metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[1,1-Bis(hy­dr­oxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-4-chloro­phenolato-κ3O,N,O′)di­butyl­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 27 May 2010; accepted 8 June 2010; online 16 June 2010)

In the title compound, [Sn(C4H9)2(C11H12BrNO4)], the Schiff base ligand chelates to the SnIV atom through the two deprotonated hy­droxy groups, as well as through the N atom, to confer an overall cis-C2SnNO2 trigonal-bipyramidal geometry at the SnIV atom [C—Sn—C = 129.92 (9)°]. The remaining methyl­enehy­droxy groups engage in O—H⋯O hydrogen bonding with the O atoms of adjacent mol­ecules, leading to infinite supra­molecular chains propagating in [001].

Related literature

For related structures, see Reisi et al. (2010[Reisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482.]); Ng (2008[Ng, S. W. (2008). Acta Cryst. E64, o2455.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C11H12BrNO4)]

  • Mr = 535.04

  • Monoclinic, C 2/c

  • a = 18.8326 (9) Å

  • b = 13.3811 (7) Å

  • c = 16.5768 (8) Å

  • β = 91.385 (3)°

  • V = 4176.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.786

  • 19535 measured reflections

  • 4785 independent reflections

  • 4229 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.052

  • S = 1.02

  • 4785 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—N1 2.2108 (17)
Sn1—O1 2.1203 (15)
Sn1—O2 2.1049 (14)
Sn1—C12 2.139 (2)
Sn1—C16 2.129 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 1.77 2.608 (2) 174
O4—H4⋯O3ii 0.84 1.93 2.733 (2) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: pubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The Schiff base derived from the condensation of 5-bromosalicylaldehyde and tris(hydroxymethyl)methylamine is deprotonated with respect to the phenoxy hydrogen atom and one of the methylenehydroxyl hydrogen atom. The ligand coordinates to the dibutyltin fragment through this doubly deprotonated oxygen atoms and the imine nitrogen (Fig. 1).

The tin atom is in a cis-trigonal bipyramidal geometry with a C—Sn—C angle of 129.92 (9)°. The two deprotonated oxygen atoms occupied the axial sites with a O—Sn—O angle of 155.60 (6)°, indicating a distortion in the trigonal bipyramidal geometry at the Sn atom. Adjacent molecules are linked by hydrogen bonds to form an infinite polymeric chain (Fig. 2).

Related literature top

For related structures, see Reisi et al. (2010); Ng (2008).

Experimental top

The Schiff base, 4-bromo-2-tris[(hydroxymethyl)methylimino]phenol was prepared from tris(hydroxymethyl)aminomethane and 5-bromosalicylaldehyde in absolute ethanol. The compound (0.30 g, 0.1 mmol) and dibutyltin oxide (0.25 g, 1.0 mmol) were heated in 50 ml of toluene in a Dean-Stark apparatus for 8 h. The solution was left for crystallizaton for a week during which yellow crystals were obtained.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C). The hydroxy-H was refined with a restraint of 0.84 ± 0.01 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (2-{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-4-chlorophenolato-κ3N,O,O')dibutyltin(IV) showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the unit cell showing the hydrogen bonding interactions in the molecule.
(2-{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-4-chlorophenolato- κ3O,N,O')dibutyltin(IV) top
Crystal data top
[Sn(C4H9)2(C11H12BrNO4)]F(000) = 2144
Mr = 535.04Dx = 1.702 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7855 reflections
a = 18.8326 (9) Åθ = 2.2–30.4°
b = 13.3811 (7) ŵ = 3.16 mm1
c = 16.5768 (8) ÅT = 100 K
β = 91.385 (3)°Needle, yellow
V = 4176.1 (4) Å30.40 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4785 independent reflections
Radiation source: fine-focus sealed tube4229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.365, Tmax = 0.786k = 1717
19535 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0231P)2 + 4.784P]
where P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.65 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Sn(C4H9)2(C11H12BrNO4)]V = 4176.1 (4) Å3
Mr = 535.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.8326 (9) ŵ = 3.16 mm1
b = 13.3811 (7) ÅT = 100 K
c = 16.5768 (8) Å0.40 × 0.10 × 0.08 mm
β = 91.385 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4229 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.786Rint = 0.032
19535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
4785 reflectionsΔρmin = 0.38 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.325854 (7)0.128538 (10)0.254101 (8)0.01133 (5)
Br10.047899 (12)0.180095 (17)0.072373 (14)0.02090 (6)
N10.33348 (9)0.06301 (13)0.13219 (10)0.0117 (3)
O10.27217 (8)0.24249 (11)0.18796 (9)0.0154 (3)
O20.39697 (8)0.00855 (11)0.27086 (8)0.0141 (3)
O30.51910 (7)0.01628 (11)0.10327 (9)0.0139 (3)
H30.54420.01110.14560.021*
O40.37130 (8)0.06319 (12)0.01932 (8)0.0151 (3)
H40.41070.04160.03440.023*
C10.22983 (11)0.14839 (15)0.07343 (12)0.0119 (4)
C20.22471 (11)0.22806 (16)0.12949 (12)0.0132 (4)
C30.16695 (12)0.29422 (16)0.12036 (12)0.0153 (4)
H3A0.16380.35020.15540.018*
C40.11478 (11)0.27967 (17)0.06175 (13)0.0155 (4)
H4A0.07510.32340.05810.019*
C50.12066 (11)0.19991 (16)0.00753 (12)0.0148 (4)
C60.17791 (11)0.13705 (16)0.01159 (13)0.0144 (4)
H60.18260.08560.02740.017*
C70.28804 (11)0.07801 (16)0.07408 (12)0.0125 (4)
H70.29330.03880.02680.015*
C80.39114 (11)0.01213 (15)0.12512 (12)0.0116 (4)
C90.39651 (11)0.06281 (16)0.20865 (12)0.0130 (4)
H9A0.35570.10850.21500.016*
H9B0.44060.10300.21240.016*
C100.45890 (10)0.04737 (15)0.10849 (12)0.0117 (4)
H10A0.45250.08470.05730.014*
H10B0.46720.09660.15230.014*
C110.37745 (11)0.09448 (16)0.06228 (12)0.0131 (4)
H11A0.41670.14360.06680.016*
H11B0.33310.12960.07620.016*
C120.23527 (12)0.06420 (17)0.30964 (14)0.0191 (5)
H12A0.22080.00440.27810.023*
H12B0.25000.04100.36420.023*
C130.17028 (12)0.13118 (19)0.31788 (16)0.0259 (5)
H13A0.18160.18460.35740.031*
H13B0.15970.16350.26520.031*
C140.10488 (13)0.07612 (19)0.34454 (17)0.0272 (5)
H14A0.11680.03970.39510.033*
H14B0.09180.02580.30300.033*
C150.04070 (14)0.1421 (2)0.35880 (18)0.0350 (7)
H15A0.04950.18330.40690.052*
H15B0.00120.10010.36690.052*
H15C0.03230.18540.31190.052*
C160.40219 (11)0.23185 (17)0.30125 (13)0.0164 (4)
H16A0.41610.21020.35650.020*
H16B0.44510.22760.26800.020*
C170.37945 (12)0.34137 (17)0.30495 (14)0.0180 (5)
H17A0.42050.38180.32430.022*
H17B0.36670.36410.24960.022*
C180.31701 (12)0.36167 (17)0.35918 (14)0.0200 (5)
H18A0.30500.43360.35600.024*
H18B0.27530.32370.33850.024*
C190.33061 (15)0.3340 (2)0.44694 (15)0.0344 (7)
H19A0.33680.26150.45150.052*
H19B0.29010.35490.47890.052*
H19C0.37370.36770.46710.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00935 (7)0.01444 (8)0.01012 (7)0.00111 (5)0.00151 (5)0.00132 (5)
Br10.01670 (11)0.02112 (12)0.02432 (12)0.00431 (9)0.01116 (9)0.00292 (9)
N10.0092 (8)0.0119 (8)0.0140 (8)0.0008 (7)0.0000 (6)0.0013 (7)
O10.0171 (8)0.0148 (7)0.0139 (7)0.0022 (6)0.0048 (6)0.0024 (6)
O20.0146 (7)0.0160 (7)0.0116 (7)0.0034 (6)0.0035 (6)0.0013 (6)
O30.0092 (7)0.0196 (8)0.0127 (7)0.0046 (6)0.0028 (6)0.0026 (6)
O40.0133 (7)0.0214 (8)0.0107 (7)0.0014 (6)0.0005 (6)0.0005 (6)
C10.0097 (9)0.0143 (10)0.0117 (10)0.0006 (8)0.0013 (8)0.0013 (8)
C20.0128 (10)0.0164 (10)0.0105 (9)0.0011 (8)0.0001 (8)0.0010 (8)
C30.0185 (11)0.0149 (10)0.0126 (10)0.0024 (9)0.0015 (8)0.0015 (8)
C40.0131 (10)0.0190 (11)0.0144 (10)0.0034 (9)0.0003 (8)0.0031 (8)
C50.0117 (10)0.0188 (11)0.0138 (10)0.0011 (9)0.0042 (8)0.0028 (8)
C60.0140 (10)0.0154 (10)0.0136 (10)0.0012 (8)0.0023 (8)0.0004 (8)
C70.0119 (10)0.0128 (10)0.0129 (10)0.0002 (8)0.0018 (8)0.0001 (8)
C80.0096 (9)0.0127 (10)0.0124 (10)0.0032 (8)0.0003 (7)0.0003 (8)
C90.0120 (10)0.0141 (10)0.0128 (10)0.0027 (8)0.0009 (8)0.0001 (8)
C100.0095 (9)0.0140 (10)0.0114 (10)0.0009 (8)0.0010 (7)0.0002 (8)
C110.0110 (9)0.0144 (10)0.0138 (10)0.0006 (8)0.0008 (8)0.0009 (8)
C120.0155 (11)0.0192 (11)0.0227 (12)0.0013 (9)0.0043 (9)0.0017 (9)
C130.0166 (12)0.0316 (14)0.0298 (13)0.0049 (10)0.0043 (10)0.0099 (11)
C140.0196 (12)0.0264 (13)0.0359 (14)0.0035 (11)0.0077 (10)0.0110 (11)
C150.0179 (13)0.0498 (18)0.0376 (16)0.0035 (12)0.0062 (11)0.0078 (13)
C160.0115 (10)0.0193 (11)0.0183 (11)0.0024 (9)0.0016 (8)0.0034 (9)
C170.0177 (11)0.0174 (11)0.0188 (11)0.0003 (9)0.0035 (9)0.0014 (9)
C180.0201 (11)0.0197 (11)0.0199 (11)0.0051 (9)0.0042 (9)0.0049 (9)
C190.0313 (14)0.0536 (18)0.0184 (12)0.0169 (14)0.0004 (11)0.0000 (12)
Geometric parameters (Å, º) top
Sn1—N12.2108 (17)C9—H9B0.9900
Sn1—O12.1203 (15)C10—H10A0.9900
Sn1—O22.1049 (14)C10—H10B0.9900
Sn1—C122.139 (2)C11—H11A0.9900
Sn1—C162.129 (2)C11—H11B0.9900
Br1—C51.901 (2)C12—C131.526 (3)
N1—C71.289 (3)C12—H12A0.9900
N1—C81.487 (3)C12—H12B0.9900
O1—C21.317 (2)C13—C141.510 (3)
O2—C91.405 (2)C13—H13A0.9900
O3—C101.422 (2)C13—H13B0.9900
O3—H30.8400C14—C151.520 (3)
O4—C111.418 (2)C14—H14A0.9900
O4—H40.8400C14—H14B0.9900
C1—C61.408 (3)C15—H15A0.9800
C1—C21.419 (3)C15—H15B0.9800
C1—C71.445 (3)C15—H15C0.9800
C2—C31.408 (3)C16—C171.528 (3)
C3—C41.379 (3)C16—H16A0.9900
C3—H3A0.9500C16—H16B0.9900
C4—C51.401 (3)C17—C181.522 (3)
C4—H4A0.9500C17—H17A0.9900
C5—C61.368 (3)C17—H17B0.9900
C6—H60.9500C18—C191.517 (3)
C7—H70.9500C18—H18A0.9900
C8—C111.534 (3)C18—H18B0.9900
C8—C101.535 (3)C19—H19A0.9800
C8—C91.543 (3)C19—H19B0.9800
C9—H9A0.9900C19—H19C0.9800
O2—Sn1—O1155.60 (6)H10A—C10—H10B108.0
O2—Sn1—C1691.43 (7)O4—C11—C8116.38 (17)
O1—Sn1—C1691.84 (7)O4—C11—H11A108.2
O2—Sn1—C1298.49 (7)C8—C11—H11A108.2
O1—Sn1—C1297.86 (8)O4—C11—H11B108.2
C16—Sn1—C12129.92 (9)C8—C11—H11B108.2
O2—Sn1—N176.29 (6)H11A—C11—H11B107.3
O1—Sn1—N181.56 (6)C13—C12—Sn1116.87 (16)
C16—Sn1—N1122.33 (7)C13—C12—H12A108.1
C12—Sn1—N1107.69 (8)Sn1—C12—H12A108.1
C7—N1—C8121.31 (18)C13—C12—H12B108.1
C7—N1—Sn1124.39 (14)Sn1—C12—H12B108.1
C8—N1—Sn1113.83 (12)H12A—C12—H12B107.3
C2—O1—Sn1125.58 (13)C14—C13—C12113.7 (2)
C9—O2—Sn1115.39 (12)C14—C13—H13A108.8
C10—O3—H3109.5C12—C13—H13A108.8
C11—O4—H4109.5C14—C13—H13B108.8
C6—C1—C2120.06 (19)C12—C13—H13B108.8
C6—C1—C7116.66 (19)H13A—C13—H13B107.7
C2—C1—C7123.25 (19)C13—C14—C15114.8 (2)
O1—C2—C3119.74 (19)C13—C14—H14A108.6
O1—C2—C1122.45 (19)C15—C14—H14A108.6
C3—C2—C1117.81 (19)C13—C14—H14B108.6
C4—C3—C2121.5 (2)C15—C14—H14B108.6
C4—C3—H3A119.2H14A—C14—H14B107.5
C2—C3—H3A119.2C14—C15—H15A109.5
C3—C4—C5119.6 (2)C14—C15—H15B109.5
C3—C4—H4A120.2H15A—C15—H15B109.5
C5—C4—H4A120.2C14—C15—H15C109.5
C6—C5—C4120.8 (2)H15A—C15—H15C109.5
C6—C5—Br1120.16 (16)H15B—C15—H15C109.5
C4—C5—Br1119.09 (16)C17—C16—Sn1116.73 (14)
C5—C6—C1120.2 (2)C17—C16—H16A108.1
C5—C6—H6119.9Sn1—C16—H16A108.1
C1—C6—H6119.9C17—C16—H16B108.1
N1—C7—C1126.66 (19)Sn1—C16—H16B108.1
N1—C7—H7116.7H16A—C16—H16B107.3
C1—C7—H7116.7C18—C17—C16114.59 (19)
N1—C8—C11115.35 (16)C18—C17—H17A108.6
N1—C8—C10105.98 (16)C16—C17—H17A108.6
C11—C8—C10112.19 (16)C18—C17—H17B108.6
N1—C8—C9104.99 (15)C16—C17—H17B108.6
C11—C8—C9107.46 (17)H17A—C17—H17B107.6
C10—C8—C9110.64 (16)C19—C18—C17114.1 (2)
O2—C9—C8111.04 (17)C19—C18—H18A108.7
O2—C9—H9A109.4C17—C18—H18A108.7
C8—C9—H9A109.4C19—C18—H18B108.7
O2—C9—H9B109.4C17—C18—H18B108.7
C8—C9—H9B109.4H18A—C18—H18B107.6
H9A—C9—H9B108.0C18—C19—H19A109.5
O3—C10—C8111.57 (16)C18—C19—H19B109.5
O3—C10—H10A109.3H19A—C19—H19B109.5
C8—C10—H10A109.3C18—C19—H19C109.5
O3—C10—H10B109.3H19A—C19—H19C109.5
C8—C10—H10B109.3H19B—C19—H19C109.5
O2—Sn1—N1—C7161.51 (18)Sn1—N1—C7—C18.4 (3)
O1—Sn1—N1—C728.79 (17)C6—C1—C7—N1166.4 (2)
C16—Sn1—N1—C7115.61 (17)C2—C1—C7—N115.8 (3)
C12—Sn1—N1—C766.82 (18)C7—N1—C8—C1122.0 (3)
O2—Sn1—N1—C810.66 (12)Sn1—N1—C8—C11150.45 (14)
O1—Sn1—N1—C8159.04 (14)C7—N1—C8—C10102.8 (2)
C16—Sn1—N1—C872.22 (15)Sn1—N1—C8—C1084.77 (15)
C12—Sn1—N1—C8105.35 (14)C7—N1—C8—C9140.06 (19)
O2—Sn1—O1—C267.9 (2)Sn1—N1—C8—C932.38 (18)
C16—Sn1—O1—C2165.50 (16)Sn1—O2—C9—C841.10 (19)
C12—Sn1—O1—C263.76 (17)N1—C8—C9—O246.7 (2)
N1—Sn1—O1—C243.07 (16)C11—C8—C9—O2169.96 (16)
O1—Sn1—O2—C942.4 (2)C10—C8—C9—O267.3 (2)
C16—Sn1—O2—C9140.00 (14)N1—C8—C10—O3177.90 (15)
C12—Sn1—O2—C989.25 (14)C11—C8—C10—O355.4 (2)
N1—Sn1—O2—C917.01 (13)C9—C8—C10—O364.6 (2)
Sn1—O1—C2—C3144.75 (16)N1—C8—C11—O463.8 (2)
Sn1—O1—C2—C136.3 (3)C10—C8—C11—O457.7 (2)
C6—C1—C2—O1179.37 (19)C9—C8—C11—O4179.53 (16)
C7—C1—C2—O11.7 (3)O2—Sn1—C12—C13174.84 (17)
C6—C1—C2—C30.4 (3)O1—Sn1—C12—C1323.33 (19)
C7—C1—C2—C3177.28 (19)C16—Sn1—C12—C1375.8 (2)
O1—C2—C3—C4177.65 (19)N1—Sn1—C12—C13106.93 (18)
C1—C2—C3—C43.4 (3)Sn1—C12—C13—C14170.31 (17)
C2—C3—C4—C52.9 (3)C12—C13—C14—C15176.0 (2)
C3—C4—C5—C60.7 (3)O2—Sn1—C16—C17179.92 (16)
C3—C4—C5—Br1179.46 (16)O1—Sn1—C16—C1724.26 (16)
C4—C5—C6—C13.6 (3)C12—Sn1—C16—C1777.59 (19)
Br1—C5—C6—C1176.54 (16)N1—Sn1—C16—C17105.44 (16)
C2—C1—C6—C53.0 (3)Sn1—C16—C17—C1862.2 (2)
C7—C1—C6—C5179.12 (19)C16—C17—C18—C1960.7 (3)
C8—N1—C7—C1179.97 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.772.608 (2)174
O4—H4···O3ii0.841.932.733 (2)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C11H12BrNO4)]
Mr535.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.8326 (9), 13.3811 (7), 16.5768 (8)
β (°) 91.385 (3)
V3)4176.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.40 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.365, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
19535, 4785, 4229
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.02
No. of reflections4785
No. of parameters239
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—N12.2108 (17)Sn1—C122.139 (2)
Sn1—O12.1203 (15)Sn1—C162.129 (2)
Sn1—O22.1049 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.772.608 (2)173.9
O4—H4···O3ii0.841.932.733 (2)159.6
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

We thank the University of Malaya (grant Nos. PS342/2009 C and RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNg, S. W. (2008). Acta Cryst. E64, o2455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationReisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds