organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1683-o1684

10-Hy­dr­oxy-10-(1,3-thia­zol-2-ylmeth­yl)phenanthren-9(10H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 8 June 2010; accepted 11 June 2010; online 16 June 2010)

In the title phenanthrenone compound, C18H13NO2S, the dihydro­phenanthrene ring system is not planar, with its central ring distorted to a screw-boat conformation. The essentially planar thia­zole ring [maximum deviation = 0.005 (1) Å] is inclined at an inter­planar angle of 23.36 (5)° with respect to the mean plane through the dihydro­phenanthrene ring system. In the crystal packing, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into infinite chains along the a axis. Weak inter­molecular C—H⋯π inter­actions further stabilize the crystal packing.

Related literature

For general background to and applications of phenanthrenone derivatives, see: Bloom (1961[Bloom, S. M. (1961). J. Am. Chem. Soc. 38, 3808-3812.]); Kumagai et al. (1997[Kumagai, Y., Arimoto, T., Shinyashiki, M., Shimojo, N., Nakai, Y., Yoshikawa, T. & Sa-Gai, M. (1997). Free Radical Biol. Med. 33, 479-487.]); McClellan (1987[McClellan, R. O. (1987). Annu. Rev. Pharmacol. Toxicol. 27, 279-300.]); Meyer & Spengler (1905[Meyer, R. & Spengler, O. (1905). Ber. Dtsch. Chem. Ges. 38, 440-450.]); Milko & Roithova (2009[Milko, P. & Roithova, J. (2009). Inorg. Chem. 48, 11734-11742.]); Mustafa et al. (1956[Mustafa, A., Harhash, A. H. E., Mansour, A. K. E. & Omran, S. M. A. E. (1956). J. Am. Chem. Soc. 78, 4306-4309.]); Nel et al. (2001[Nel, A. E., Diaz-Sanchez, D. & Li, N. (2001). Curr. Opin. Pulm. Med. 7, 20-26.]); Schuetzle et al. (1981[Schuetzle, D., Lee, F. S.-C. & Prater, T. J. (1981). Int. J. Environ. Anal. Chem. 9, 93-144.]); Shimada et al. (2004[Shimada, H., Oginuma, M., Hara, A. & Imamura, Y. (2004). Chem. Rev. Toxicol. 17, 1145-1150.]); Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 4, 4893-4895.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Jones et al. (2002[Jones, P. G., Kirby, A. J. & Pilkington, M. (2002). Acta Cryst. E58, o268-o269.]); Li et al. (2003[Li, X.-M., Wang, L., Xu, J.-H., Zhang, S.-S. & Fun, H.-K. (2003). Acta Cryst. E59, o1907-o1908.]); Sun et al. (2007[Sun, Y.-F., Cui, Y.-P., Li, J.-K. & Zheng, Z.-B. (2007). Acta Cryst. E63, o1751-o1752.]); Wang et al. (2003[Wang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721-o722.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO2S

  • Mr = 307.35

  • Orthorhombic, P n a 21

  • a = 12.5623 (17) Å

  • b = 7.3222 (10) Å

  • c = 15.462 (2) Å

  • V = 1422.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.33 × 0.17 × 0.17 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.962

  • 14577 measured reflections

  • 3814 independent reflections

  • 3635 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.03

  • 3814 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1674 Friedel pairs

  • Flack parameter: 0.04 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C8–C13 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1i 0.80 (2) 1.976 (19) 2.7542 (14) 165 (2)
C5—H5ACg1ii 0.93 2.83 3.6508 (16) 147
C12—H12ACg2iii 0.93 2.85 3.7214 (15) 156
C18—H18ACg1iv 0.93 2.72 3.3301 (16) 124
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x-{\script{1\over 2}}, y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Research interest in phenanthrenequinone can be traced back as early as 1905 (Bloom, 1961; Meyer & Spengler, 1905). Phenanthrenequinone and its derivatives possess a wide range of activities, especially biological and pharmaceutical. For example, phenanthrenequinone is one of the major quinones in diesel exhaust particles (Milko & Roithova, 2009), which plays a negative role in inducing pathogenic processes such as lung cancer (Schuetzle et al., 1981), allergies (McClellan, 1987) or asthma (Nel et al., 2001). Phenanthrenequinone has also been reported to be a good substrate for microsomal NADPH-cytochrome P450 reductase and that superoxide and hydroxyl radicals generated during redox cycling of the quinone by this flavin enzyme mainly participate in the DEP-prompted oxidative stress (Shimada et al., 2004; Kumagai et al., 1997). The photochemistry of phenanthrenequinone has been investigated early in 1956 (Mustafa et al., 1956). In recent years, more complex products have been obtained in photoreactions of oxazoles with phenanthrenequinone (Zhang et al., 2004). The crystal structures of 2-(4-hydroxy-3,5-dimethoxyphenyl)-1H-phenanthro[9,10-d]imidazole methanol solvate (Sun et al., 2007) and 2,2,2-tris(cyclohexyloxy)-4,5-(2',2''-biphenylo)-1,3,2-dioxaphospholene (Jones et al., 2002) have been reported. Due to the importance of phenanthraquinone derivatives, we report here the crystal structure of the title compound.

In the title compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) is distorted towards a screw-boat conformation as observed in a previously reported structure (Wang et al., 2003), with puckering parameters of Q = 0.4466 (13) Å, θ = 67.55 (18)° and ϕ = 320.40 (19)° (Cremer & Pople, 1975). In the 1,2-dihydrobenzene ring, atoms C1 and C14 deviate by 0.2034 (13) and -0.4508 (12) Å, respectively, in opposite directions from the mean plane through the remaining four atoms. The thiazole ring (C16/N1/C17/C18/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C16. The interplanar angle formed between the thiazole ring and the mean plane through the 9,10-dihydrophenanthrene ring system is 23.36 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003; Li et al., 2003).

In the crystal packing, intermolecular O2—H1O2···N1 hydrogen bonds (Table 1) link the molecules into one-dimensional chains along the [100] direction (Fig. 2). The crystal packing is further stabilized by weak intermolecular C5—H5A···Cg1, C12—H12A···Cg2 and C18—H18A···Cg1 interactions (Table 1), where Cg1 and Cg2 are the centroids of C8-C13 and C2-C7 benzene rings, respectively.

Related literature top

For general background to and applications of phenanthrenone derivatives, see: Bloom (1961); Kumagai et al. (1997); McClellan (1987); Meyer & Spengler (1905); Milko & Roithova (2009); Mustafa et al. (1956); Nel et al. (2001); Schuetzle et al. (1981); Shimada et al. (2004); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Jones et al. (2002); Li et al. (2003); Sun et al. (2007); Wang et al. (2003). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was one of the products from the photoreaction between phenanthrenequinone (1 mmol) and 2-methylthiazole (4 mmol) in acetonitrile (50 ml). The compound was purified by flash column chromatography with ethyl acetate:petroleum ether (1:4) as eluents. X-ray quality single crystals of the title compound were obtained from slow evaporation of an acetone:petroleum ether (1:5) solution. M.p. 430–432 K.

Refinement top

Atom H1O2 was located in a difference Fourier map and allowed to refine freely [O2—H1O2 = 0.798 (19) Å]. The remaining H atoms were placed in calculated positions and were refined using a riding model, with C—H = 0.93 or 0.97 Å, Uiso = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing hydrogen-bonded (dashed lines) one-dimensional chains along the a axis.
10-Hydroxy-10-(1,3-thiazol-2-ylmethyl)phenanthren-9(10H)-one top
Crystal data top
C18H13NO2SF(000) = 640
Mr = 307.35Dx = 1.435 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7790 reflections
a = 12.5623 (17) Åθ = 3.1–30.1°
b = 7.3222 (10) ŵ = 0.23 mm1
c = 15.462 (2) ÅT = 100 K
V = 1422.3 (3) Å3Block, colourless
Z = 40.33 × 0.17 × 0.17 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3814 independent reflections
Radiation source: fine-focus sealed tube3635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.926, Tmax = 0.962k = 109
14577 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3814 reflectionsΔρmax = 0.32 e Å3
203 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1674 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
C18H13NO2SV = 1422.3 (3) Å3
Mr = 307.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.5623 (17) ŵ = 0.23 mm1
b = 7.3222 (10) ÅT = 100 K
c = 15.462 (2) Å0.33 × 0.17 × 0.17 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3635 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.962Rint = 0.028
14577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.21 e Å3
3814 reflectionsAbsolute structure: Flack (1983), 1674 Friedel pairs
203 parametersAbsolute structure parameter: 0.04 (5)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53518 (2)0.49600 (5)0.78827 (3)0.02005 (8)
O10.58478 (9)0.98317 (13)0.74430 (7)0.0204 (2)
O20.68596 (7)0.68224 (13)0.67503 (6)0.01555 (18)
N10.36431 (8)0.62424 (14)0.72334 (7)0.0147 (2)
C10.56431 (10)0.94441 (17)0.66980 (9)0.0141 (2)
C20.48837 (10)1.05126 (17)0.61503 (9)0.0141 (2)
C30.40687 (10)1.14942 (18)0.65511 (9)0.0175 (2)
H3A0.40231.15310.71510.021*
C40.33251 (11)1.24171 (19)0.60461 (10)0.0204 (3)
H4A0.27691.30480.63070.025*
C50.34165 (11)1.23923 (19)0.51504 (10)0.0211 (3)
H5A0.29231.30210.48160.025*
C60.42365 (10)1.14409 (18)0.47484 (9)0.0181 (3)
H6A0.42891.14430.41480.022*
C70.49871 (10)1.04759 (17)0.52450 (8)0.0145 (2)
C80.59038 (10)0.95064 (18)0.48531 (8)0.0137 (2)
C90.62580 (11)0.98991 (18)0.40142 (9)0.0165 (2)
H9A0.58781.07170.36730.020*
C100.71727 (10)0.90792 (19)0.36852 (9)0.0182 (3)
H10A0.74040.93620.31300.022*
C110.77403 (10)0.78396 (19)0.41853 (9)0.0178 (2)
H11A0.83550.73030.39670.021*
C120.73877 (10)0.74002 (18)0.50145 (9)0.0155 (2)
H12A0.77610.65540.53450.019*
C130.64729 (9)0.82280 (17)0.53514 (8)0.0133 (2)
C140.60853 (9)0.77241 (17)0.62538 (8)0.0129 (2)
C150.51421 (10)0.63447 (17)0.61865 (8)0.0141 (2)
H15A0.46040.68440.58040.017*
H15B0.53980.52160.59330.017*
C160.46450 (9)0.59352 (16)0.70480 (8)0.0136 (2)
C170.34056 (11)0.56729 (19)0.80632 (9)0.0183 (3)
H17A0.27270.57860.82980.022*
C180.42275 (12)0.49388 (19)0.85133 (10)0.0196 (3)
H18A0.41880.44940.90760.024*
H1O20.7346 (14)0.751 (3)0.6817 (12)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01201 (13)0.02777 (17)0.02038 (16)0.00009 (11)0.00259 (13)0.01058 (13)
O10.0226 (5)0.0242 (5)0.0144 (5)0.0006 (4)0.0024 (4)0.0021 (4)
O20.0109 (4)0.0177 (4)0.0181 (4)0.0014 (3)0.0036 (3)0.0040 (3)
N10.0123 (5)0.0154 (5)0.0162 (5)0.0003 (4)0.0006 (4)0.0018 (4)
C10.0112 (5)0.0160 (5)0.0151 (6)0.0008 (4)0.0008 (4)0.0009 (5)
C20.0136 (5)0.0141 (6)0.0146 (6)0.0009 (4)0.0010 (4)0.0002 (4)
C30.0171 (6)0.0169 (6)0.0186 (6)0.0006 (5)0.0023 (5)0.0023 (5)
C40.0161 (6)0.0169 (6)0.0283 (7)0.0022 (5)0.0013 (5)0.0031 (5)
C50.0172 (6)0.0177 (6)0.0283 (7)0.0014 (5)0.0039 (5)0.0035 (6)
C60.0176 (6)0.0191 (6)0.0175 (6)0.0013 (5)0.0028 (5)0.0031 (5)
C70.0130 (5)0.0133 (5)0.0172 (7)0.0012 (5)0.0001 (5)0.0009 (4)
C80.0121 (5)0.0158 (6)0.0132 (6)0.0023 (4)0.0002 (4)0.0005 (4)
C90.0159 (6)0.0192 (6)0.0145 (6)0.0037 (4)0.0014 (5)0.0018 (5)
C100.0160 (6)0.0253 (7)0.0135 (6)0.0069 (5)0.0023 (5)0.0007 (5)
C110.0122 (5)0.0221 (6)0.0191 (6)0.0032 (4)0.0018 (5)0.0042 (5)
C120.0124 (5)0.0175 (6)0.0167 (6)0.0023 (4)0.0003 (4)0.0019 (4)
C130.0118 (5)0.0147 (5)0.0134 (6)0.0036 (4)0.0003 (4)0.0009 (4)
C140.0107 (5)0.0152 (5)0.0128 (5)0.0009 (4)0.0016 (4)0.0009 (4)
C150.0113 (5)0.0156 (6)0.0155 (6)0.0019 (4)0.0009 (4)0.0017 (4)
C160.0118 (5)0.0144 (5)0.0146 (6)0.0017 (4)0.0030 (4)0.0027 (4)
C170.0157 (6)0.0212 (6)0.0181 (7)0.0007 (5)0.0017 (5)0.0022 (5)
C180.0170 (6)0.0262 (7)0.0156 (7)0.0048 (5)0.0008 (5)0.0072 (5)
Geometric parameters (Å, º) top
S1—C181.7164 (16)C7—C81.4823 (18)
S1—C161.7217 (13)C8—C91.4011 (18)
O1—C11.2140 (17)C8—C131.4075 (18)
O2—C141.4041 (14)C9—C101.3927 (19)
O2—H1O20.798 (19)C9—H9A0.9300
N1—C161.3103 (16)C10—C111.3894 (19)
N1—C171.3818 (17)C10—H10A0.9300
C1—C21.4965 (18)C11—C121.3942 (19)
C1—C141.5383 (18)C11—H11A0.9300
C2—C31.3961 (18)C12—C131.3998 (17)
C2—C71.4060 (18)C12—H12A0.9300
C3—C41.393 (2)C13—C141.5232 (17)
C3—H3A0.9300C14—C151.5605 (17)
C4—C51.390 (2)C15—C161.5014 (18)
C4—H4A0.9300C15—H15A0.9700
C5—C61.390 (2)C15—H15B0.9700
C5—H5A0.9300C17—C181.3562 (19)
C6—C71.4064 (18)C17—H17A0.9300
C6—H6A0.9300C18—H18A0.9300
C18—S1—C1690.30 (7)C9—C10—H10A119.9
C14—O2—H1O2107.7 (13)C10—C11—C12119.98 (12)
C16—N1—C17111.03 (11)C10—C11—H11A120.0
O1—C1—C2123.35 (12)C12—C11—H11A120.0
O1—C1—C14122.59 (12)C11—C12—C13120.21 (12)
C2—C1—C14113.93 (11)C11—C12—H12A119.9
C3—C2—C7121.31 (12)C13—C12—H12A119.9
C3—C2—C1119.04 (12)C12—C13—C8120.08 (12)
C7—C2—C1119.64 (12)C12—C13—C14119.90 (11)
C4—C3—C2119.52 (13)C8—C13—C14120.01 (11)
C4—C3—H3A120.2O2—C14—C13113.16 (10)
C2—C3—H3A120.2O2—C14—C1113.02 (10)
C5—C4—C3119.81 (13)C13—C14—C1109.04 (10)
C5—C4—H4A120.1O2—C14—C15104.96 (10)
C3—C4—H4A120.1C13—C14—C15109.78 (10)
C4—C5—C6120.89 (13)C1—C14—C15106.59 (10)
C4—C5—H5A119.6C16—C15—C14112.70 (10)
C6—C5—H5A119.6C16—C15—H15A109.1
C5—C6—C7120.29 (13)C14—C15—H15A109.1
C5—C6—H6A119.9C16—C15—H15B109.1
C7—C6—H6A119.9C14—C15—H15B109.1
C2—C7—C6118.17 (12)H15A—C15—H15B107.8
C2—C7—C8119.20 (11)N1—C16—C15124.01 (11)
C6—C7—C8122.56 (12)N1—C16—S1113.74 (10)
C9—C8—C13118.81 (12)C15—C16—S1122.24 (9)
C9—C8—C7121.79 (12)C18—C17—N1115.57 (12)
C13—C8—C7119.30 (11)C18—C17—H17A122.2
C10—C9—C8120.78 (13)N1—C17—H17A122.2
C10—C9—H9A119.6C17—C18—S1109.36 (11)
C8—C9—H9A119.6C17—C18—H18A125.3
C11—C10—C9120.11 (12)S1—C18—H18A125.3
C11—C10—H10A119.9
O1—C1—C2—C326.56 (19)C7—C8—C13—C12175.24 (11)
C14—C1—C2—C3149.37 (11)C9—C8—C13—C14177.89 (11)
O1—C1—C2—C7154.95 (13)C7—C8—C13—C145.58 (17)
C14—C1—C2—C729.12 (16)C12—C13—C14—O216.31 (16)
C7—C2—C3—C41.73 (19)C8—C13—C14—O2164.51 (11)
C1—C2—C3—C4176.73 (12)C12—C13—C14—C1143.01 (11)
C2—C3—C4—C51.7 (2)C8—C13—C14—C137.82 (15)
C3—C4—C5—C60.7 (2)C12—C13—C14—C15100.57 (13)
C4—C5—C6—C70.3 (2)C8—C13—C14—C1578.60 (14)
C3—C2—C7—C60.76 (19)O1—C1—C14—O28.85 (17)
C1—C2—C7—C6177.69 (11)C2—C1—C14—O2175.19 (10)
C3—C2—C7—C8176.32 (11)O1—C1—C14—C13135.62 (13)
C1—C2—C7—C85.23 (18)C2—C1—C14—C1348.41 (13)
C5—C6—C7—C20.27 (19)O1—C1—C14—C15105.94 (13)
C5—C6—C7—C8177.25 (12)C2—C1—C14—C1570.03 (13)
C2—C7—C8—C9158.44 (12)O2—C14—C15—C1664.01 (13)
C6—C7—C8—C918.51 (19)C13—C14—C15—C16174.07 (10)
C2—C7—C8—C1317.98 (18)C1—C14—C15—C1656.11 (13)
C6—C7—C8—C13165.07 (12)C17—N1—C16—C15177.95 (12)
C13—C8—C9—C101.71 (19)C17—N1—C16—S10.74 (14)
C7—C8—C9—C10174.73 (12)C14—C15—C16—N1120.47 (13)
C8—C9—C10—C110.73 (19)C14—C15—C16—S160.94 (14)
C9—C10—C11—C120.69 (19)C18—S1—C16—N10.76 (11)
C10—C11—C12—C131.11 (19)C18—S1—C16—C15177.96 (11)
C11—C12—C13—C80.11 (19)C16—N1—C17—C180.32 (17)
C11—C12—C13—C14179.28 (11)N1—C17—C18—S10.25 (16)
C9—C8—C13—C121.28 (18)C16—S1—C18—C170.54 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C8–C13 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N1i0.80 (2)1.976 (19)2.7542 (14)165 (2)
C5—H5A···Cg1ii0.932.833.6508 (16)147
C12—H12A···Cg2iii0.932.853.7214 (15)156
C18—H18A···Cg1iv0.932.723.3301 (16)124
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+5/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13NO2S
Mr307.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)12.5623 (17), 7.3222 (10), 15.462 (2)
V3)1422.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.33 × 0.17 × 0.17
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.926, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
14577, 3814, 3635
Rint0.028
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.03
No. of reflections3814
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21
Absolute structureFlack (1983), 1674 Friedel pairs
Absolute structure parameter0.04 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C8–C13 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N1i0.80 (2)1.976 (19)2.7542 (14)165 (2)
C5—H5A···Cg1ii0.932.833.6508 (16)147
C12—H12A···Cg2iii0.932.853.7214 (15)156
C18—H18A···Cg1iv0.932.723.3301 (16)124
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+5/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the National Science Foundation of China (20702024) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationBloom, S. M. (1961). J. Am. Chem. Soc. 38, 3808–3812.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G., Kirby, A. J. & Pilkington, M. (2002). Acta Cryst. E58, o268–o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumagai, Y., Arimoto, T., Shinyashiki, M., Shimojo, N., Nakai, Y., Yoshikawa, T. & Sa-Gai, M. (1997). Free Radical Biol. Med. 33, 479–487.  CrossRef Web of Science Google Scholar
First citationLi, X.-M., Wang, L., Xu, J.-H., Zhang, S.-S. & Fun, H.-K. (2003). Acta Cryst. E59, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcClellan, R. O. (1987). Annu. Rev. Pharmacol. Toxicol. 27, 279–300.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeyer, R. & Spengler, O. (1905). Ber. Dtsch. Chem. Ges. 38, 440–450.  CrossRef CAS Google Scholar
First citationMilko, P. & Roithova, J. (2009). Inorg. Chem. 48, 11734–11742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustafa, A., Harhash, A. H. E., Mansour, A. K. E. & Omran, S. M. A. E. (1956). J. Am. Chem. Soc. 78, 4306–4309.  CrossRef CAS Web of Science Google Scholar
First citationNel, A. E., Diaz-Sanchez, D. & Li, N. (2001). Curr. Opin. Pulm. Med. 7, 20–26.  CrossRef PubMed CAS Google Scholar
First citationSchuetzle, D., Lee, F. S.-C. & Prater, T. J. (1981). Int. J. Environ. Anal. Chem. 9, 93–144.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, H., Oginuma, M., Hara, A. & Imamura, Y. (2004). Chem. Rev. Toxicol. 17, 1145–1150.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Cui, Y.-P., Li, J.-K. & Zheng, Z.-B. (2007). Acta Cryst. E63, o1751–o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721–o722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 4, 4893–4895.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1683-o1684
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds