organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium 4-nitro­benzene­sulfonate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 June 2010; accepted 4 June 2010; online 16 June 2010)

In the anion of the title molecular salt, C6H16N+·C6H4O5S, the nitro group is twisted slightly from the benzene ring, making a dihedral angle of 3.16 (10)°. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to the ab plane by C—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to and the synthesis of the title compound, see: Dann & Davies (1929[Dann, A. T. & Davies, W. (1929). J. Chem. Soc. pp. 1050-1058.]); D'Souza et al. (2008[D'Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci. 9, 914-925.]); Hunig et al. (1965[Hunig, S., Muller, H. R. & Their, W. (1965). Angew. Chem. Int. Ed. Engl. 4, 271-279.]); Kim et al. (1999[Kim, Y. H., Jung, J. C., Choi, H. C. & Yang, S. G. (1999). Pure Appl. Chem. 71, 377-384.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For a related structure, see: Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C6H4NO5S

  • Mr = 304.36

  • Orthorhombic, P b c a

  • a = 7.8015 (14) Å

  • b = 12.669 (2) Å

  • c = 29.910 (6) Å

  • V = 2956.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.967

  • 21787 measured reflections

  • 5605 independent reflections

  • 3985 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.01

  • 5605 reflections

  • 261 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O4 0.95 (2) 1.86 (2) 2.7899 (17) 166 (2)
C2—H2A⋯O5i 0.96 (2) 2.485 (19) 3.1000 (19) 121.7 (14)
C7—H7B⋯O4ii 1.00 (2) 2.50 (2) 3.4081 (19) 151.3 (16)
C10—H10B⋯O3iii 0.96 (2) 2.59 (2) 3.461 (2) 151.1 (18)
C12—H12A⋯O5iii 0.99 (2) 2.60 (2) 3.559 (2) 164.1 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aromatic nitro sulfonyl compounds are very important since they can be used as raw materials for the manufacture of sulfanilamide preparations. o-Nitrobenzenesulfonylhydrazide (NBSH) is a very important reagent for the synthesis of allenes from propargylic alcohols. The preparation of NBSH from o-nitrobenzenesulfonyl chloride and hydrazine in benzene was described in 1929 by Dann and Davies (Dann & Davies, 1929; D'Souza et al., 2008; Hunig et al., 1965; Kim et al., 1999).

The asymmetric unit (Fig. 1) of the title compound contains one triethylammonium cation and one 4-nitrobenzenesulfonate anion. A proton transfer from the sulfonic acid group of 4-nitrobenzenesulfonic acid to atom N2 of triethylamine resulted in the formation of ions. In the anion, the nitro group is twisted slightly from the attached ring; the dihedral angle between the C1—C6 and O1/O2/N1/C1 planes is 3.16 (10)°. The bond lengths and angles in the 4-nitrobenzenesulfonate anion are within normal ranges and similar to those in a comparable crystal structure (Quah et al., 2008). In the crystal structure, the cations and anions are linked to form a two-dimensional network (Fig. 2) parallel to the ab-plane by C—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to and the synthesis of the title compound, see: Dann & Davies (1929); D'Souza et al. (2008); Hunig et al. (1965); Kim et al. (1999). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For a related structure, see: Quah et al. (2008).

Experimental top

4-Nitrobenzenesulfonyl chloride (0.01 mol, 2.05 g) was dissolved in 25 ml of tetrahydrofuran (THF) in a round-bottomed flask with stirring. Triethylamine (0.01 mol, 0.70 g) was mixed with some THF and added to the flask dropwise with stirring. The reaction mixture was refluxed for 2.5 h and left at room temperature overnight. The needle crystals that were formed were then filtered off, washed with water and dried at 353 K.

Refinement top

All H atoms were located in a difference Fourier map and refined freely [N2—H1N2 = 0.95 (2) Å and C—H = 0.92 (3) - 1.03 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structures of the two ions of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Triethylammonium 4-nitrobenzenesulfonate top
Crystal data top
C6H16N+·C6H4NO5SF(000) = 1296
Mr = 304.36Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2801 reflections
a = 7.8015 (14) Åθ = 2.7–30.9°
b = 12.669 (2) ŵ = 0.24 mm1
c = 29.910 (6) ÅT = 100 K
V = 2956.3 (9) Å3Block, yellow
Z = 80.22 × 0.18 × 0.14 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5605 independent reflections
Radiation source: fine-focus sealed tube3985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 33.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 812
Tmin = 0.950, Tmax = 0.967k = 919
21787 measured reflectionsl = 4046
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0731P)2]
where P = (Fo2 + 2Fc2)/3
5605 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C6H16N+·C6H4NO5SV = 2956.3 (9) Å3
Mr = 304.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8015 (14) ŵ = 0.24 mm1
b = 12.669 (2) ÅT = 100 K
c = 29.910 (6) Å0.22 × 0.18 × 0.14 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5605 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3985 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.967Rint = 0.064
21787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.01Δρmax = 0.55 e Å3
5605 reflectionsΔρmin = 0.47 e Å3
261 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38577 (5)0.17193 (3)0.095990 (11)0.01330 (9)
O10.2417 (3)0.17343 (11)0.26000 (4)0.0524 (5)
O20.37185 (19)0.05239 (12)0.29767 (4)0.0372 (3)
O30.25347 (14)0.13583 (9)0.06573 (3)0.0195 (2)
O40.55993 (14)0.14889 (8)0.07988 (3)0.0172 (2)
O50.36886 (15)0.28080 (8)0.11063 (4)0.0206 (2)
N10.3145 (2)0.08793 (12)0.26271 (4)0.0265 (3)
C10.3331 (2)0.02431 (12)0.22174 (5)0.0184 (3)
C20.2606 (2)0.06215 (11)0.18258 (5)0.0174 (3)
C30.27633 (19)0.00053 (11)0.14418 (5)0.0157 (3)
C40.36392 (18)0.09467 (10)0.14563 (4)0.0134 (2)
C50.4376 (2)0.13060 (12)0.18557 (5)0.0187 (3)
C60.4220 (2)0.07070 (13)0.22423 (5)0.0214 (3)
N20.79571 (17)0.31410 (9)0.08449 (4)0.0151 (2)
C70.7094 (2)0.42076 (11)0.08501 (5)0.0192 (3)
C80.6060 (2)0.44251 (13)0.04323 (6)0.0239 (3)
C90.8950 (2)0.29787 (13)0.12722 (5)0.0212 (3)
C100.9187 (2)0.18278 (14)0.13903 (6)0.0242 (3)
C110.9015 (2)0.29386 (12)0.04305 (5)0.0166 (3)
C121.0456 (2)0.37245 (13)0.03620 (5)0.0206 (3)
H2A0.195 (3)0.1264 (16)0.1819 (6)0.023 (5)*
H3A0.215 (3)0.0242 (14)0.1159 (6)0.021 (5)*
H5A0.498 (3)0.2009 (16)0.1862 (6)0.022 (5)*
H6A0.471 (3)0.0962 (17)0.2514 (7)0.035 (6)*
H7A0.641 (3)0.4184 (16)0.1120 (7)0.027 (5)*
H7B0.807 (3)0.4712 (16)0.0893 (6)0.020 (5)*
H8A0.679 (3)0.4491 (16)0.0171 (6)0.027 (5)*
H8B0.517 (3)0.3859 (17)0.0374 (7)0.028 (5)*
H8C0.529 (3)0.5072 (17)0.0482 (7)0.028 (5)*
H9A1.007 (3)0.3338 (14)0.1233 (6)0.020 (5)*
H9B0.830 (3)0.3364 (16)0.1497 (7)0.027 (5)*
H10A0.981 (3)0.1804 (17)0.1669 (8)0.039 (6)*
H10B0.989 (3)0.1457 (18)0.1178 (7)0.036 (6)*
H10C0.817 (4)0.147 (2)0.1432 (7)0.042 (6)*
H11A0.825 (3)0.2928 (14)0.0187 (6)0.014 (4)*
H11B0.954 (3)0.2213 (15)0.0474 (6)0.016 (4)*
H12A1.143 (3)0.3620 (15)0.0569 (6)0.021 (5)*
H12B1.008 (3)0.4425 (17)0.0365 (6)0.026 (5)*
H12C1.100 (3)0.3593 (19)0.0071 (8)0.036 (6)*
H1N20.702 (3)0.2662 (15)0.0832 (6)0.017 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01496 (15)0.01173 (14)0.01322 (16)0.00071 (12)0.00004 (11)0.00010 (10)
O10.0965 (15)0.0357 (8)0.0251 (7)0.0290 (9)0.0008 (8)0.0093 (5)
O20.0421 (8)0.0529 (9)0.0166 (6)0.0118 (7)0.0060 (5)0.0093 (5)
O30.0202 (5)0.0233 (5)0.0152 (5)0.0025 (4)0.0050 (4)0.0020 (4)
O40.0169 (5)0.0156 (4)0.0191 (5)0.0004 (4)0.0036 (4)0.0003 (4)
O50.0293 (6)0.0124 (4)0.0199 (5)0.0041 (4)0.0022 (4)0.0009 (4)
N10.0325 (8)0.0300 (7)0.0170 (6)0.0024 (6)0.0024 (6)0.0060 (5)
C10.0217 (7)0.0208 (6)0.0127 (6)0.0010 (6)0.0023 (5)0.0034 (5)
C20.0213 (7)0.0147 (6)0.0163 (6)0.0011 (6)0.0024 (5)0.0002 (5)
C30.0182 (6)0.0154 (6)0.0135 (6)0.0005 (5)0.0006 (5)0.0010 (4)
C40.0138 (6)0.0139 (5)0.0126 (6)0.0020 (5)0.0004 (5)0.0007 (4)
C50.0218 (7)0.0177 (6)0.0165 (7)0.0038 (6)0.0013 (5)0.0013 (5)
C60.0248 (8)0.0255 (7)0.0139 (6)0.0031 (6)0.0035 (6)0.0012 (5)
N20.0185 (6)0.0132 (5)0.0136 (5)0.0021 (5)0.0002 (4)0.0006 (4)
C70.0242 (7)0.0130 (6)0.0203 (7)0.0007 (6)0.0035 (6)0.0009 (5)
C80.0271 (8)0.0218 (7)0.0229 (8)0.0061 (7)0.0008 (6)0.0042 (6)
C90.0294 (8)0.0224 (7)0.0119 (6)0.0032 (6)0.0020 (6)0.0014 (5)
C100.0215 (8)0.0275 (8)0.0234 (8)0.0041 (7)0.0023 (6)0.0059 (6)
C110.0215 (7)0.0165 (6)0.0117 (6)0.0018 (6)0.0004 (5)0.0013 (5)
C120.0199 (7)0.0234 (7)0.0183 (7)0.0008 (6)0.0025 (6)0.0018 (5)
Geometric parameters (Å, º) top
S1—O31.4468 (11)N2—H1N20.95 (2)
S1—O51.4531 (11)C7—C81.513 (2)
S1—O41.4709 (11)C7—H7A0.97 (2)
S1—C41.7865 (14)C7—H7B1.00 (2)
O1—N11.226 (2)C8—H8A0.97 (2)
O2—N11.2233 (19)C8—H8B1.01 (2)
N1—C11.4738 (19)C8—H8C1.03 (2)
C1—C21.386 (2)C9—C101.512 (2)
C1—C61.391 (2)C9—H9A0.99 (2)
C2—C31.394 (2)C9—H9B0.97 (2)
C2—H2A0.96 (2)C10—H10A0.97 (2)
C3—C41.387 (2)C10—H10B0.96 (2)
C3—H3A1.015 (19)C10—H10C0.92 (3)
C4—C51.402 (2)C11—C121.516 (2)
C5—C61.388 (2)C11—H11A0.943 (18)
C5—H5A1.01 (2)C11—H11B1.014 (19)
C6—H6A0.96 (2)C12—H12A0.99 (2)
N2—C91.5087 (19)C12—H12B0.93 (2)
N2—C71.5101 (19)C12—H12C0.98 (2)
N2—C111.5110 (19)
O3—S1—O5115.07 (7)C8—C7—H7A113.7 (13)
O3—S1—O4113.04 (7)N2—C7—H7B103.5 (12)
O5—S1—O4111.77 (7)C8—C7—H7B113.2 (11)
O3—S1—C4106.18 (6)H7A—C7—H7B109.3 (16)
O5—S1—C4105.13 (6)C7—C8—H8A111.7 (13)
O4—S1—C4104.57 (6)C7—C8—H8B112.2 (11)
O2—N1—O1123.45 (14)H8A—C8—H8B108.7 (16)
O2—N1—C1118.27 (14)C7—C8—H8C109.8 (11)
O1—N1—C1118.28 (14)H8A—C8—H8C113.0 (16)
C2—C1—C6123.21 (13)H8B—C8—H8C101.0 (17)
C2—C1—N1118.25 (14)N2—C9—C10113.09 (13)
C6—C1—N1118.53 (13)N2—C9—H9A106.9 (11)
C1—C2—C3117.81 (14)C10—C9—H9A111.2 (11)
C1—C2—H2A121.8 (11)N2—C9—H9B104.5 (13)
C3—C2—H2A120.3 (11)C10—C9—H9B112.7 (12)
C4—C3—C2120.31 (13)H9A—C9—H9B108.0 (16)
C4—C3—H3A120.9 (11)C9—C10—H10A107.0 (13)
C2—C3—H3A118.6 (11)C9—C10—H10B112.8 (13)
C3—C4—C5120.74 (13)H10A—C10—H10B106 (2)
C3—C4—S1119.83 (10)C9—C10—H10C113.7 (16)
C5—C4—S1119.42 (11)H10A—C10—H10C107.5 (19)
C6—C5—C4119.75 (14)H10B—C10—H10C110 (2)
C6—C5—H5A120.6 (10)N2—C11—C12113.86 (12)
C4—C5—H5A119.6 (10)N2—C11—H11A106.8 (11)
C5—C6—C1118.18 (14)C12—C11—H11A112.1 (11)
C5—C6—H6A119.3 (14)N2—C11—H11B105.6 (10)
C1—C6—H6A122.6 (14)C12—C11—H11B108.3 (11)
C9—N2—C7110.01 (12)H11A—C11—H11B109.9 (15)
C9—N2—C11113.05 (12)C11—C12—H12A113.4 (11)
C7—N2—C11113.83 (11)C11—C12—H12B113.1 (13)
C9—N2—H1N2110.1 (11)H12A—C12—H12B111.1 (17)
C7—N2—H1N2103.1 (11)C11—C12—H12C109.2 (14)
C11—N2—H1N2106.2 (11)H12A—C12—H12C101.6 (17)
N2—C7—C8113.10 (12)H12B—C12—H12C107.7 (18)
N2—C7—H7A103.1 (12)
O2—N1—C1—C2176.81 (16)O5—S1—C4—C538.73 (14)
O1—N1—C1—C22.8 (2)O4—S1—C4—C579.13 (13)
O2—N1—C1—C63.1 (2)C3—C4—C5—C60.4 (2)
O1—N1—C1—C6177.33 (18)S1—C4—C5—C6179.65 (12)
C6—C1—C2—C30.9 (2)C4—C5—C6—C10.3 (2)
N1—C1—C2—C3178.93 (14)C2—C1—C6—C50.4 (3)
C1—C2—C3—C40.8 (2)N1—C1—C6—C5179.46 (15)
C2—C3—C4—C50.1 (2)C9—N2—C7—C8179.61 (14)
C2—C3—C4—S1179.10 (11)C11—N2—C7—C852.33 (18)
O3—S1—C4—C319.67 (13)C7—N2—C9—C10154.66 (14)
O5—S1—C4—C3142.05 (12)C11—N2—C9—C1076.86 (17)
O4—S1—C4—C3100.09 (12)C9—N2—C11—C1266.52 (16)
O3—S1—C4—C5161.10 (12)C7—N2—C11—C1259.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O40.95 (2)1.86 (2)2.7899 (17)166 (2)
C2—H2A···O5i0.96 (2)2.485 (19)3.1000 (19)121.7 (14)
C7—H7B···O4ii1.00 (2)2.50 (2)3.4081 (19)151.3 (16)
C10—H10B···O3iii0.96 (2)2.59 (2)3.461 (2)151.1 (18)
C12—H12A···O5iii0.99 (2)2.60 (2)3.559 (2)164.1 (16)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C6H4NO5S
Mr304.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.8015 (14), 12.669 (2), 29.910 (6)
V3)2956.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
21787, 5605, 3985
Rint0.064
(sin θ/λ)max1)0.771
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.01
No. of reflections5605
No. of parameters261
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O40.95 (2)1.86 (2)2.7899 (17)166 (2)
C2—H2A···O5i0.96 (2)2.485 (19)3.1000 (19)121.7 (14)
C7—H7B···O4ii1.00 (2)2.50 (2)3.4081 (19)151.3 (16)
C10—H10B···O3iii0.96 (2)2.59 (2)3.461 (2)151.1 (18)
C12—H12A···O5iii0.99 (2)2.60 (2)3.559 (2)164.1 (16)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors gratefully acknowledge funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDann, A. T. & Davies, W. (1929). J. Chem. Soc. pp. 1050–1058.  CrossRef Google Scholar
First citationD'Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci. 9, 914–925.  Web of Science PubMed CAS Google Scholar
First citationHunig, S., Muller, H. R. & Their, W. (1965). Angew. Chem. Int. Ed. Engl. 4, 271–279.  CrossRef Web of Science Google Scholar
First citationKim, Y. H., Jung, J. C., Choi, H. C. & Yang, S. G. (1999). Pure Appl. Chem. 71, 377–384.  Web of Science CrossRef CAS Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds