organic compounds
10-Hydroxy-10-(1,3-thiazol-2-ylmethyl)phenanthren-9(10H)-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the title phenanthrenone compound, C18H13NO2S, the dihydrophenanthrene ring system is not planar, with its central ring distorted to a screw-boat conformation. The essentially planar thiazole ring [maximum deviation = 0.005 (1) Å] is inclined at an interplanar angle of 23.36 (5)° with respect to the mean plane through the dihydrophenanthrene ring system. In the crystal packing, intermolecular O—H⋯N hydrogen bonds link the molecules into infinite chains along the a axis. Weak intermolecular C—H⋯π interactions further stabilize the crystal packing.
Related literature
For general background to and applications of phenanthrenone derivatives, see: Bloom (1961); Kumagai et al. (1997); McClellan (1987); Meyer & Spengler (1905); Milko & Roithova (2009); Mustafa et al. (1956); Nel et al. (2001); Schuetzle et al. (1981); Shimada et al. (2004); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Jones et al. (2002); Li et al. (2003); Sun et al. (2007); Wang et al. (2003). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810022439/wn2393sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022439/wn2393Isup2.hkl
The title compound was one of the products from the photoreaction between phenanthrenequinone (1 mmol) and 2-methylthiazole (4 mmol) in acetonitrile (50 ml). The compound was purified by flash
with ethyl acetate:petroleum ether (1:4) as eluents. X-ray quality single crystals of the title compound were obtained from slow evaporation of an acetone:petroleum ether (1:5) solution. M.p. 430–432 K.Atom H1O2 was located in a difference Fourier map and allowed to refine freely [O2—H1O2 = 0.798 (19) Å]. The remaining H atoms were placed in calculated positions and were refined using a riding model, with C—H = 0.93 or 0.97 Å, Uiso = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing hydrogen-bonded (dashed lines) one-dimensional chains along the a axis. |
C18H13NO2S | F(000) = 640 |
Mr = 307.35 | Dx = 1.435 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 7790 reflections |
a = 12.5623 (17) Å | θ = 3.1–30.1° |
b = 7.3222 (10) Å | µ = 0.23 mm−1 |
c = 15.462 (2) Å | T = 100 K |
V = 1422.3 (3) Å3 | Block, colourless |
Z = 4 | 0.33 × 0.17 × 0.17 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 3814 independent reflections |
Radiation source: fine-focus sealed tube | 3635 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 30.1°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.926, Tmax = 0.962 | k = −10→9 |
14577 measured reflections | l = −17→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0445P)2 + 0.2177P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3814 reflections | Δρmax = 0.32 e Å−3 |
203 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1674 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (5) |
C18H13NO2S | V = 1422.3 (3) Å3 |
Mr = 307.35 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.5623 (17) Å | µ = 0.23 mm−1 |
b = 7.3222 (10) Å | T = 100 K |
c = 15.462 (2) Å | 0.33 × 0.17 × 0.17 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 3814 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3635 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.962 | Rint = 0.028 |
14577 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | Δρmax = 0.32 e Å−3 |
S = 1.03 | Δρmin = −0.21 e Å−3 |
3814 reflections | Absolute structure: Flack (1983), 1674 Friedel pairs |
203 parameters | Absolute structure parameter: 0.04 (5) |
1 restraint |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.53518 (2) | 0.49600 (5) | 0.78827 (3) | 0.02005 (8) | |
O1 | 0.58478 (9) | 0.98317 (13) | 0.74430 (7) | 0.0204 (2) | |
O2 | 0.68596 (7) | 0.68224 (13) | 0.67503 (6) | 0.01555 (18) | |
N1 | 0.36431 (8) | 0.62424 (14) | 0.72334 (7) | 0.0147 (2) | |
C1 | 0.56431 (10) | 0.94441 (17) | 0.66980 (9) | 0.0141 (2) | |
C2 | 0.48837 (10) | 1.05126 (17) | 0.61503 (9) | 0.0141 (2) | |
C3 | 0.40687 (10) | 1.14942 (18) | 0.65511 (9) | 0.0175 (2) | |
H3A | 0.4023 | 1.1531 | 0.7151 | 0.021* | |
C4 | 0.33251 (11) | 1.24171 (19) | 0.60461 (10) | 0.0204 (3) | |
H4A | 0.2769 | 1.3048 | 0.6307 | 0.025* | |
C5 | 0.34165 (11) | 1.23923 (19) | 0.51504 (10) | 0.0211 (3) | |
H5A | 0.2923 | 1.3021 | 0.4816 | 0.025* | |
C6 | 0.42365 (10) | 1.14409 (18) | 0.47484 (9) | 0.0181 (3) | |
H6A | 0.4289 | 1.1443 | 0.4148 | 0.022* | |
C7 | 0.49871 (10) | 1.04759 (17) | 0.52450 (8) | 0.0145 (2) | |
C8 | 0.59038 (10) | 0.95064 (18) | 0.48531 (8) | 0.0137 (2) | |
C9 | 0.62580 (11) | 0.98991 (18) | 0.40142 (9) | 0.0165 (2) | |
H9A | 0.5878 | 1.0717 | 0.3673 | 0.020* | |
C10 | 0.71727 (10) | 0.90792 (19) | 0.36852 (9) | 0.0182 (3) | |
H10A | 0.7404 | 0.9362 | 0.3130 | 0.022* | |
C11 | 0.77403 (10) | 0.78396 (19) | 0.41853 (9) | 0.0178 (2) | |
H11A | 0.8355 | 0.7303 | 0.3967 | 0.021* | |
C12 | 0.73877 (10) | 0.74002 (18) | 0.50145 (9) | 0.0155 (2) | |
H12A | 0.7761 | 0.6554 | 0.5345 | 0.019* | |
C13 | 0.64729 (9) | 0.82280 (17) | 0.53514 (8) | 0.0133 (2) | |
C14 | 0.60853 (9) | 0.77241 (17) | 0.62538 (8) | 0.0129 (2) | |
C15 | 0.51421 (10) | 0.63447 (17) | 0.61865 (8) | 0.0141 (2) | |
H15A | 0.4604 | 0.6844 | 0.5804 | 0.017* | |
H15B | 0.5398 | 0.5216 | 0.5933 | 0.017* | |
C16 | 0.46450 (9) | 0.59352 (16) | 0.70480 (8) | 0.0136 (2) | |
C17 | 0.34056 (11) | 0.56729 (19) | 0.80632 (9) | 0.0183 (3) | |
H17A | 0.2727 | 0.5786 | 0.8298 | 0.022* | |
C18 | 0.42275 (12) | 0.49388 (19) | 0.85133 (10) | 0.0196 (3) | |
H18A | 0.4188 | 0.4494 | 0.9076 | 0.024* | |
H1O2 | 0.7346 (14) | 0.751 (3) | 0.6817 (12) | 0.021 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01201 (13) | 0.02777 (17) | 0.02038 (16) | 0.00009 (11) | −0.00259 (13) | 0.01058 (13) |
O1 | 0.0226 (5) | 0.0242 (5) | 0.0144 (5) | 0.0006 (4) | −0.0024 (4) | −0.0021 (4) |
O2 | 0.0109 (4) | 0.0177 (4) | 0.0181 (4) | −0.0014 (3) | −0.0036 (3) | 0.0040 (3) |
N1 | 0.0123 (5) | 0.0154 (5) | 0.0162 (5) | −0.0003 (4) | −0.0006 (4) | 0.0018 (4) |
C1 | 0.0112 (5) | 0.0160 (5) | 0.0151 (6) | −0.0008 (4) | 0.0008 (4) | 0.0009 (5) |
C2 | 0.0136 (5) | 0.0141 (6) | 0.0146 (6) | −0.0009 (4) | −0.0010 (4) | −0.0002 (4) |
C3 | 0.0171 (6) | 0.0169 (6) | 0.0186 (6) | −0.0006 (5) | 0.0023 (5) | −0.0023 (5) |
C4 | 0.0161 (6) | 0.0169 (6) | 0.0283 (7) | 0.0022 (5) | 0.0013 (5) | −0.0031 (5) |
C5 | 0.0172 (6) | 0.0177 (6) | 0.0283 (7) | 0.0014 (5) | −0.0039 (5) | 0.0035 (6) |
C6 | 0.0176 (6) | 0.0191 (6) | 0.0175 (6) | −0.0013 (5) | −0.0028 (5) | 0.0031 (5) |
C7 | 0.0130 (5) | 0.0133 (5) | 0.0172 (7) | −0.0012 (5) | 0.0001 (5) | 0.0009 (4) |
C8 | 0.0121 (5) | 0.0158 (6) | 0.0132 (6) | −0.0023 (4) | 0.0002 (4) | −0.0005 (4) |
C9 | 0.0159 (6) | 0.0192 (6) | 0.0145 (6) | −0.0037 (4) | −0.0014 (5) | 0.0018 (5) |
C10 | 0.0160 (6) | 0.0253 (7) | 0.0135 (6) | −0.0069 (5) | 0.0023 (5) | −0.0007 (5) |
C11 | 0.0122 (5) | 0.0221 (6) | 0.0191 (6) | −0.0032 (4) | 0.0018 (5) | −0.0042 (5) |
C12 | 0.0124 (5) | 0.0175 (6) | 0.0167 (6) | −0.0023 (4) | −0.0003 (4) | −0.0019 (4) |
C13 | 0.0118 (5) | 0.0147 (5) | 0.0134 (6) | −0.0036 (4) | 0.0003 (4) | −0.0009 (4) |
C14 | 0.0107 (5) | 0.0152 (5) | 0.0128 (5) | −0.0009 (4) | −0.0016 (4) | 0.0009 (4) |
C15 | 0.0113 (5) | 0.0156 (6) | 0.0155 (6) | −0.0019 (4) | −0.0009 (4) | 0.0017 (4) |
C16 | 0.0118 (5) | 0.0144 (5) | 0.0146 (6) | −0.0017 (4) | −0.0030 (4) | 0.0027 (4) |
C17 | 0.0157 (6) | 0.0212 (6) | 0.0181 (7) | −0.0007 (5) | 0.0017 (5) | 0.0022 (5) |
C18 | 0.0170 (6) | 0.0262 (7) | 0.0156 (7) | −0.0048 (5) | −0.0008 (5) | 0.0072 (5) |
S1—C18 | 1.7164 (16) | C7—C8 | 1.4823 (18) |
S1—C16 | 1.7217 (13) | C8—C9 | 1.4011 (18) |
O1—C1 | 1.2140 (17) | C8—C13 | 1.4075 (18) |
O2—C14 | 1.4041 (14) | C9—C10 | 1.3927 (19) |
O2—H1O2 | 0.798 (19) | C9—H9A | 0.9300 |
N1—C16 | 1.3103 (16) | C10—C11 | 1.3894 (19) |
N1—C17 | 1.3818 (17) | C10—H10A | 0.9300 |
C1—C2 | 1.4965 (18) | C11—C12 | 1.3942 (19) |
C1—C14 | 1.5383 (18) | C11—H11A | 0.9300 |
C2—C3 | 1.3961 (18) | C12—C13 | 1.3998 (17) |
C2—C7 | 1.4060 (18) | C12—H12A | 0.9300 |
C3—C4 | 1.393 (2) | C13—C14 | 1.5232 (17) |
C3—H3A | 0.9300 | C14—C15 | 1.5605 (17) |
C4—C5 | 1.390 (2) | C15—C16 | 1.5014 (18) |
C4—H4A | 0.9300 | C15—H15A | 0.9700 |
C5—C6 | 1.390 (2) | C15—H15B | 0.9700 |
C5—H5A | 0.9300 | C17—C18 | 1.3562 (19) |
C6—C7 | 1.4064 (18) | C17—H17A | 0.9300 |
C6—H6A | 0.9300 | C18—H18A | 0.9300 |
C18—S1—C16 | 90.30 (7) | C9—C10—H10A | 119.9 |
C14—O2—H1O2 | 107.7 (13) | C10—C11—C12 | 119.98 (12) |
C16—N1—C17 | 111.03 (11) | C10—C11—H11A | 120.0 |
O1—C1—C2 | 123.35 (12) | C12—C11—H11A | 120.0 |
O1—C1—C14 | 122.59 (12) | C11—C12—C13 | 120.21 (12) |
C2—C1—C14 | 113.93 (11) | C11—C12—H12A | 119.9 |
C3—C2—C7 | 121.31 (12) | C13—C12—H12A | 119.9 |
C3—C2—C1 | 119.04 (12) | C12—C13—C8 | 120.08 (12) |
C7—C2—C1 | 119.64 (12) | C12—C13—C14 | 119.90 (11) |
C4—C3—C2 | 119.52 (13) | C8—C13—C14 | 120.01 (11) |
C4—C3—H3A | 120.2 | O2—C14—C13 | 113.16 (10) |
C2—C3—H3A | 120.2 | O2—C14—C1 | 113.02 (10) |
C5—C4—C3 | 119.81 (13) | C13—C14—C1 | 109.04 (10) |
C5—C4—H4A | 120.1 | O2—C14—C15 | 104.96 (10) |
C3—C4—H4A | 120.1 | C13—C14—C15 | 109.78 (10) |
C4—C5—C6 | 120.89 (13) | C1—C14—C15 | 106.59 (10) |
C4—C5—H5A | 119.6 | C16—C15—C14 | 112.70 (10) |
C6—C5—H5A | 119.6 | C16—C15—H15A | 109.1 |
C5—C6—C7 | 120.29 (13) | C14—C15—H15A | 109.1 |
C5—C6—H6A | 119.9 | C16—C15—H15B | 109.1 |
C7—C6—H6A | 119.9 | C14—C15—H15B | 109.1 |
C2—C7—C6 | 118.17 (12) | H15A—C15—H15B | 107.8 |
C2—C7—C8 | 119.20 (11) | N1—C16—C15 | 124.01 (11) |
C6—C7—C8 | 122.56 (12) | N1—C16—S1 | 113.74 (10) |
C9—C8—C13 | 118.81 (12) | C15—C16—S1 | 122.24 (9) |
C9—C8—C7 | 121.79 (12) | C18—C17—N1 | 115.57 (12) |
C13—C8—C7 | 119.30 (11) | C18—C17—H17A | 122.2 |
C10—C9—C8 | 120.78 (13) | N1—C17—H17A | 122.2 |
C10—C9—H9A | 119.6 | C17—C18—S1 | 109.36 (11) |
C8—C9—H9A | 119.6 | C17—C18—H18A | 125.3 |
C11—C10—C9 | 120.11 (12) | S1—C18—H18A | 125.3 |
C11—C10—H10A | 119.9 | ||
O1—C1—C2—C3 | −26.56 (19) | C7—C8—C13—C12 | −175.24 (11) |
C14—C1—C2—C3 | 149.37 (11) | C9—C8—C13—C14 | −177.89 (11) |
O1—C1—C2—C7 | 154.95 (13) | C7—C8—C13—C14 | 5.58 (17) |
C14—C1—C2—C7 | −29.12 (16) | C12—C13—C14—O2 | 16.31 (16) |
C7—C2—C3—C4 | 1.73 (19) | C8—C13—C14—O2 | −164.51 (11) |
C1—C2—C3—C4 | −176.73 (12) | C12—C13—C14—C1 | 143.01 (11) |
C2—C3—C4—C5 | −1.7 (2) | C8—C13—C14—C1 | −37.82 (15) |
C3—C4—C5—C6 | 0.7 (2) | C12—C13—C14—C15 | −100.57 (13) |
C4—C5—C6—C7 | 0.3 (2) | C8—C13—C14—C15 | 78.60 (14) |
C3—C2—C7—C6 | −0.76 (19) | O1—C1—C14—O2 | −8.85 (17) |
C1—C2—C7—C6 | 177.69 (11) | C2—C1—C14—O2 | 175.19 (10) |
C3—C2—C7—C8 | 176.32 (11) | O1—C1—C14—C13 | −135.62 (13) |
C1—C2—C7—C8 | −5.23 (18) | C2—C1—C14—C13 | 48.41 (13) |
C5—C6—C7—C2 | −0.27 (19) | O1—C1—C14—C15 | 105.94 (13) |
C5—C6—C7—C8 | −177.25 (12) | C2—C1—C14—C15 | −70.03 (13) |
C2—C7—C8—C9 | −158.44 (12) | O2—C14—C15—C16 | 64.01 (13) |
C6—C7—C8—C9 | 18.51 (19) | C13—C14—C15—C16 | −174.07 (10) |
C2—C7—C8—C13 | 17.98 (18) | C1—C14—C15—C16 | −56.11 (13) |
C6—C7—C8—C13 | −165.07 (12) | C17—N1—C16—C15 | 177.95 (12) |
C13—C8—C9—C10 | −1.71 (19) | C17—N1—C16—S1 | −0.74 (14) |
C7—C8—C9—C10 | 174.73 (12) | C14—C15—C16—N1 | 120.47 (13) |
C8—C9—C10—C11 | 0.73 (19) | C14—C15—C16—S1 | −60.94 (14) |
C9—C10—C11—C12 | 0.69 (19) | C18—S1—C16—N1 | 0.76 (11) |
C10—C11—C12—C13 | −1.11 (19) | C18—S1—C16—C15 | −177.96 (11) |
C11—C12—C13—C8 | 0.11 (19) | C16—N1—C17—C18 | 0.32 (17) |
C11—C12—C13—C14 | 179.28 (11) | N1—C17—C18—S1 | 0.25 (16) |
C9—C8—C13—C12 | 1.28 (18) | C16—S1—C18—C17 | −0.54 (11) |
Cg1 and Cg2 are the centroids of C8–C13 and C2–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N1i | 0.80 (2) | 1.976 (19) | 2.7542 (14) | 165 (2) |
C5—H5A···Cg1ii | 0.93 | 2.83 | 3.6508 (16) | 147 |
C12—H12A···Cg2iii | 0.93 | 2.85 | 3.7214 (15) | 156 |
C18—H18A···Cg1iv | 0.93 | 2.72 | 3.3301 (16) | 124 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) −x−1/2, y+5/2, z+1/2; (iii) −x+1/2, y+3/2, z+1/2; (iv) −x+1, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H13NO2S |
Mr | 307.35 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 12.5623 (17), 7.3222 (10), 15.462 (2) |
V (Å3) | 1422.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.33 × 0.17 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.926, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14577, 3814, 3635 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.074, 1.03 |
No. of reflections | 3814 |
No. of parameters | 203 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.21 |
Absolute structure | Flack (1983), 1674 Friedel pairs |
Absolute structure parameter | 0.04 (5) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of C8–C13 and C2–C7 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N1i | 0.80 (2) | 1.976 (19) | 2.7542 (14) | 165 (2) |
C5—H5A···Cg1ii | 0.93 | 2.83 | 3.6508 (16) | 147 |
C12—H12A···Cg2iii | 0.93 | 2.85 | 3.7214 (15) | 156 |
C18—H18A···Cg1iv | 0.93 | 2.72 | 3.3301 (16) | 124 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) −x−1/2, y+5/2, z+1/2; (iii) −x+1/2, y+3/2, z+1/2; (iv) −x+1, −y+1, z+1/2. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the National Science Foundation of China (20702024) is acknowledged. JHG also thanks USM for the award of a USM fellowship.
References
Bloom, S. M. (1961). J. Am. Chem. Soc. 38, 3808–3812. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jones, P. G., Kirby, A. J. & Pilkington, M. (2002). Acta Cryst. E58, o268–o269. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumagai, Y., Arimoto, T., Shinyashiki, M., Shimojo, N., Nakai, Y., Yoshikawa, T. & Sa-Gai, M. (1997). Free Radical Biol. Med. 33, 479–487. CrossRef Web of Science Google Scholar
Li, X.-M., Wang, L., Xu, J.-H., Zhang, S.-S. & Fun, H.-K. (2003). Acta Cryst. E59, o1907–o1908. Web of Science CSD CrossRef IUCr Journals Google Scholar
McClellan, R. O. (1987). Annu. Rev. Pharmacol. Toxicol. 27, 279–300. CrossRef CAS PubMed Web of Science Google Scholar
Meyer, R. & Spengler, O. (1905). Ber. Dtsch. Chem. Ges. 38, 440–450. CrossRef CAS Google Scholar
Milko, P. & Roithova, J. (2009). Inorg. Chem. 48, 11734–11742. Web of Science CrossRef PubMed CAS Google Scholar
Mustafa, A., Harhash, A. H. E., Mansour, A. K. E. & Omran, S. M. A. E. (1956). J. Am. Chem. Soc. 78, 4306–4309. CrossRef CAS Web of Science Google Scholar
Nel, A. E., Diaz-Sanchez, D. & Li, N. (2001). Curr. Opin. Pulm. Med. 7, 20–26. CrossRef PubMed CAS Google Scholar
Schuetzle, D., Lee, F. S.-C. & Prater, T. J. (1981). Int. J. Environ. Anal. Chem. 9, 93–144. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimada, H., Oginuma, M., Hara, A. & Imamura, Y. (2004). Chem. Rev. Toxicol. 17, 1145–1150. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-F., Cui, Y.-P., Li, J.-K. & Zheng, Z.-B. (2007). Acta Cryst. E63, o1751–o1752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721–o722. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 4, 4893–4895. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research interest in phenanthrenequinone can be traced back as early as 1905 (Bloom, 1961; Meyer & Spengler, 1905). Phenanthrenequinone and its derivatives possess a wide range of activities, especially biological and pharmaceutical. For example, phenanthrenequinone is one of the major quinones in diesel exhaust particles (Milko & Roithova, 2009), which plays a negative role in inducing pathogenic processes such as lung cancer (Schuetzle et al., 1981), allergies (McClellan, 1987) or asthma (Nel et al., 2001). Phenanthrenequinone has also been reported to be a good substrate for microsomal NADPH-cytochrome P450 reductase and that superoxide and hydroxyl radicals generated during redox cycling of the quinone by this flavin enzyme mainly participate in the DEP-prompted oxidative stress (Shimada et al., 2004; Kumagai et al., 1997). The photochemistry of phenanthrenequinone has been investigated early in 1956 (Mustafa et al., 1956). In recent years, more complex products have been obtained in photoreactions of oxazoles with phenanthrenequinone (Zhang et al., 2004). The crystal structures of 2-(4-hydroxy-3,5-dimethoxyphenyl)-1H-phenanthro[9,10-d]imidazole methanol solvate (Sun et al., 2007) and 2,2,2-tris(cyclohexyloxy)-4,5-(2',2''-biphenylo)-1,3,2-dioxaphospholene (Jones et al., 2002) have been reported. Due to the importance of phenanthraquinone derivatives, we report here the crystal structure of the title compound.
In the title compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) is distorted towards a screw-boat conformation as observed in a previously reported structure (Wang et al., 2003), with puckering parameters of Q = 0.4466 (13) Å, θ = 67.55 (18)° and ϕ = 320.40 (19)° (Cremer & Pople, 1975). In the 1,2-dihydrobenzene ring, atoms C1 and C14 deviate by 0.2034 (13) and -0.4508 (12) Å, respectively, in opposite directions from the mean plane through the remaining four atoms. The thiazole ring (C16/N1/C17/C18/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C16. The interplanar angle formed between the thiazole ring and the mean plane through the 9,10-dihydrophenanthrene ring system is 23.36 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003; Li et al., 2003).
In the crystal packing, intermolecular O2—H1O2···N1 hydrogen bonds (Table 1) link the molecules into one-dimensional chains along the [100] direction (Fig. 2). The crystal packing is further stabilized by weak intermolecular C5—H5A···Cg1, C12—H12A···Cg2 and C18—H18A···Cg1 interactions (Table 1), where Cg1 and Cg2 are the centroids of C8-C13 and C2-C7 benzene rings, respectively.