metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m782-m783

Bis[μ-4-(di­methyl­amino)­benzoato]-κ3O,O′:O;κ3O:O,O′-bis­­{aqua­[4-(di­methyl­amino)­benzoato-κ2O,O′](nicotinamide-κN1)cadmium(II)}

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 May 2010; accepted 7 June 2010; online 16 June 2010)

In the centrosymmetric dimeric CdII title compound, [Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2], each seven-coordin­ated CdII atom is chelated by the carboxyl­ate groups of the two 4-(dimethyl­amino)­benzoate (DMAB) anions; the two monomeric units are bridged through the two O atoms of the two carboxyl groups. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between the pyridine rings [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. Weak C—H⋯π inter­actions are also observed.

Related literature

For the applications of transition metal complexes with mol­ecules in biological systems, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Benzoic acid derivatives such as 4-amino­benzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to the their various coordination modes, see: Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-diethyl­nicotinamide (DENA) is an important respiratory stimulant, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For structure–function–coordination relationships of the aryl­carboxyl­ate ion in MnII complexes of benzoic acid derivatives, see: Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416-m1417.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037-m1038.],d[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]

  • Mr = 1161.83

  • Triclinic, [P \overline 1]

  • a = 9.5453 (2) Å

  • b = 10.2372 (2) Å

  • c = 13.5697 (3) Å

  • α = 74.102 (3)°

  • β = 79.479 (3)°

  • γ = 66.547 (2)°

  • V = 1165.85 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100 K

  • 0.36 × 0.24 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.879

  • 21249 measured reflections

  • 5862 independent reflections

  • 5498 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.06

  • 5862 reflections

  • 328 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.3511 (12)
Cd1—O2 2.3362 (12)
Cd1—O3 2.5705 (13)
Cd1—O4i 2.5762 (12)
Cd1—O6 2.3170 (12)
Cd1—N3 2.3339 (14)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C11–C16 and N3/C19–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O3ii 0.86 2.07 2.893 (2) 160
N4—H4B⋯O1i 0.86 2.24 2.993 (2) 147
O6—H61⋯O2iii 0.79 (3) 1.97 (3) 2.749 (2) 176 (2)
O6—H62⋯O5iv 0.82 (3) 1.91 (3) 2.703 (2) 163 (3)
C19—H19⋯O1i 0.93 2.44 3.302 (2) 155
C23—H23⋯O2iii 0.93 2.57 3.372 (2) 144
C9—H9ACg3v 0.96 2.61 3.434 (2) 144
C17—H17BCg2vi 0.96 2.98 3.887 (3) 159
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure-function-coordination relationships of the arylcarboxylate ion in CdII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis as in Mn(II) complexes (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). We report herein the synthesis and the structure of the title compound, (I).

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cd cations, four 4-(dimethylamino)benzoato (DMAB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Each Cd(II) unit is chelated by the carboxylate O atoms of the two DMAB anions, and the two monomeric units are bridged through the two oxygen atoms of the two carboxylate groups about an inversion center. The coordination number of each CdII atom is seven. The Cd1···Cd1i distance is 3.8121 (2) Å and O4—Cd1—O4i angle is 76.87 (4)° (symmetry code: (i) -x, -y, 1 - z).

The average Cd—O bond length (Table 1) is 2.4302 (12) Å, and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C10/O4) by 0.4160 (1) and 0.6395 (1) Å, respectively. In (I), the O1—Cd1—O2 and O3—Cd1—O4 angles are 55.96 (4) and 53.78 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O (Hökelek et al., 2009 d), 58.3 (3)° in [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C11—C16) are 11.48 (17) and 12.78 (13) °, respectively, while those between rings A, B, C (N3/C19—C23), D (Cd1/O1/O2/C1) and E (Cd1/O3/O4/C10) are A/B = 78.35 (7), A/C = 68.85 (6), B/C = 75.32 (6) and D/E = 61.98 (5)°.

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg3—Cg3i [symmetry code: (i) 1 - x, -1 - y, 1 - z, where Cg3 is the centroid of the ring C (N3/C19—C23)] may further stabilize the structure, with centroid-centroid distance of 3.974 (1) Å. There also exist two weak C—H···π interactions (Table 2).

Related literature top

For the applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Benzoic acid derivatives such as 4-aminobenzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to the their various coordination modes, see: Amiraslanov et al. (1979); Chen & Chen (2002); Hauptmann et al. (2000). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels, see: Krishnamachari (1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant, see: Bigoli et al. (1972). For structure–function–coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives, see: Adiwidjaja et al. (1978); Antsyshkina et al. (1980); Catterick et al. (1974); Shnulin et al. (1981). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.H2O (1.28 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-(dimethylamino)benzoate (1.88 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

Atoms H61 and H62 were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (') -x, -y, 1 - z]. Hydrogen atoms are omitted for clarity.
Bis[µ-4-(dimethylamino)benzoato]- κ3O,O':O;κ3O:O,O'-bis{aqua[4- (dimethylamino)benzoato-κ2O,O'](nicotinamide- κN1)cadmium(II)} top
Crystal data top
[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1161.83F(000) = 592
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5453 (2) ÅCell parameters from 9880 reflections
b = 10.2372 (2) Åθ = 2.4–28.5°
c = 13.5697 (3) ŵ = 0.99 mm1
α = 74.102 (3)°T = 100 K
β = 79.479 (3)°Block, colorless
γ = 66.547 (2)°0.36 × 0.24 × 0.13 mm
V = 1165.85 (5) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5862 independent reflections
Radiation source: fine-focus sealed tube5498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.752, Tmax = 0.879k = 1313
21249 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.7237P]
where P = (Fo2 + 2Fc2)/3
5862 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]γ = 66.547 (2)°
Mr = 1161.83V = 1165.85 (5) Å3
Triclinic, P1Z = 1
a = 9.5453 (2) ÅMo Kα radiation
b = 10.2372 (2) ŵ = 0.99 mm1
c = 13.5697 (3) ÅT = 100 K
α = 74.102 (3)°0.36 × 0.24 × 0.13 mm
β = 79.479 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5862 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5498 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.879Rint = 0.026
21249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.67 e Å3
5862 reflectionsΔρmin = 0.49 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.180220 (12)0.040917 (12)0.492667 (9)0.01404 (4)
O10.10108 (14)0.14484 (13)0.63748 (9)0.0207 (2)
O20.33823 (14)0.01006 (15)0.62185 (10)0.0221 (3)
O30.02478 (14)0.30555 (14)0.40644 (10)0.0212 (2)
O40.02665 (13)0.11559 (13)0.40059 (9)0.0189 (2)
O50.35463 (15)0.60232 (14)0.34334 (13)0.0320 (3)
O60.34839 (15)0.12770 (14)0.37393 (10)0.0208 (3)
H610.438 (3)0.091 (3)0.374 (2)0.039 (7)*
H620.331 (3)0.215 (3)0.364 (2)0.042 (7)*
N10.2767 (2)0.0371 (2)1.10325 (13)0.0338 (4)
N20.2931 (2)0.5498 (2)0.01791 (15)0.0481 (6)
N30.32213 (15)0.17835 (15)0.44145 (11)0.0161 (3)
N40.12133 (18)0.45388 (19)0.38859 (17)0.0367 (5)
H4A0.07960.51100.38140.044*
H4B0.06550.37380.40750.044*
C10.22674 (19)0.06515 (18)0.67584 (13)0.0172 (3)
C20.24275 (19)0.04966 (19)0.78525 (13)0.0188 (3)
C30.1236 (2)0.1251 (2)0.84793 (15)0.0297 (4)
H30.03580.19590.81880.036*
C40.1318 (2)0.0978 (3)0.95279 (15)0.0358 (5)
H40.04980.15060.99250.043*
C50.2614 (2)0.0079 (2)1.00013 (14)0.0241 (4)
C60.3803 (2)0.0844 (3)0.93693 (17)0.0432 (6)
H60.46800.15590.96580.052*
C70.3707 (2)0.0565 (3)0.83278 (17)0.0414 (6)
H70.45200.11010.79300.050*
C80.1518 (3)0.0277 (3)1.17494 (18)0.0522 (7)
H8A0.19260.04091.22960.078*
H8B0.09550.03551.20290.078*
H8C0.08490.12071.13970.078*
C90.4091 (3)0.1524 (3)1.14836 (17)0.0412 (5)
H9A0.40630.14991.21890.062*
H9B0.50020.13951.11140.062*
H9C0.40920.24491.14490.062*
C100.04015 (17)0.25041 (18)0.36627 (13)0.0164 (3)
C110.12533 (19)0.33661 (18)0.27396 (13)0.0188 (3)
C120.1946 (2)0.2771 (2)0.22633 (16)0.0303 (4)
H120.20220.18730.25900.036*
C130.2528 (3)0.3473 (3)0.13181 (18)0.0400 (5)
H130.29860.30400.10220.048*
C140.2439 (2)0.4826 (3)0.07997 (16)0.0353 (5)
C150.1832 (2)0.5474 (2)0.13103 (16)0.0316 (4)
H150.18240.64040.10100.038*
C160.1245 (2)0.4756 (2)0.22524 (14)0.0231 (4)
H160.08350.52070.25690.028*
C170.2400 (3)0.6651 (4)0.07824 (19)0.0612 (9)
H17A0.27560.69700.14570.092*
H17B0.13000.62850.08380.092*
H17C0.27920.74580.04510.092*
C180.3162 (4)0.4603 (4)0.0761 (2)0.0700 (11)
H18A0.34840.51870.14240.105*
H18B0.39350.42310.03960.105*
H18C0.22190.38020.08460.105*
C190.25695 (18)0.26001 (17)0.41870 (12)0.0158 (3)
H190.15060.22880.42510.019*
C200.34143 (18)0.38911 (17)0.38596 (13)0.0160 (3)
C210.50027 (19)0.43196 (18)0.37210 (14)0.0192 (3)
H210.55990.51580.34790.023*
C220.56831 (19)0.34787 (18)0.39492 (14)0.0200 (3)
H220.67420.37420.38610.024*
C230.47585 (18)0.22380 (18)0.43116 (13)0.0183 (3)
H230.52210.16990.44910.022*
C240.27089 (19)0.48910 (18)0.37050 (13)0.0180 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00975 (6)0.01423 (6)0.01936 (7)0.00424 (4)0.00041 (4)0.00645 (4)
O10.0180 (6)0.0199 (6)0.0216 (6)0.0039 (5)0.0013 (5)0.0055 (5)
O20.0146 (6)0.0317 (7)0.0235 (6)0.0076 (5)0.0011 (5)0.0147 (5)
O30.0175 (6)0.0234 (6)0.0251 (6)0.0106 (5)0.0027 (5)0.0038 (5)
O40.0146 (5)0.0156 (5)0.0242 (6)0.0040 (4)0.0016 (5)0.0032 (5)
O50.0226 (7)0.0207 (6)0.0575 (10)0.0107 (5)0.0111 (6)0.0216 (6)
O60.0140 (6)0.0149 (6)0.0319 (7)0.0055 (5)0.0024 (5)0.0054 (5)
N10.0317 (9)0.0417 (10)0.0189 (8)0.0081 (8)0.0012 (7)0.0031 (7)
N20.0338 (10)0.0590 (14)0.0280 (10)0.0090 (9)0.0135 (8)0.0055 (9)
N30.0130 (6)0.0142 (6)0.0208 (7)0.0052 (5)0.0000 (5)0.0043 (5)
N40.0140 (7)0.0274 (8)0.0800 (14)0.0064 (6)0.0000 (8)0.0343 (9)
C10.0168 (7)0.0183 (7)0.0206 (8)0.0100 (6)0.0016 (6)0.0075 (6)
C20.0173 (8)0.0225 (8)0.0199 (8)0.0098 (7)0.0013 (6)0.0077 (6)
C30.0241 (9)0.0290 (10)0.0219 (9)0.0031 (8)0.0010 (7)0.0050 (7)
C40.0273 (10)0.0416 (12)0.0205 (9)0.0025 (9)0.0055 (8)0.0067 (8)
C50.0227 (9)0.0290 (9)0.0204 (8)0.0116 (7)0.0015 (7)0.0040 (7)
C60.0231 (10)0.0654 (16)0.0308 (11)0.0066 (10)0.0103 (8)0.0243 (11)
C70.0182 (9)0.0676 (16)0.0304 (11)0.0054 (10)0.0056 (8)0.0284 (11)
C80.0413 (14)0.0785 (19)0.0211 (10)0.0141 (13)0.0112 (9)0.0075 (11)
C90.0452 (13)0.0485 (13)0.0272 (10)0.0092 (11)0.0155 (9)0.0083 (10)
C100.0094 (7)0.0177 (7)0.0194 (8)0.0030 (6)0.0010 (6)0.0045 (6)
C110.0132 (7)0.0172 (7)0.0217 (8)0.0000 (6)0.0023 (6)0.0054 (6)
C120.0327 (10)0.0223 (9)0.0367 (11)0.0064 (8)0.0141 (8)0.0060 (8)
C130.0404 (12)0.0380 (12)0.0417 (12)0.0030 (10)0.0223 (10)0.0141 (10)
C140.0227 (9)0.0399 (11)0.0263 (10)0.0078 (8)0.0082 (8)0.0061 (8)
C150.0222 (9)0.0298 (10)0.0290 (10)0.0014 (8)0.0015 (8)0.0023 (8)
C160.0169 (8)0.0226 (8)0.0262 (9)0.0050 (7)0.0004 (7)0.0039 (7)
C170.0276 (12)0.083 (2)0.0278 (12)0.0100 (12)0.0016 (9)0.0126 (12)
C180.0556 (17)0.085 (2)0.0421 (15)0.0227 (16)0.0289 (13)0.0291 (15)
C190.0124 (7)0.0151 (7)0.0199 (8)0.0058 (6)0.0002 (6)0.0040 (6)
C200.0143 (7)0.0138 (7)0.0199 (8)0.0053 (6)0.0002 (6)0.0043 (6)
C210.0136 (7)0.0155 (7)0.0257 (8)0.0032 (6)0.0017 (6)0.0058 (6)
C220.0106 (7)0.0176 (8)0.0293 (9)0.0042 (6)0.0002 (6)0.0038 (7)
C230.0139 (7)0.0169 (7)0.0248 (8)0.0072 (6)0.0011 (6)0.0038 (6)
C240.0164 (7)0.0141 (7)0.0236 (8)0.0057 (6)0.0010 (6)0.0045 (6)
Geometric parameters (Å, º) top
Cd1—O12.3511 (12)C8—H8A0.9600
Cd1—O22.3362 (12)C8—H8B0.9600
Cd1—O32.5705 (13)C8—H8C0.9600
Cd1—O4i2.5762 (12)C9—H9A0.9600
Cd1—O62.3170 (12)C9—H9B0.9600
Cd1—N32.3339 (14)C9—H9C0.9600
Cd1—C12.6955 (17)C11—C101.485 (2)
O1—C11.262 (2)C11—C121.385 (3)
O2—C11.278 (2)C11—C161.398 (2)
O3—C101.253 (2)C12—C131.381 (3)
O4—Cd12.2849 (12)C12—H120.9300
O4—Cd1i2.5762 (12)C13—C141.400 (3)
O4—C101.291 (2)C13—H130.9300
O5—C241.228 (2)C14—N21.388 (3)
O6—H610.78 (3)C15—C141.400 (3)
O6—H620.81 (3)C15—H150.9300
N1—C51.371 (2)C16—C151.381 (3)
N1—C81.452 (3)C16—H160.9300
N1—C91.437 (3)C17—N21.455 (4)
N3—C191.344 (2)C17—H17A0.9600
N3—C231.344 (2)C17—H17B0.9600
N4—C241.319 (2)C17—H17C0.9600
N4—H4A0.8600C18—N21.460 (4)
N4—H4B0.8600C18—H18A0.9600
C1—C21.479 (2)C18—H18B0.9600
C2—C31.386 (2)C18—H18C0.9600
C2—C71.391 (3)C19—C201.392 (2)
C3—C41.384 (3)C19—H190.9300
C3—H30.9300C20—C211.392 (2)
C4—H40.9300C20—C241.504 (2)
C5—C41.399 (3)C21—C221.387 (2)
C5—C61.394 (3)C21—H210.9300
C6—C71.376 (3)C22—H220.9300
C6—H60.9300C23—C221.388 (2)
C7—H70.9300C23—H230.9300
O1—Cd1—O380.40 (4)C7—C6—C5121.4 (2)
O1—Cd1—O4i81.03 (4)C7—C6—H6119.3
O1—Cd1—C127.90 (5)C2—C7—H7119.1
O2—Cd1—O155.96 (4)C6—C7—C2121.85 (19)
O2—Cd1—O3121.05 (4)C6—C7—H7119.1
O2—Cd1—O4i95.15 (4)N1—C8—H8A109.5
O2—Cd1—C128.30 (5)N1—C8—H8B109.5
O3—Cd1—O4i116.80 (4)N1—C8—H8C109.5
O3—Cd1—C1103.06 (5)H8A—C8—H8B109.5
O4—Cd1—O1108.51 (4)H8A—C8—H8C109.5
O4—Cd1—O2163.91 (4)H8B—C8—H8C109.5
O4—Cd1—O353.78 (4)N1—C9—H9A109.5
O4—Cd1—O4i76.87 (4)N1—C9—H9B109.5
O4—Cd1—O6102.15 (5)N1—C9—H9C109.5
O4—Cd1—N398.43 (5)H9A—C9—H9B109.5
O4—Cd1—C1135.79 (5)H9A—C9—H9C109.5
O4i—Cd1—C185.18 (4)H9B—C9—H9C109.5
O6—Cd1—O1113.98 (5)O3—C10—O4120.68 (15)
O6—Cd1—O289.36 (5)O3—C10—C11120.28 (15)
O6—Cd1—O373.12 (4)O4—C10—C11118.91 (15)
O6—Cd1—O4i163.97 (4)C12—C11—C10121.50 (16)
O6—Cd1—N384.01 (5)C12—C11—C16117.17 (17)
O6—Cd1—C1105.44 (5)C16—C11—C10120.97 (16)
N3—Cd1—O1142.57 (5)C11—C12—H12119.0
N3—Cd1—O293.88 (5)C13—C12—C11121.9 (2)
N3—Cd1—O3137.02 (4)C13—C12—H12119.0
N3—Cd1—O4i80.34 (4)C12—C13—C14121.0 (2)
N3—Cd1—C1118.10 (5)C12—C13—H13119.5
C1—O1—Cd191.41 (10)C14—C13—H13119.5
C1—O2—Cd191.67 (10)N2—C14—C13121.5 (2)
C10—O3—Cd185.54 (10)N2—C14—C15121.4 (2)
Cd1—O4—Cd1i103.13 (4)C13—C14—C15117.13 (18)
C10—O4—Cd197.69 (10)C14—C15—H15119.4
C10—O4—Cd1i140.80 (10)C16—C15—C14121.2 (2)
Cd1—O6—H61124 (2)C16—C15—H15119.4
Cd1—O6—H62116.2 (19)C11—C16—H16119.3
H61—O6—H62104 (3)C15—C16—C11121.40 (19)
C5—N1—C9120.90 (18)C15—C16—H16119.3
C5—N1—C8122.36 (19)N2—C17—H17A109.5
C9—N1—C8115.94 (18)N2—C17—H17B109.5
C14—N2—C17117.8 (2)N2—C17—H17C109.5
C14—N2—C18117.6 (2)H17A—C17—H17B109.5
C17—N2—C18115.8 (2)H17A—C17—H17C109.5
C19—N3—Cd1122.92 (10)H17B—C17—H17C109.5
C23—N3—Cd1119.01 (11)N2—C18—H18A109.5
C23—N3—C19118.04 (14)N2—C18—H18B109.5
C24—N4—H4A120.0N2—C18—H18C109.5
C24—N4—H4B120.0H18A—C18—H18B109.5
H4A—N4—H4B120.0H18A—C18—H18C109.5
O1—C1—Cd160.69 (9)H18B—C18—H18C109.5
O1—C1—O2119.93 (15)N3—C19—C20122.96 (14)
O1—C1—C2120.45 (15)N3—C19—H19118.5
O2—C1—Cd160.04 (9)C20—C19—H19118.5
O2—C1—C2119.48 (15)C19—C20—C21118.29 (15)
C2—C1—Cd1167.27 (11)C19—C20—C24123.42 (14)
C3—C2—C1121.73 (16)C21—C20—C24118.20 (14)
C3—C2—C7116.93 (17)C20—C21—H21120.5
C7—C2—C1120.76 (16)C22—C21—C20119.03 (15)
C2—C3—H3119.1C22—C21—H21120.5
C4—C3—C2121.74 (18)C21—C22—C23118.92 (15)
C4—C3—H3119.1C21—C22—H22120.5
C3—C4—C5121.17 (18)C23—C22—H22120.5
C3—C4—H4119.4N3—C23—C22122.66 (15)
C5—C4—H4119.4N3—C23—H23118.7
N1—C5—C4123.52 (18)C22—C23—H23118.7
N1—C5—C6119.59 (18)O5—C24—N4122.03 (16)
C6—C5—C4116.89 (18)O5—C24—C20118.99 (15)
C5—C6—H6119.3N4—C24—C20118.97 (15)
O2—Cd1—O1—C15.81 (9)Cd1i—O4—Cd1—C168.68 (7)
O3—Cd1—O1—C1144.01 (10)C10—O4—Cd1—O170.86 (10)
O4—Cd1—O1—C1169.50 (9)C10—O4—Cd1—O285.00 (18)
O4i—Cd1—O1—C196.68 (10)C10—O4—Cd1—O38.44 (9)
O6—Cd1—O1—C177.44 (10)C10—O4—Cd1—O4i146.56 (11)
N3—Cd1—O1—C135.73 (13)C10—O4—Cd1—O649.84 (10)
O1—Cd1—O2—C15.74 (9)C10—O4—Cd1—N3135.48 (10)
O3—Cd1—O2—C155.83 (11)C10—O4—Cd1—C177.88 (11)
O4—Cd1—O2—C110.5 (2)Cd1—O4—C10—O316.40 (16)
O4i—Cd1—O2—C169.80 (10)Cd1i—O4—C10—O3105.49 (18)
O6—Cd1—O2—C1125.61 (10)Cd1—O4—C10—C11159.57 (12)
N3—Cd1—O2—C1150.44 (10)Cd1i—O4—C10—C1178.5 (2)
O1—Cd1—O3—C10130.16 (10)C8—N1—C5—C47.3 (4)
O2—Cd1—O3—C10170.30 (9)C8—N1—C5—C6173.6 (3)
O4—Cd1—O3—C108.64 (9)C9—N1—C5—C4176.6 (2)
O4i—Cd1—O3—C1055.38 (10)C9—N1—C5—C64.3 (3)
O6—Cd1—O3—C10111.01 (10)Cd1—N3—C19—C20178.53 (12)
N3—Cd1—O3—C1050.07 (11)C23—N3—C19—C200.5 (2)
C1—Cd1—O3—C10146.56 (9)Cd1—N3—C23—C22175.85 (13)
O1—Cd1—N3—C19104.17 (13)C19—N3—C23—C222.3 (2)
O1—Cd1—N3—C2377.81 (14)Cd1—C1—C2—C393.7 (6)
O2—Cd1—N3—C19137.60 (13)Cd1—C1—C2—C777.3 (6)
O2—Cd1—N3—C2344.39 (13)O1—C1—C2—C32.3 (3)
O3—Cd1—N3—C1976.20 (14)O1—C1—C2—C7168.71 (19)
O3—Cd1—N3—C23101.82 (13)O2—C1—C2—C3177.86 (17)
O4—Cd1—N3—C1932.01 (13)O2—C1—C2—C76.9 (3)
O4i—Cd1—N3—C1943.03 (12)C1—C2—C3—C4172.1 (2)
O4—Cd1—N3—C23146.00 (12)C7—C2—C3—C40.8 (3)
O4i—Cd1—N3—C23138.96 (13)C1—C2—C7—C6172.4 (2)
O6—Cd1—N3—C19133.45 (13)C3—C2—C7—C61.0 (4)
O6—Cd1—N3—C2344.56 (12)C2—C3—C4—C50.1 (4)
C1—Cd1—N3—C19122.22 (12)N1—C5—C4—C3178.6 (2)
C1—Cd1—N3—C2359.76 (13)C6—C5—C4—C30.5 (4)
O1—Cd1—C1—O2169.81 (16)N1—C5—C6—C7178.8 (3)
O1—Cd1—C1—C298.7 (5)C4—C5—C6—C70.4 (4)
O2—Cd1—C1—O1169.81 (16)C5—C6—C7—C20.4 (4)
O2—Cd1—C1—C291.5 (5)C12—C11—C10—O3178.21 (17)
O3—Cd1—C1—O136.50 (10)C12—C11—C10—O42.2 (2)
O3—Cd1—C1—O2133.31 (10)C16—C11—C10—O35.3 (2)
O3—Cd1—C1—C2135.2 (5)C16—C11—C10—O4170.72 (15)
O4—Cd1—C1—O114.35 (13)C10—C11—C12—C13169.52 (19)
O4i—Cd1—C1—O179.92 (9)C16—C11—C12—C133.7 (3)
O4—Cd1—C1—O2175.84 (9)C10—C11—C16—C15170.03 (16)
O4i—Cd1—C1—O2110.28 (10)C12—C11—C16—C153.2 (3)
O4—Cd1—C1—C284.4 (5)C11—C12—C13—C140.0 (3)
O4i—Cd1—C1—C218.8 (5)C12—C13—C14—N2175.8 (2)
O6—Cd1—C1—O1112.31 (10)C12—C13—C14—C154.1 (3)
O6—Cd1—C1—O257.50 (10)C13—C14—N2—C17162.1 (2)
O6—Cd1—C1—C2149.0 (5)C13—C14—N2—C1815.8 (3)
N3—Cd1—C1—O1156.28 (9)C15—C14—N2—C1717.8 (3)
N3—Cd1—C1—O233.92 (11)C15—C14—N2—C18164.1 (2)
N3—Cd1—C1—C257.5 (5)C16—C15—C14—N2175.34 (19)
Cd1—O1—C1—O210.19 (16)C16—C15—C14—C134.6 (3)
Cd1—O1—C1—C2165.37 (13)C11—C16—C15—C141.0 (3)
Cd1—O2—C1—O110.26 (16)N3—C19—C20—C212.8 (2)
Cd1—O2—C1—C2165.34 (13)N3—C19—C20—C24173.63 (15)
Cd1—O3—C10—O414.44 (14)C19—C20—C21—C222.3 (2)
Cd1—O3—C10—C11161.46 (14)C24—C20—C21—C22174.27 (16)
Cd1i—O4—Cd1—O175.71 (5)C19—C20—C24—O5178.59 (17)
Cd1i—O4—Cd1—O261.56 (17)C19—C20—C24—N40.0 (3)
Cd1i—O4—Cd1—O3138.13 (6)C21—C20—C24—O52.2 (3)
Cd1i—O4—Cd1—O4i0.0C21—C20—C24—N4176.46 (18)
Cd1i—O4—Cd1—O6163.60 (4)C20—C21—C22—C230.2 (3)
Cd1i—O4—Cd1—N377.95 (5)N3—C23—C22—C212.6 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11–C16 and N3/C19–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3ii0.862.072.893 (2)160
N4—H4B···O1i0.862.242.993 (2)147
O6—H61···O2iii0.79 (3)1.97 (3)2.749 (2)176 (2)
O6—H62···O5iv0.82 (3)1.91 (3)2.703 (2)163 (3)
C19—H19···O1i0.932.443.302 (2)155
C23—H23···O2iii0.932.573.372 (2)144
C9—H9A···Cg3v0.962.613.434 (2)144
C17—H17B···Cg2vi0.962.983.887 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]
Mr1161.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5453 (2), 10.2372 (2), 13.5697 (3)
α, β, γ (°)74.102 (3), 79.479 (3), 66.547 (2)
V3)1165.85 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.36 × 0.24 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.752, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
21249, 5862, 5498
Rint0.026
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06
No. of reflections5862
No. of parameters328
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O12.3511 (12)Cd1—O4i2.5762 (12)
Cd1—O22.3362 (12)Cd1—O62.3170 (12)
Cd1—O32.5705 (13)Cd1—N32.3339 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11–C16 and N3/C19–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3ii0.862.072.893 (2)160
N4—H4B···O1i0.862.242.993 (2)147
O6—H61···O2iii0.79 (3)1.97 (3)2.749 (2)176 (2)
O6—H62···O5iv0.82 (3)1.91 (3)2.703 (2)163 (3)
C19—H19···O1i0.932.443.302 (2)155
C23—H23···O2iii0.932.573.372 (2)144
C9—H9A···Cg3v0.962.613.434 (2)144
C17—H17B···Cg2vi0.962.983.887 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m782-m783
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds