, AVK College for Women, Hassan 573 201, Karnataka, India, and cDepartment of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, GITAM University, Visakhapatnam 530 045, Andhrapradesh, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 29 May 2010; accepted 7 June 2010; online 23 June 2010)

In the title compound, C20H15F6N3O2, the quinoline ring system is almost coplanar with the benzene ring; the dihedral angle between the two planes is 2.31 (8)°. The crystal structure displays an inter­molecular C—H⋯F hydrogen bond. In addition, a weak ππ inter­action is observed between the unfused benzene ring and the benzene ring of quinoline, with a centroid–centroid distance of 3.586 (1) Å.

Related literature

For general background to quinolines, see: Mao et al. (2009[Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966-6978.]); Bermudez et al.(2004[Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556-3558.]); Jayaprakash et al. (2006[Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593-597.]); Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.]). For related structures, see: Skörska et al. (2005[Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850-853.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15F6N3O2

  • Mr = 443.35

  • Triclinic, [P \overline 1]

  • a = 7.0359 (6) Å

  • b = 8.9617 (8) Å

  • c = 15.5315 (14) Å

  • α = 90.154 (1)°

  • β = 93.951 (1)°

  • γ = 96.449 (1)°

  • V = 970.75 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.984

  • 9677 measured reflections

  • 3756 independent reflections

  • 2951 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.03

  • 3756 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.93 2.47 3.387 (3) 168
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is a popular antimalarial drug. Further, studies have reported that it also possesses important structural features required for antimicrobial activity (Mao et al. 2009; Bermudez et al. 2004; Jayaprakash et al. 2006). Quinoline is the essential structural feature found in mefloquin and recently developed antimycobacterial drugs (Andries et al. 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations we have synthesized a quinoline derivative, in which a hydrazone group has been attached at the 4 position of the mefloquin structure, expecting that the newly designed molecule would exhibit some antibacterial activity. In this paper we report the crystal structure of 3,4-dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone.

The asymmetric unit of the title compound contains one molecule (Fig. 1). A very small dihedral angle [2.31 (8)°] between the quinoline system and the benzene ring indicates that these two systems are coplanar. In the crystal structure, intermolecular C12—H12···F1 hydrogen bonding (Table 1) involving the trifluoromethyl and methine groups results in the formation of a three-dimensional ladder-type network (Fig.2). In addition, a weak π-π interaction is observed between the benzene ring (C1-C6) and benzene ring (C13-C18) of quinoline, with a centroid-centroid distance of 3.586 (1) Å.

The crystal structures of the mefloquine base and its salt complexes have been reported (Skörska et al. 2005). However, these are only related to the quinoline portion of our structure.

Related literature top

For general background to quinolines, see: Mao et al. (2009); Bermudez et al.(2004); Jayaprakash et al. (2006); Andries et al. (2005). For related structures, see: Skörska et al. (2005).

Experimental top

A mixture of [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazine (10 mmol) and 3,4 trimethoxy benzaldehyde (10 mmol) in glacial acetic acid (50 ml) was heated at reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled, and the resulting solid hydrazone was filtered, washed with water and cold ethanol. The crude product was purified by column chromatography. Crystals suitable for X-ray analysis were obtained by dissolving the pure compound in hot methanol and slow evaporation of the solvent at room temperature. Yield: 72%, Mp. 487 K.

Refinement top

All H atoms were placed at calculated positions; N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N) for the imine H and all other carbon-bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the molecules showing hydrogen bonds as dashed lines.
3,4-Dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone top
Crystal data top
C20H15F6N3O2Z = 2
Mr = 443.35F(000) = 452
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Melting point: 487 K
a = 7.0359 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9617 (8) ÅCell parameters from 3756 reflections
c = 15.5315 (14) Åθ = 2.3–25.9°
α = 90.154 (1)°µ = 0.14 mm1
β = 93.951 (1)°T = 298 K
γ = 96.449 (1)°Plate, colourless
V = 970.75 (15) Å30.22 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3756 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.9°, θmin = 2.3°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 88
Tmin = 0.975, Tmax = 0.984k = 1111
9677 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.4197P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3756 reflectionsΔρmax = 0.51 e Å3
281 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C20H15F6N3O2γ = 96.449 (1)°
Mr = 443.35V = 970.75 (15) Å3
Triclinic, P1Z = 2
a = 7.0359 (6) ÅMo Kα radiation
b = 8.9617 (8) ŵ = 0.14 mm1
c = 15.5315 (14) ÅT = 298 K
α = 90.154 (1)°0.22 × 0.15 × 0.12 mm
β = 93.951 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3756 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
2951 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.023
9677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.03Δρmax = 0.51 e Å3
3756 reflectionsΔρmin = 0.31 e Å3
281 parameters
Special details top

Experimental. 1H NMR (300 MHz, CD3 OD): δ, 3.886 (s, 3H, OCH3), 3.930 (s, 3H, OCH3) 7.047-7.019 (d, IH, 3,4-dimethoxyphenyl, J = 8.1Hz) 7.297-7.269 (t, 1H, trifluoromethylquinoline, J = 8.4Hz), 7.46 (s, IH, trifluoromethylquinoline), 7.667-7.640 (d, 1H, 3,4-dimethoxyphenyl, J=8.1Hz), 8.138-8.114 (d, 1H, trifluoromethylquinoline, J=7.2Hz), 8.26 (s, 1H, =CH), 8.263 (s, IH, 3,4-dimethoxyphenyl), 8.527-8.498 (d, IH, trifluoromethylquinoline, J=8.7Hz), 8.52 (s, 1H, N-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2412 (5)0.4438 (2)1.01640 (13)0.1566 (13)
F20.1191 (7)0.3559 (3)1.1239 (2)0.211 (2)
F30.4056 (6)0.3784 (3)1.1201 (2)0.1887 (16)
F40.1562 (3)0.5209 (2)1.39246 (11)0.0901 (5)
F50.3417 (3)0.6419 (2)1.48883 (9)0.0978 (6)
F60.4605 (3)0.5329 (2)1.38655 (10)0.0913 (6)
O10.1621 (3)1.07781 (19)0.57898 (9)0.0638 (5)
O20.1874 (3)0.83177 (18)0.65840 (10)0.0688 (5)
N10.2843 (3)0.6043 (2)1.22381 (12)0.0578 (5)
N20.2663 (3)0.98738 (19)1.07163 (10)0.0507 (5)
H20.27331.07501.09510.061*
N30.2477 (3)0.97088 (19)0.98344 (10)0.0482 (4)
C10.3304 (3)1.0213 (3)1.34583 (14)0.0580 (6)
H10.34291.11381.37420.070*
C20.3326 (3)0.8892 (3)1.39354 (14)0.0582 (6)
H2A0.34490.89431.45350.070*
C30.3169 (3)0.7533 (3)1.35271 (13)0.0525 (5)
C40.2979 (3)0.7427 (2)1.26103 (13)0.0470 (5)
C50.2936 (3)0.8770 (2)1.21338 (12)0.0436 (5)
C60.3100 (3)1.0148 (2)1.25823 (13)0.0518 (5)
H60.30691.10341.22730.062*
C70.3190 (4)0.6124 (3)1.40417 (15)0.0689 (7)
C80.2689 (4)0.6011 (2)1.13901 (14)0.0591 (6)
C90.2625 (3)0.7229 (2)1.08485 (13)0.0538 (5)
H90.25090.70991.02520.065*
C100.2736 (3)0.8634 (2)1.12140 (12)0.0444 (5)
C110.2571 (6)0.4467 (3)1.09982 (19)0.0922 (11)
C120.2377 (3)1.0891 (2)0.94007 (13)0.0506 (5)
H120.24271.18040.96920.061*
C130.2186 (3)1.0878 (2)0.84631 (12)0.0450 (5)
C140.2105 (3)0.9538 (2)0.79899 (13)0.0478 (5)
H140.21670.86360.82790.057*
C150.1934 (3)0.9543 (2)0.71040 (13)0.0492 (5)
C160.1818 (3)1.0908 (2)0.66624 (12)0.0478 (5)
C170.1917 (3)1.2227 (2)0.71299 (13)0.0521 (5)
H170.18631.31340.68450.063*
C180.2096 (3)1.2204 (2)0.80233 (13)0.0514 (5)
H180.21561.31010.83320.062*
C190.2110 (5)0.6924 (3)0.69794 (18)0.0804 (8)
H19A0.20420.61540.65440.121*
H19B0.11130.66810.73650.121*
H19C0.33350.69890.72980.121*
C200.1384 (4)1.2097 (3)0.53018 (14)0.0654 (7)
H20A0.12621.18470.46980.098*
H20B0.24801.28250.54210.098*
H20C0.02511.25060.54580.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.342 (4)0.0590 (11)0.0692 (12)0.0322 (16)0.0014 (16)0.0190 (9)
F20.345 (5)0.0832 (16)0.196 (3)0.085 (2)0.128 (3)0.0574 (17)
F30.282 (4)0.1017 (18)0.190 (3)0.103 (2)0.062 (3)0.0563 (18)
F40.0978 (12)0.0869 (12)0.0843 (11)0.0028 (9)0.0072 (9)0.0326 (9)
F50.1344 (16)0.1228 (15)0.0411 (8)0.0407 (12)0.0016 (8)0.0207 (8)
F60.1058 (13)0.1033 (13)0.0741 (10)0.0536 (10)0.0027 (9)0.0238 (9)
O10.0832 (11)0.0717 (11)0.0365 (8)0.0125 (8)0.0023 (7)0.0003 (7)
O20.1029 (13)0.0560 (9)0.0466 (9)0.0126 (9)0.0081 (8)0.0122 (7)
N10.0775 (13)0.0495 (10)0.0471 (10)0.0120 (9)0.0014 (9)0.0041 (8)
N20.0750 (12)0.0433 (9)0.0338 (9)0.0082 (8)0.0023 (8)0.0030 (7)
N30.0617 (11)0.0477 (9)0.0352 (9)0.0071 (8)0.0016 (7)0.0013 (7)
C10.0635 (14)0.0646 (14)0.0457 (12)0.0051 (11)0.0053 (10)0.0152 (10)
C20.0559 (13)0.0826 (16)0.0356 (10)0.0082 (11)0.0001 (9)0.0064 (10)
C30.0480 (11)0.0712 (14)0.0388 (11)0.0114 (10)0.0001 (8)0.0043 (10)
C40.0475 (11)0.0536 (12)0.0403 (10)0.0092 (9)0.0003 (8)0.0019 (8)
C50.0433 (10)0.0494 (11)0.0381 (10)0.0061 (8)0.0015 (8)0.0027 (8)
C60.0580 (12)0.0523 (12)0.0450 (11)0.0053 (9)0.0053 (9)0.0043 (9)
C70.0754 (17)0.0861 (18)0.0475 (13)0.0230 (15)0.0017 (11)0.0141 (12)
C80.0836 (16)0.0457 (12)0.0479 (12)0.0085 (11)0.0013 (11)0.0017 (9)
C90.0763 (15)0.0484 (12)0.0363 (10)0.0077 (10)0.0004 (9)0.0035 (8)
C100.0492 (11)0.0457 (11)0.0382 (10)0.0059 (8)0.0003 (8)0.0009 (8)
C110.172 (4)0.0439 (14)0.0622 (17)0.0193 (18)0.0067 (18)0.0032 (12)
C120.0666 (13)0.0453 (11)0.0404 (11)0.0091 (9)0.0034 (9)0.0034 (9)
C130.0497 (11)0.0479 (11)0.0376 (10)0.0065 (8)0.0027 (8)0.0005 (8)
C140.0542 (12)0.0468 (11)0.0419 (11)0.0063 (9)0.0002 (9)0.0019 (8)
C150.0518 (11)0.0524 (12)0.0426 (11)0.0054 (9)0.0032 (9)0.0067 (9)
C160.0485 (11)0.0588 (12)0.0361 (10)0.0078 (9)0.0006 (8)0.0006 (9)
C170.0624 (13)0.0510 (12)0.0438 (11)0.0101 (10)0.0037 (9)0.0079 (9)
C180.0664 (13)0.0465 (11)0.0422 (11)0.0096 (9)0.0049 (9)0.0031 (9)
C190.125 (3)0.0507 (14)0.0645 (16)0.0107 (14)0.0008 (15)0.0115 (11)
C200.0732 (15)0.0844 (17)0.0398 (11)0.0141 (13)0.0027 (10)0.0113 (11)
Geometric parameters (Å, º) top
F1—C111.293 (3)C5—C61.406 (3)
F2—C111.272 (5)C5—C101.429 (3)
F3—C111.291 (5)C6—H60.9300
F4—C71.333 (3)C8—C91.383 (3)
F5—C71.336 (3)C8—C111.502 (3)
F6—C71.330 (3)C9—C101.372 (3)
O1—C161.356 (2)C9—H90.9300
O1—C201.425 (3)C12—C131.453 (3)
O2—C151.357 (3)C12—H120.9300
O2—C191.415 (3)C13—C181.378 (3)
N1—C81.314 (3)C13—C141.399 (3)
N1—C41.358 (3)C14—C151.373 (3)
N2—C101.359 (3)C14—H140.9300
N2—N31.373 (2)C15—C161.412 (3)
N2—H20.8600C16—C171.378 (3)
N3—C121.263 (3)C17—C181.385 (3)
C1—C61.359 (3)C17—H170.9300
C1—C21.399 (3)C18—H180.9300
C1—H10.9300C19—H19A0.9600
C2—C31.362 (3)C19—H19B0.9600
C2—H2A0.9300C19—H19C0.9600
C3—C41.423 (3)C20—H20A0.9600
C3—C71.497 (3)C20—H20B0.9600
C4—C51.417 (3)C20—H20C0.9600
C16—O1—C20118.09 (18)F2—C11—F3103.2 (3)
C15—O2—C19117.76 (18)F2—C11—F1106.1 (3)
C8—N1—C4115.71 (18)F3—C11—F1104.6 (3)
C10—N2—N3119.15 (16)F2—C11—C8114.2 (3)
C10—N2—H2120.4F3—C11—C8113.4 (3)
N3—N2—H2120.4F1—C11—C8114.3 (2)
C12—N3—N2116.75 (17)N3—C12—C13122.43 (19)
C6—C1—C2120.2 (2)N3—C12—H12118.8
C6—C1—H1119.9C13—C12—H12118.8
C2—C1—H1119.9C18—C13—C14118.76 (18)
C3—C2—C1120.41 (19)C18—C13—C12119.92 (18)
C3—C2—H2A119.8C14—C13—C12121.32 (18)
C1—C2—H2A119.8C15—C14—C13120.70 (19)
C2—C3—C4120.8 (2)C15—C14—H14119.7
C2—C3—C7120.1 (2)C13—C14—H14119.7
C4—C3—C7119.0 (2)O2—C15—C14125.5 (2)
N1—C4—C5123.44 (18)O2—C15—C16114.57 (18)
N1—C4—C3118.27 (19)C14—C15—C16119.92 (19)
C5—C4—C3118.29 (19)O1—C16—C17125.84 (19)
C6—C5—C4118.94 (18)O1—C16—C15114.91 (18)
C6—C5—C10123.79 (19)C17—C16—C15119.25 (18)
C4—C5—C10117.27 (18)C16—C17—C18120.15 (19)
C1—C6—C5121.3 (2)C16—C17—H17119.9
C1—C6—H6119.3C18—C17—H17119.9
C5—C6—H6119.3C13—C18—C17121.22 (19)
F6—C7—F4107.0 (2)C13—C18—H18119.4
F6—C7—F5106.04 (19)C17—C18—H18119.4
F4—C7—F5105.7 (2)O2—C19—H19A109.5
F6—C7—C3113.2 (2)O2—C19—H19B109.5
F4—C7—C3112.9 (2)H19A—C19—H19B109.5
F5—C7—C3111.5 (2)O2—C19—H19C109.5
N1—C8—C9126.8 (2)H19A—C19—H19C109.5
N1—C8—C11114.4 (2)H19B—C19—H19C109.5
C9—C8—C11118.8 (2)O1—C20—H20A109.5
C10—C9—C8118.24 (19)O1—C20—H20B109.5
C10—C9—H9120.9H20A—C20—H20B109.5
C8—C9—H9120.9O1—C20—H20C109.5
N2—C10—C9121.02 (18)H20A—C20—H20C109.5
N2—C10—C5120.47 (18)H20B—C20—H20C109.5
C9—C10—C5118.52 (18)
C10—N2—N3—C12178.62 (19)C6—C5—C10—N21.1 (3)
C6—C1—C2—C30.9 (3)C4—C5—C10—N2179.28 (18)
C1—C2—C3—C40.0 (3)C6—C5—C10—C9178.8 (2)
C1—C2—C3—C7179.9 (2)C4—C5—C10—C90.8 (3)
C8—N1—C4—C50.8 (3)N1—C8—C11—F257.4 (5)
C8—N1—C4—C3179.4 (2)C9—C8—C11—F2122.5 (4)
C2—C3—C4—N1179.5 (2)N1—C8—C11—F360.4 (4)
C7—C3—C4—N10.7 (3)C9—C8—C11—F3119.7 (3)
C2—C3—C4—C50.7 (3)N1—C8—C11—F1179.8 (3)
C7—C3—C4—C5179.15 (19)C9—C8—C11—F10.1 (5)
N1—C4—C5—C6179.6 (2)N2—N3—C12—C13179.74 (19)
C3—C4—C5—C60.6 (3)N3—C12—C13—C18179.6 (2)
N1—C4—C5—C100.1 (3)N3—C12—C13—C140.1 (3)
C3—C4—C5—C10179.77 (18)C18—C13—C14—C150.2 (3)
C2—C1—C6—C50.9 (3)C12—C13—C14—C15179.7 (2)
C4—C5—C6—C10.2 (3)C19—O2—C15—C143.6 (4)
C10—C5—C6—C1179.4 (2)C19—O2—C15—C16175.9 (2)
C2—C3—C7—F6120.9 (2)C13—C14—C15—O2178.9 (2)
C4—C3—C7—F659.2 (3)C13—C14—C15—C160.6 (3)
C2—C3—C7—F4117.4 (3)C20—O1—C16—C173.8 (3)
C4—C3—C7—F462.4 (3)C20—O1—C16—C15176.45 (19)
C2—C3—C7—F51.5 (3)O2—C15—C16—O11.5 (3)
C4—C3—C7—F5178.7 (2)C14—C15—C16—O1178.97 (19)
C4—N1—C8—C91.0 (4)O2—C15—C16—C17178.3 (2)
C4—N1—C8—C11179.1 (3)C14—C15—C16—C171.2 (3)
N1—C8—C9—C100.2 (4)O1—C16—C17—C18179.2 (2)
C11—C8—C9—C10179.9 (3)C15—C16—C17—C181.0 (3)
N3—N2—C10—C90.1 (3)C14—C13—C18—C170.4 (3)
N3—N2—C10—C5179.80 (17)C12—C13—C18—C17179.9 (2)
C8—C9—C10—N2179.4 (2)C16—C17—C18—C130.2 (3)
C8—C9—C10—C50.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.932.473.387 (3)168
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H15F6N3O2
Mr443.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0359 (6), 8.9617 (8), 15.5315 (14)
α, β, γ (°)90.154 (1), 93.951 (1), 96.449 (1)
V3)970.75 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9677, 3756, 2951
Rint0.023
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.03
No. of reflections3756
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.932.473.387 (3)168
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the DST, India, for funding under DST-FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore.

References

First citationAndries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem, 1, 593–597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds