organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-sulfamoylphen­yl)acetamide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 May 2010; accepted 3 June 2010; online 5 June 2010)

In the title compound, C8H9ClN2O3S, the benzene ring makes a dihedral angle of 4.1 (9)° with the amido –NHCO– plane including the major occupancy component of the carbonyl O atom [19 (4)° for the minor component]. An intra­molecular C—H⋯O inter­action occurs. The O atom of the carbonyl group is disordered over two positions with site-occupancy factors of 0.67 (11) and 0.33 (11). Inter­molecular N—H⋯O hydrogen bonds help to stabilize the crystal structure.

Related literature

For the anti­bacterial activity of sulfonamides and their derivatives and for their pharmacological applications, see: Köhler et al. (2007[Köhler, K., Hillebrecht, A., Wischeler, J. S., Innocenti, A., Heine, A., Supuran, C. T. & Klebe, G. (2007). Angew. Chem. Int. Ed. Engl. 46, 7697-7699.]); Ohradanova et al. (2007[Ohradanova, A., Vullo, D., Kopacek, J., Temperini, C., Betakova, T., Pastorekova, S., Pastorek, J. & Supuran, C. T. (2007). Biochem. J. 407, 61-67.]); Supuran (2008[Supuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168-181.]); Türkmen et al. (2005[Türkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367-372.]); Thiry et al. (2008[Thiry, A., Dogné, J. M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661-671.]). For comparative bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9ClN2O3S

  • Mr = 248.69

  • Monoclinic, P 21 /c

  • a = 4.7870 (2) Å

  • b = 14.1868 (9) Å

  • c = 16.0158 (9) Å

  • β = 90.907 (4)°

  • V = 1087.53 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 K

  • 0.72 × 0.50 × 0.35 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.734, Tmax = 0.830

  • 12474 measured reflections

  • 2193 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.05

  • 2193 reflections

  • 154 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 (2) 2.12 (2) 2.886 (3) 151 (3)
N1—H1B⋯O3Bii 0.83 (3) 2.15 (4) 2.95 (3) 162 (4)
N2—H2A⋯O2iii 0.86 2.14 3.002 (3) 175
C5—H5⋯O3B 0.93 2.23 2.84 (2) 122
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfonamide is the basis of several groups of drugs. The original antibacterial sulfonamides (sometimes called simply sulfa drugs) are synthetic antimicrobial agents that contain the sulfonamide group. Some sulfonamides are also devoid of antibacterial activity, e.g., the anticonvulsant sultiame. The sulfonylureas and thiazide diuretics are newer drug groups based on the antibacterial sulfonamides. Sulfanilamide is a sulfonamide antibacterial.

Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in bacteria, archaea, and eukaryotes, catalyzing a critically important physiologic reaction, hydration of carbon dioxide to bicarbonate and protons (Ohradanova et al., 2007; Supuran, 2008). These enzymes are inhibited by several classes of compounds, such as sulfonamides, sulfamates and sulfamides some of which have pharmacologic applications for the treatment of glaucoma obesity cancer epilepsy and other neurological disorders or as diuretics (Supuran, 2008; Köhler et al., 2007; Türkmen et al., 2005; Thiry et al., 2008). In view of these importance, we have undertaken the crystal structure determination of the compound 2-chloro-N-(4-sulfamoylphenyl)acetamide and the results are presented here.

In the molecular structure of the title compound, (I), (Fig. 1), the S=O distances are 1.432 (2) and 1.433 (2) Å, and the angle of O=S=O is 118.38 (14)°. All the bond lengths and the bond angles are within the normal range (Allen et al., 1987). The planes of the benzene ring and the O=S=O group make a dihedral angle of 126.81 (11)°. The C4—N2—C7—C8, N2—C7—C8—Cl1 and C4—N2—C7—O3B torsion angles in the 2-chloroacetamide part of the molecule are -173.3 (3), -157.8 (2) and -4.8 (14)°, respectively.

In the crystal structure, symmetry-related molecules are interconected by intermolecular N—H···O hydrogen bonds (Table 1) to form a three-dimensional network (Fig.2).

Related literature top

For the antibacterial activity of sulfonamides and their derivatives and for their pharmacological applications, see: Köhler et al. (2007); Ohradanova et al. (2007); Supuran (2008); Türkmen et al. (2005); Thiry et al. (2008). For comparative bond lengths, see: Allen et al. (1987).

Experimental top

Sulfanilamide (1.00 g, 0.0058 mol) and N-ethylmaleimide (NEM) (0.80 g, 0.007 mol) were stirred in THF (200 ml) until most of the starting material had dissolved. 2-Chloroethanoylchloride (0.784 g, 0.007 mol) in THF was slowly added to the reaction mixture. The reaction was stirred at 258 K for 4 h under anhydrous conditions. After warming to room temperature the white precipitate of NEM/HCl salt filtered off. The THF was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3M hydrochloric acid (20 ml) then with saturated sodium bicarbonate solution (20 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from water to give the title compound (yield: 70%, m.p: 492–495 K).

Refinement top

The NH2 H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H = 0.86 (2) Å; their temperature factors were freely refined. The rest H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.97 (CH2) Å and N—H = 0.86 (NH) \%A, and with Ueq = 1.2Ueq(C, N). The O atom of the carbonyl group is disorder over two sets of sites [occupancy ratio = 0.67 (11):0.33 (11)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. Only the major disordered component is shown.
[Figure 2] Fig. 2. The crystal packing and hydrogen bonding interactions of (I), viewed down the a axis. All hydrogen atoms not involved in hydrogen bonding and the minor disorder component have been omitted for clarity.
2-Chloro-N-(4-sulfamoylphenyl)acetamide top
Crystal data top
C8H9ClN2O3SF(000) = 512
Mr = 248.69Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27592 reflections
a = 4.7870 (2) Åθ = 1.9–28.1°
b = 14.1868 (9) ŵ = 0.53 mm1
c = 16.0158 (9) ÅT = 296 K
β = 90.907 (4)°Prism, colourless
V = 1087.53 (10) Å30.72 × 0.50 × 0.35 mm
Z = 4
Data collection top
Stoe IPDS2
diffractometer
2193 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2021 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = 65
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1717
Tmin = 0.734, Tmax = 0.830l = 2020
12474 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.1572P]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.56 e Å3
2 restraintsΔρmin = 0.53 e Å3
Crystal data top
C8H9ClN2O3SV = 1087.53 (10) Å3
Mr = 248.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7870 (2) ŵ = 0.53 mm1
b = 14.1868 (9) ÅT = 296 K
c = 16.0158 (9) Å0.72 × 0.50 × 0.35 mm
β = 90.907 (4)°
Data collection top
Stoe IPDS2
diffractometer
2193 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2021 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.830Rint = 0.032
12474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.56 e Å3
2193 reflectionsΔρmin = 0.53 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.2379 (3)0.08886 (7)0.56592 (6)0.0959 (5)
S10.41100 (13)0.66791 (5)0.26923 (4)0.0393 (2)
O10.7050 (4)0.68487 (16)0.27785 (16)0.0597 (7)
O20.2847 (4)0.67525 (14)0.18777 (12)0.0495 (6)
O3B0.500 (4)0.2630 (11)0.5011 (18)0.065 (3)0.67 (11)
N10.2607 (5)0.74276 (17)0.32797 (15)0.0452 (7)
N20.1740 (5)0.28448 (15)0.39800 (13)0.0435 (7)
C10.3465 (5)0.55335 (18)0.30663 (15)0.0386 (7)
C20.1432 (6)0.4980 (2)0.26979 (17)0.0488 (9)
C30.0903 (7)0.40929 (19)0.30111 (19)0.0515 (9)
C40.2414 (5)0.37552 (18)0.36939 (15)0.0392 (7)
C50.4491 (7)0.4307 (2)0.4052 (2)0.0587 (10)
C60.5012 (7)0.5193 (2)0.3732 (2)0.0593 (10)
C70.2930 (7)0.2361 (2)0.46056 (18)0.0534 (10)
C80.1863 (9)0.1357 (2)0.4664 (2)0.0679 (13)
O3A0.40 (2)0.277 (3)0.522 (3)0.078 (14)0.33 (11)
H1A0.087 (4)0.733 (2)0.331 (2)0.050 (9)*
H1B0.342 (7)0.753 (3)0.3734 (15)0.068 (11)*
H2A0.039300.256600.371800.0520*
H30.047500.371900.276300.0620*
H50.553200.408300.450500.0700*
H60.642000.556200.396900.0710*
H8A0.282200.096800.426200.0810*
H8B0.011600.134500.452400.0810*
H20.041700.520300.223900.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1553 (12)0.0675 (6)0.0641 (6)0.0342 (7)0.0249 (6)0.0246 (5)
S10.0328 (3)0.0429 (4)0.0419 (4)0.0018 (2)0.0056 (2)0.0102 (3)
O10.0346 (10)0.0627 (13)0.0816 (15)0.0044 (9)0.0056 (10)0.0247 (11)
O20.0540 (11)0.0552 (12)0.0390 (10)0.0032 (9)0.0051 (8)0.0106 (8)
O3B0.083 (6)0.062 (3)0.050 (5)0.022 (4)0.027 (4)0.013 (3)
N10.0438 (13)0.0435 (12)0.0480 (13)0.0004 (10)0.0117 (11)0.0003 (10)
N20.0545 (13)0.0377 (11)0.0378 (11)0.0089 (10)0.0099 (9)0.0018 (9)
C10.0396 (13)0.0397 (13)0.0364 (12)0.0002 (10)0.0028 (10)0.0032 (10)
C20.0604 (17)0.0414 (14)0.0439 (14)0.0004 (12)0.0188 (12)0.0006 (11)
C30.0627 (17)0.0386 (14)0.0524 (16)0.0055 (12)0.0239 (13)0.0039 (12)
C40.0463 (14)0.0371 (12)0.0342 (12)0.0022 (10)0.0034 (10)0.0012 (10)
C50.0675 (19)0.0544 (17)0.0532 (16)0.0206 (15)0.0274 (15)0.0182 (14)
C60.0618 (18)0.0562 (17)0.0589 (18)0.0227 (15)0.0260 (15)0.0172 (14)
C70.076 (2)0.0426 (15)0.0410 (14)0.0153 (14)0.0135 (14)0.0035 (12)
C80.105 (3)0.0449 (16)0.0530 (17)0.0217 (17)0.0238 (18)0.0112 (14)
O3A0.14 (4)0.050 (9)0.042 (11)0.043 (14)0.044 (16)0.017 (7)
Geometric parameters (Å, º) top
Cl1—C81.741 (3)C1—C61.376 (4)
S1—O11.432 (2)C2—C31.380 (4)
S1—O21.433 (2)C3—C41.387 (4)
S1—N11.597 (2)C4—C51.383 (4)
S1—C11.761 (3)C5—C61.382 (4)
O3A—C71.25 (6)C7—C81.517 (4)
O3B—C71.24 (2)C2—H20.9300
N2—C41.410 (3)C3—H30.9300
N2—C71.335 (4)C5—H50.9300
N1—H1A0.85 (2)C6—H60.9300
N1—H1B0.83 (3)C8—H8A0.9700
N2—H2A0.8600C8—H8B0.9700
C1—C21.376 (4)
Cl1···O3B2.966 (18)N2···O2viii3.002 (3)
Cl1···O3A2.87 (5)N1···H3v2.6700
Cl1···C2i3.526 (3)C2···O1ii3.384 (4)
Cl1···H2i3.1200C2···C6ii3.527 (4)
S1···O1ii3.393 (2)C2···Cl1ix3.526 (3)
O1···S1iii3.393 (2)C3···C6ii3.439 (5)
O1···O2iii3.151 (3)C3···C5ii3.529 (5)
O1···N1iii2.886 (3)C5···O3B2.84 (2)
O1···C2iii3.384 (4)C5···O3A2.89 (5)
O1···N2iv3.212 (3)C5···C3iii3.529 (5)
O2···C7iv3.260 (4)C6···O3Avi3.37 (5)
O2···C8v3.364 (4)C6···C3iii3.439 (5)
O2···N2v3.002 (3)C6···C2iii3.527 (4)
O2···O1ii3.151 (3)C7···O2vii3.260 (4)
O3A···C52.89 (5)C8···O2viii3.364 (4)
O3A···Cl12.87 (5)C6···H5vi3.0200
O3A···C6vi3.37 (4)C7···H52.7500
O3A···N1vi2.89 (7)H1A···O1ii2.12 (2)
O3B···C52.84 (2)H1B···O3Bvi2.15 (4)
O3B···Cl12.966 (18)H1B···O3Avi2.11 (7)
O3B···N1vi2.95 (3)H2···O22.5600
O1···H62.6600H2···Cl1ix3.1200
O1···H2Aiv2.8900H2A···H8B2.1800
O1···H1Aiii2.12 (2)H2A···H32.2700
O2···H2Av2.1400H2A···O1vii2.8900
O2···H22.5600H2A···O2viii2.1400
O2···H8Bv2.6400H3···N1viii2.6700
O3A···H52.3100H3···H2A2.2700
O3A···H6vi2.7100H5···O3B2.2300
O3A···H1Bvi2.11 (7)H5···C72.7500
O3B···H1Bvi2.15 (4)H5···O3A2.3100
O3B···H52.2300H5···C6vi3.0200
N1···O1ii2.886 (3)H6···O12.6600
N1···O3Bvi2.95 (3)H6···O3Avi2.7100
N1···O3Avi2.89 (7)H8B···H2A2.1800
N2···O1vii3.212 (3)H8B···O2viii2.6400
O1—S1—O2118.38 (14)C1—C6—C5120.6 (3)
O1—S1—N1106.42 (13)O3A—C7—C8122 (2)
O1—S1—C1107.43 (13)O3B—C7—C8121.7 (9)
O2—S1—N1107.48 (12)O3B—C7—N2124.4 (10)
O2—S1—C1107.64 (12)N2—C7—C8112.9 (3)
N1—S1—C1109.28 (12)O3A—C7—N2121 (2)
C4—N2—C7128.2 (2)Cl1—C8—C7111.8 (2)
H1A—N1—H1B115 (3)C1—C2—H2120.00
S1—N1—H1A112 (2)C3—C2—H2120.00
S1—N1—H1B115 (3)C2—C3—H3120.00
C4—N2—H2A116.00C4—C3—H3120.00
C7—N2—H2A116.00C4—C5—H5120.00
S1—C1—C2120.5 (2)C6—C5—H5120.00
S1—C1—C6119.5 (2)C1—C6—H6120.00
C2—C1—C6120.0 (2)C5—C6—H6120.00
C1—C2—C3119.8 (3)Cl1—C8—H8A109.00
C2—C3—C4120.4 (3)Cl1—C8—H8B109.00
C3—C4—C5119.6 (3)C7—C8—H8A109.00
N2—C4—C5123.4 (2)C7—C8—H8B109.00
N2—C4—C3117.0 (2)H8A—C8—H8B108.00
C4—C5—C6119.6 (3)
O1—S1—C1—C2144.9 (2)S1—C1—C6—C5178.1 (2)
O2—S1—C1—C216.4 (2)C2—C1—C6—C51.9 (4)
N1—S1—C1—C2100.1 (2)C6—C1—C2—C31.6 (4)
O1—S1—C1—C635.1 (3)C1—C2—C3—C40.2 (4)
O2—S1—C1—C6163.6 (2)C2—C3—C4—N2179.6 (3)
N1—S1—C1—C679.9 (2)C2—C3—C4—C51.1 (4)
C7—N2—C4—C3178.2 (3)N2—C4—C5—C6179.9 (3)
C7—N2—C4—C51.1 (4)C3—C4—C5—C60.8 (4)
C4—N2—C7—O3B4.8 (14)C4—C5—C6—C10.6 (5)
C4—N2—C7—C8173.3 (3)O3B—C7—C8—Cl133.4 (14)
S1—C1—C2—C3178.4 (2)N2—C7—C8—Cl1157.8 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1/2; (viii) x, y1/2, z+1/2; (ix) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.85 (2)2.12 (2)2.886 (3)151 (3)
N1—H1B···O3Bvi0.83 (3)2.15 (4)2.95 (3)162 (4)
N2—H2A···O2viii0.862.143.002 (3)175
C2—H2···O20.932.562.922 (3)104
C5—H5···O3B0.932.232.84 (2)122
Symmetry codes: (ii) x1, y, z; (vi) x+1, y+1, z+1; (viii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9ClN2O3S
Mr248.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.7870 (2), 14.1868 (9), 16.0158 (9)
β (°) 90.907 (4)
V3)1087.53 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.72 × 0.50 × 0.35
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.734, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
12474, 2193, 2021
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.05
No. of reflections2193
No. of parameters154
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.53

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.12 (2)2.886 (3)151 (3)
N1—H1B···O3Bii0.83 (3)2.15 (4)2.95 (3)162 (4)
N2—H2A···O2iii0.862.143.002 (3)175
C5—H5···O3B0.932.232.84 (2)122
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKöhler, K., Hillebrecht, A., Wischeler, J. S., Innocenti, A., Heine, A., Supuran, C. T. & Klebe, G. (2007). Angew. Chem. Int. Ed. Engl. 46, 7697–7699.  Web of Science PubMed Google Scholar
First citationOhradanova, A., Vullo, D., Kopacek, J., Temperini, C., Betakova, T., Pastorekova, S., Pastorek, J. & Supuran, C. T. (2007). Biochem. J. 407, 61–67.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSupuran, C. T. (2008). Nat. Rev. Drug Discov. 7, 168–181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiry, A., Dogné, J. M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661–671.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTürkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 367–372.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds