organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 May 2010; accepted 3 June 2010; online 16 June 2010)

The asymmetric unit of the title compound, C10H7Cl2NO3, contains two unique mol­ecules, both being stabilized by an intra­molecular O—H⋯O hydrogen bond within their maleamic units. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extending along [1[\overline{1}][\overline{1}]] which are further assembled into sheets via short inter­molecular C—Cl⋯O=C contacts [3.102 (2) and 3.044 (2) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2874.], 2010[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]); Shakuntala et al. (2009[Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.]). For short halogen–oxygen contacts, see: Fourmigué (2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]); Legon (1999[Legon, A. C. (1999). Angew. Chem. Int. Ed. 38, 2686-2714.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7Cl2NO3

  • Mr = 260.07

  • Triclinic, [P \overline 1]

  • a = 7.1959 (7) Å

  • b = 11.6234 (10) Å

  • c = 13.1399 (14) Å

  • α = 85.116 (8)°

  • β = 75.060 (9)°

  • γ = 81.205 (7)°

  • V = 1048.19 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 295 K

  • 0.54 × 0.28 × 0.11 mm

Data collection
  • Oxford Diffraction Gemini R, CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.870, Tmax = 0.969

  • 11933 measured reflections

  • 3897 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 3897 reflections

  • 295 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.86 2.03 2.869 (2) 165
N2—H2N⋯O3ii 0.86 2.03 2.873 (2) 166
O2—H2A⋯O1 0.89 (2) 1.61 (2) 2.496 (2) 171 (3)
O5—H5A⋯O4 0.90 (2) 1.59 (2) 2.492 (2) 174 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2009, 2010; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,4-dichlorophenyl)maleamic acid (I) has been determined (Fig. 1).

The asymmetric unit of the cell contains two molecules. In the first molecule, which significantly deviates from planarity, the torsion angle C6—C5—N1—C1 = 24.9 (3)° defines the orientation of the phenyl ring towards the central amide group —NHCO—. The atoms of maleamic acid moiety do not fit very well to a plane (r.m.s. deviation = 0.077\%A). It makes a dihedral angle of 27.5 (1)° with the phenyl ring. The geometry of the second molecule is almost planar as shown by the small dihedral angle of 1.9 (1)° formed by the planes of phenyl ring and maleamic acid moiety. Each maleamic acid moiety includes a short intramolecular hydrogen bond O—H···O (Table 1). The bond lengths C2–C3 = 1.336 (3) and C22–C23 = 1.333 (3)\%A clearly indicate the double bond character.

In the crystal structure (Fig. 2), the intermolecular N–H···O hydrogen bonds link the molecules into chains extending along the [1 - 1 -1]direction. These chains are further assembled by short Cl···O contacts of the length 3.102 (2) and 3.044 (2)Å to form the sheet like structure.

Our data for the C–Cl···O halogen bonds are in agreement with the observations of others (Fourmigué, 2009, Legon, 1999).

Related literature top

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009, 2010); Lo & Ng (2009); Prasad et al. (2002); Shakuntala et al. (2009). For short halogen–oxygen contacts, see: Fourmigué (2009); Legon (1999).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,4-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dichloroaniline. The resultant solid N-(3,4-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

Block like colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

H atoms bonded to C and N atoms were positioned with idealized geometry (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model. H atoms of carboxyl groups were visible in difference maps and were refined freely with O—H distances restrained to 0.90 (3) Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and short intramolecular O—H···O bonds as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the two-dimensional networks of molecules linked by N–H···O hydrogen bonds and short Cl···O contacts. Symmetry codes (i): -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 2, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z + 2. H atoms not involved in hydrogen bonding were omitted. Hydrogen bonds are shown as dashed lines, Cl···O contacts as dotted lines.
N-(3,4-Dichlorophenyl)maleamic acid top
Crystal data top
C10H7Cl2NO3Z = 4
Mr = 260.07F(000) = 528
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1959 (7) ÅCell parameters from 5934 reflections
b = 11.6234 (10) Åθ = 1.6–28.1°
c = 13.1399 (14) ŵ = 0.61 mm1
α = 85.116 (8)°T = 295 K
β = 75.060 (9)°Block, colourless
γ = 81.205 (7)°0.54 × 0.28 × 0.11 mm
V = 1048.19 (18) Å3
Data collection top
Oxford Diffraction Gemini R, CCD
diffractometer
3897 independent reflections
Graphite monochromator3075 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.026
ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.870, Tmax = 0.969k = 1414
11933 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3773P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H7Cl2NO3γ = 81.205 (7)°
Mr = 260.07V = 1048.19 (18) Å3
Triclinic, P1Z = 4
a = 7.1959 (7) ÅMo Kα radiation
b = 11.6234 (10) ŵ = 0.61 mm1
c = 13.1399 (14) ÅT = 295 K
α = 85.116 (8)°0.54 × 0.28 × 0.11 mm
β = 75.060 (9)°
Data collection top
Oxford Diffraction Gemini R, CCD
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
3075 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.969Rint = 0.026
11933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3897 reflectionsΔρmin = 0.23 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6769 (3)0.57748 (17)0.60126 (16)0.0368 (5)
C20.6821 (3)0.45235 (17)0.58531 (16)0.0408 (5)
H20.74950.42690.5190.049*
C30.6022 (3)0.37134 (17)0.65399 (16)0.0416 (5)
H30.62570.29730.62770.05*
C40.4826 (3)0.37742 (17)0.76479 (16)0.0386 (5)
C50.7512 (3)0.76165 (16)0.50046 (15)0.0327 (4)
C60.7421 (3)0.83188 (16)0.58292 (15)0.0330 (4)
H60.73530.79950.65080.04*
C70.7433 (3)0.95030 (16)0.56238 (15)0.0313 (4)
C80.7540 (3)1.00008 (16)0.46162 (16)0.0329 (4)
C90.7642 (3)0.92903 (18)0.38049 (16)0.0389 (5)
H90.77250.96140.31250.047*
C100.7623 (3)0.81111 (18)0.39948 (16)0.0380 (5)
H100.76840.76420.34450.046*
N10.7501 (2)0.63960 (14)0.51337 (13)0.0378 (4)
H1N0.80280.60060.4580.045*
O10.6107 (2)0.62179 (12)0.68815 (12)0.0503 (4)
O20.4523 (3)0.47244 (13)0.81526 (12)0.0562 (5)
H2A0.506 (4)0.530 (2)0.776 (2)0.084*
O30.4146 (2)0.29115 (13)0.80735 (12)0.0528 (4)
Cl10.73228 (8)1.03670 (4)0.66563 (4)0.04481 (16)
Cl20.75788 (8)1.14770 (4)0.43458 (4)0.04553 (16)
C210.8620 (3)0.74292 (16)0.90501 (15)0.0325 (4)
C220.8539 (3)0.61620 (16)0.92152 (16)0.0357 (5)
H220.79040.59090.98880.043*
C230.9263 (3)0.53360 (17)0.85204 (16)0.0386 (5)
H230.90450.4590.87950.046*
C241.0349 (3)0.53723 (17)0.73945 (16)0.0375 (5)
C250.7588 (3)0.92609 (15)1.00107 (15)0.0286 (4)
C260.8324 (3)1.00323 (16)0.91955 (15)0.0309 (4)
H260.90010.97610.85380.037*
C270.8038 (3)1.12116 (16)0.93712 (15)0.0314 (4)
C280.7036 (3)1.16303 (16)1.03496 (16)0.0335 (4)
C290.6323 (3)1.08583 (17)1.11585 (16)0.0383 (5)
H290.5661.11311.18170.046*
C300.6590 (3)0.96819 (17)1.09950 (15)0.0350 (5)
H300.61010.91651.15440.042*
N20.7781 (2)0.80432 (13)0.99092 (12)0.0317 (4)
H2N0.72980.76451.04710.038*
O40.9388 (3)0.78924 (12)0.81921 (11)0.0524 (4)
O51.0862 (3)0.63417 (13)0.69133 (12)0.0544 (5)
H5A1.039 (4)0.693 (2)0.735 (2)0.082*
O61.0751 (3)0.44786 (13)0.69212 (12)0.0558 (4)
Cl30.89907 (9)1.21571 (4)0.83501 (4)0.04603 (16)
Cl40.66462 (9)1.31041 (4)1.05637 (5)0.05015 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (12)0.0320 (10)0.0322 (11)0.0102 (9)0.0005 (9)0.0035 (9)
C20.0538 (13)0.0333 (11)0.0300 (11)0.0105 (10)0.0036 (10)0.0078 (9)
C30.0575 (14)0.0274 (10)0.0353 (12)0.0093 (9)0.0006 (10)0.0069 (9)
C40.0474 (13)0.0307 (11)0.0344 (11)0.0083 (9)0.0027 (10)0.0021 (9)
C50.0353 (11)0.0302 (10)0.0297 (11)0.0107 (8)0.0011 (8)0.0020 (8)
C60.0381 (11)0.0334 (10)0.0262 (10)0.0089 (9)0.0032 (9)0.0009 (8)
C70.0317 (10)0.0309 (10)0.0296 (11)0.0059 (8)0.0019 (8)0.0075 (8)
C80.0291 (10)0.0296 (10)0.0349 (11)0.0060 (8)0.0017 (8)0.0001 (8)
C90.0467 (13)0.0407 (12)0.0258 (10)0.0109 (10)0.0008 (9)0.0012 (9)
C100.0472 (13)0.0381 (11)0.0267 (11)0.0140 (9)0.0001 (9)0.0049 (9)
N10.0530 (11)0.0285 (9)0.0271 (9)0.0117 (8)0.0035 (8)0.0061 (7)
O10.0782 (11)0.0318 (8)0.0324 (8)0.0177 (7)0.0094 (8)0.0081 (6)
O20.0877 (13)0.0356 (9)0.0338 (9)0.0224 (8)0.0155 (8)0.0073 (7)
O30.0753 (11)0.0364 (8)0.0393 (9)0.0224 (8)0.0059 (8)0.0026 (7)
Cl10.0622 (4)0.0363 (3)0.0360 (3)0.0100 (2)0.0076 (3)0.0109 (2)
Cl20.0530 (3)0.0293 (3)0.0473 (3)0.0066 (2)0.0007 (3)0.0026 (2)
C210.0427 (12)0.0258 (10)0.0268 (10)0.0041 (8)0.0048 (9)0.0029 (8)
C220.0488 (13)0.0272 (10)0.0272 (10)0.0082 (9)0.0009 (9)0.0010 (8)
C230.0544 (13)0.0228 (10)0.0348 (11)0.0071 (9)0.0032 (10)0.0022 (8)
C240.0469 (13)0.0291 (11)0.0329 (11)0.0018 (9)0.0044 (9)0.0052 (9)
C250.0314 (10)0.0249 (9)0.0295 (10)0.0034 (8)0.0065 (8)0.0053 (8)
C260.0367 (11)0.0288 (10)0.0252 (10)0.0041 (8)0.0031 (8)0.0059 (8)
C270.0339 (11)0.0269 (10)0.0319 (11)0.0072 (8)0.0043 (9)0.0002 (8)
C280.0377 (11)0.0246 (9)0.0358 (11)0.0019 (8)0.0041 (9)0.0091 (8)
C290.0429 (12)0.0335 (11)0.0326 (11)0.0040 (9)0.0033 (9)0.0101 (9)
C300.0418 (12)0.0308 (10)0.0277 (10)0.0073 (9)0.0016 (9)0.0023 (8)
N20.0435 (10)0.0240 (8)0.0238 (8)0.0070 (7)0.0001 (7)0.0025 (6)
O40.0877 (12)0.0262 (7)0.0300 (8)0.0089 (8)0.0107 (8)0.0038 (6)
O50.0841 (12)0.0319 (8)0.0335 (9)0.0109 (8)0.0133 (8)0.0067 (7)
O60.0867 (12)0.0331 (8)0.0387 (9)0.0062 (8)0.0036 (8)0.0147 (7)
Cl30.0647 (4)0.0296 (3)0.0360 (3)0.0111 (2)0.0033 (3)0.0010 (2)
Cl40.0639 (4)0.0256 (3)0.0524 (3)0.0049 (2)0.0037 (3)0.0129 (2)
Geometric parameters (Å, º) top
C1—O11.241 (2)C21—O41.238 (2)
C1—N11.339 (3)C21—N21.342 (2)
C1—C21.481 (3)C21—C221.478 (3)
C2—C31.336 (3)C22—C231.333 (3)
C2—H20.93C22—H220.93
C3—C41.489 (3)C23—C241.485 (3)
C3—H30.93C23—H230.93
C4—O31.213 (2)C24—O61.214 (2)
C4—O21.298 (2)C24—O51.300 (2)
C5—C101.388 (3)C25—C261.386 (3)
C5—C61.394 (3)C25—C301.396 (3)
C5—N11.415 (2)C25—N21.415 (2)
C6—C71.381 (3)C26—C271.385 (3)
C6—H60.93C26—H260.93
C7—C81.387 (3)C27—C281.390 (3)
C7—Cl11.7343 (19)C27—Cl31.7271 (19)
C8—C91.384 (3)C28—C291.377 (3)
C8—Cl21.7253 (19)C28—Cl41.7282 (19)
C9—C101.374 (3)C29—C301.379 (3)
C9—H90.93C29—H290.93
C10—H100.93C30—H300.93
N1—H1N0.86N2—H2N0.86
O2—H2A0.89 (2)O5—H5A0.90 (2)
O1—C1—N1122.47 (18)O4—C21—N2122.46 (17)
O1—C1—C2123.38 (18)O4—C21—C22123.11 (17)
N1—C1—C2114.15 (18)N2—C21—C22114.43 (17)
C3—C2—C1128.32 (19)C23—C22—C21128.12 (19)
C3—C2—H2115.8C23—C22—H22115.9
C1—C2—H2115.8C21—C22—H22115.9
C2—C3—C4132.04 (19)C22—C23—C24132.64 (19)
C2—C3—H3114C22—C23—H23113.7
C4—C3—H3114C24—C23—H23113.7
O3—C4—O2120.48 (19)O6—C24—O5119.99 (19)
O3—C4—C3118.52 (18)O6—C24—C23118.96 (18)
O2—C4—C3121.00 (18)O5—C24—C23121.05 (17)
C10—C5—C6119.89 (18)C26—C25—C30119.63 (17)
C10—C5—N1116.76 (17)C26—C25—N2123.62 (17)
C6—C5—N1123.36 (18)C30—C25—N2116.75 (17)
C7—C6—C5119.00 (18)C27—C26—C25119.21 (18)
C7—C6—H6120.5C27—C26—H26120.4
C5—C6—H6120.5C25—C26—H26120.4
C6—C7—C8121.28 (18)C26—C27—C28121.11 (18)
C6—C7—Cl1118.55 (15)C26—C27—Cl3118.51 (15)
C8—C7—Cl1120.16 (15)C28—C27—Cl3120.37 (14)
C9—C8—C7118.99 (18)C29—C28—C27119.39 (17)
C9—C8—Cl2119.23 (15)C29—C28—Cl4119.48 (15)
C7—C8—Cl2121.78 (15)C27—C28—Cl4121.13 (15)
C10—C9—C8120.57 (19)C28—C29—C30120.20 (18)
C10—C9—H9119.7C28—C29—H29119.9
C8—C9—H9119.7C30—C29—H29119.9
C9—C10—C5120.27 (19)C29—C30—C25120.46 (18)
C9—C10—H10119.9C29—C30—H30119.8
C5—C10—H10119.9C25—C30—H30119.8
C1—N1—C5127.91 (17)C21—N2—C25128.46 (16)
C1—N1—H1N116C21—N2—H2N115.8
C5—N1—H1N116C25—N2—H2N115.8
C4—O2—H2A112 (2)C24—O5—H5A109.4 (19)
O1—C1—C2—C37.9 (4)O4—C21—C22—C231.3 (4)
N1—C1—C2—C3172.1 (2)N2—C21—C22—C23179.0 (2)
C1—C2—C3—C41.2 (4)C21—C22—C23—C240.0 (4)
C2—C3—C4—O3174.2 (2)C22—C23—C24—O6175.8 (2)
C2—C3—C4—O26.2 (4)C22—C23—C24—O53.9 (4)
C10—C5—C6—C70.3 (3)C30—C25—C26—C270.6 (3)
N1—C5—C6—C7179.75 (19)N2—C25—C26—C27179.24 (18)
C5—C6—C7—C80.2 (3)C25—C26—C27—C280.2 (3)
C5—C6—C7—Cl1179.91 (15)C25—C26—C27—Cl3179.23 (15)
C6—C7—C8—C90.2 (3)C26—C27—C28—C290.3 (3)
Cl1—C7—C8—C9179.47 (15)Cl3—C27—C28—C29178.67 (16)
C6—C7—C8—Cl2179.39 (15)C26—C27—C28—Cl4178.99 (16)
Cl1—C7—C8—Cl20.3 (2)Cl3—C27—C28—Cl42.0 (3)
C7—C8—C9—C100.5 (3)C27—C28—C29—C300.5 (3)
Cl2—C8—C9—C10179.72 (16)Cl4—C28—C29—C30178.78 (17)
C8—C9—C10—C50.4 (3)C28—C29—C30—C250.2 (3)
C6—C5—C10—C90.0 (3)C26—C25—C30—C290.3 (3)
N1—C5—C10—C9179.96 (19)N2—C25—C30—C29179.47 (18)
O1—C1—N1—C55.8 (4)O4—C21—N2—C250.7 (3)
C2—C1—N1—C5174.17 (19)C22—C21—N2—C25179.03 (18)
C10—C5—N1—C1155.1 (2)C26—C25—N2—C211.7 (3)
C6—C5—N1—C124.9 (3)C30—C25—N2—C21178.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.862.032.869 (2)165
N2—H2N···O3ii0.862.032.873 (2)166
O2—H2A···O10.89 (2)1.61 (2)2.496 (2)171 (3)
O5—H5A···O40.90 (2)1.59 (2)2.492 (2)174 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H7Cl2NO3
Mr260.07
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.1959 (7), 11.6234 (10), 13.1399 (14)
α, β, γ (°)85.116 (8), 75.060 (9), 81.205 (7)
V3)1048.19 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.54 × 0.28 × 0.11
Data collection
DiffractometerOxford Diffraction Gemini R, CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.870, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
11933, 3897, 3075
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections3897
No. of parameters295
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.862.032.869 (2)165
N2—H2N···O3ii0.862.032.873 (2)166
O2—H2A···O10.89 (2)1.61 (2)2.496 (2)171 (3)
O5—H5A···O40.90 (2)1.59 (2)2.492 (2)174 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLegon, A. C. (1999). Angew. Chem. Int. Ed. 38, 2686–2714.  CrossRef Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds