organic compounds
11-Butyl-3-methoxy-11H-benzo[a]carbazole
aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca, Izmir, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title compound, C21H21NO, consists of a carbazole skeleton with a methoxybenzene ring fused to the carbazole, and a butyl group attached to the carbazole N atom. The carbazole skeleton is nearly planar [maximum deviation = 0.078 (2) Å], and it is oriented at a dihedral angle of 4.22 (4)° with respect to the adjacent methoxybenzene ring.
Related literature
For the biological activity of carbazole derivatives, see: Knölker & Reddy (2002). For the use of carbazole derivatives in the syntheses of indole see: Routier et al. (2001). For the use of benzo[a]carbazoles in cancer treatment, see: Carini et al. (2001). For the antitumor activity of a series of simple benzo[a]carbazoles against mammary tumors of rats, leukemia, renal tumors, colon cancer and malignant melanoma tumor cell lines, see: von Angerer & Prekajac (1986); Pindur & Lemster (1997). For the extensive application of benzo[a]carbazole derivatives as photographic materials, see: Oliveira et al. (2005. For tetrahydrocarbazole systems present in the frameworks of a number of indole-type of biological interest, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999, 2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810021963/xu2773sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021963/xu2773Isup2.hkl
For the preparation of the title compound, (I), a solution of 3-methoxy-11H -benzo[a]carbazole (1.00 g, 4.0 mmol) in dichloromethane (20 ml) was cooled to 273 K, and then sodium hydroxide (2 ml, 50%), tetrabutylammonium hydrogen sulfate (0.10 g) and butyl bromide (0.62 g, 4.5 mmol) were added. The mixture was stirred for 1 h at 273 K, and then 2 h at 298 K. It was washed with hydrochloric acid (50 ml, 10%) and the organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from methanol (yield; 1.15 g, 93%, m.p. 369 K).
H13A, H13B, H13C, H18A, H18B and H18C atoms (for methyl groups) were positioned geometrically with C—H = 0.98 Å and constrained to ride on their parent atoms, Uiso(H) = 1.5Ueq(C). The remaining H atoms were located in difference Fourier maps and refined isotropically. Friedel pairs were merged because of the weak anomalous scatterer of the compound, and the
was not determined.Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A partial packing diagram. |
C21H21NO | F(000) = 324 |
Mr = 303.39 | Dx = 1.228 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 3840 reflections |
a = 10.7263 (6) Å | θ = 2.3–28.4° |
b = 5.5562 (3) Å | µ = 0.08 mm−1 |
c = 13.8967 (7) Å | T = 100 K |
β = 97.841 (2)° | Block, colorless |
V = 820.46 (8) Å3 | 0.48 × 0.39 × 0.35 mm |
Z = 2 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2248 independent reflections |
Radiation source: fine-focus sealed tube | 2001 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→14 |
Tmin = 0.965, Tmax = 0.974 | k = −7→6 |
7947 measured reflections | l = −17→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1088P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2248 reflections | Δρmax = 0.25 e Å−3 |
270 parameters | Δρmin = −0.16 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C21H21NO | V = 820.46 (8) Å3 |
Mr = 303.39 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.7263 (6) Å | µ = 0.08 mm−1 |
b = 5.5562 (3) Å | T = 100 K |
c = 13.8967 (7) Å | 0.48 × 0.39 × 0.35 mm |
β = 97.841 (2)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 2248 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2001 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.974 | Rint = 0.027 |
7947 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 270 parameters |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.25 e Å−3 |
2248 reflections | Δρmin = −0.16 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.59965 (11) | 0.9420 (3) | −0.11895 (9) | 0.0299 (3) | |
C1 | 1.02958 (17) | 0.2221 (4) | 0.41676 (13) | 0.0246 (4) | |
H1 | 0.9764 (19) | 0.094 (5) | 0.4258 (15) | 0.030 (6)* | |
C2 | 1.14448 (17) | 0.2475 (4) | 0.47538 (13) | 0.0276 (4) | |
H2 | 1.166 (2) | 0.136 (5) | 0.5266 (17) | 0.042 (7)* | |
C3 | 1.22609 (17) | 0.4381 (4) | 0.46185 (13) | 0.0271 (4) | |
H3 | 1.3035 (19) | 0.447 (4) | 0.5040 (14) | 0.022 (5)* | |
C4 | 1.19492 (16) | 0.6061 (4) | 0.38921 (13) | 0.0245 (4) | |
H4 | 1.2520 (17) | 0.742 (4) | 0.3796 (13) | 0.021 (5)* | |
C4A | 1.08080 (15) | 0.5806 (4) | 0.32759 (12) | 0.0217 (4) | |
C5 | 1.06152 (16) | 0.9086 (4) | 0.19246 (13) | 0.0232 (4) | |
H5 | 1.1411 (18) | 0.992 (4) | 0.2181 (13) | 0.020 (5)* | |
C5A | 1.02208 (15) | 0.7091 (3) | 0.24338 (12) | 0.0210 (4) | |
C6 | 0.98899 (16) | 0.9848 (4) | 0.10954 (13) | 0.0238 (4) | |
H6 | 1.0136 (18) | 1.120 (5) | 0.0755 (14) | 0.025 (5)* | |
C7 | 0.87121 (15) | 0.8724 (4) | 0.07581 (12) | 0.0215 (4) | |
C8 | 0.82600 (15) | 0.6754 (4) | 0.12711 (12) | 0.0205 (4) | |
C8A | 0.90768 (15) | 0.5921 (4) | 0.21092 (12) | 0.0197 (3) | |
C9A | 0.99973 (15) | 0.3887 (4) | 0.34259 (12) | 0.0214 (4) | |
N9 | 0.89451 (13) | 0.3987 (3) | 0.27259 (10) | 0.0209 (3) | |
C10 | 0.79576 (15) | 0.2165 (4) | 0.26464 (13) | 0.0221 (4) | |
H101 | 0.8331 (18) | 0.076 (5) | 0.2927 (14) | 0.021 (5)* | |
H102 | 0.7675 (17) | 0.185 (4) | 0.1949 (14) | 0.021 (5)* | |
C11 | 0.68345 (16) | 0.2861 (4) | 0.31519 (13) | 0.0228 (4) | |
H111 | 0.7121 (18) | 0.304 (4) | 0.3868 (14) | 0.023 (5)* | |
H112 | 0.6483 (19) | 0.442 (5) | 0.2886 (15) | 0.027 (6)* | |
C12 | 0.58043 (17) | 0.0964 (4) | 0.29886 (15) | 0.0290 (4) | |
H121 | 0.6196 (19) | −0.064 (5) | 0.3171 (14) | 0.025 (5)* | |
H122 | 0.5517 (19) | 0.077 (5) | 0.2304 (17) | 0.036 (6)* | |
C13 | 0.47038 (18) | 0.1518 (5) | 0.35479 (16) | 0.0397 (5) | |
H13A | 0.4050 | 0.0290 | 0.3400 | 0.060* | |
H13B | 0.4355 | 0.3104 | 0.3355 | 0.060* | |
H13C | 0.5002 | 0.1516 | 0.4247 | 0.060* | |
C14 | 0.70388 (16) | 0.5850 (4) | 0.09343 (13) | 0.0248 (4) | |
H14 | 0.668 (2) | 0.458 (5) | 0.1282 (15) | 0.032 (6)* | |
C15 | 0.63327 (16) | 0.6779 (4) | 0.01272 (13) | 0.0264 (4) | |
H15 | 0.549 (2) | 0.613 (5) | −0.0092 (17) | 0.044 (7)* | |
C16 | 0.68014 (16) | 0.8672 (4) | −0.03944 (12) | 0.0242 (4) | |
C17 | 0.79658 (16) | 0.9641 (4) | −0.00876 (12) | 0.0235 (4) | |
H17 | 0.8282 (16) | 1.097 (4) | −0.0415 (13) | 0.015 (5)* | |
C18 | 0.63988 (18) | 1.1414 (4) | −0.17108 (14) | 0.0325 (5) | |
H18A | 0.5741 | 1.1833 | −0.2245 | 0.049* | |
H18B | 0.7172 | 1.0988 | −0.1974 | 0.049* | |
H18C | 0.6561 | 1.2794 | −0.1272 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0241 (6) | 0.0399 (9) | 0.0257 (6) | 0.0017 (6) | 0.0027 (5) | 0.0051 (7) |
C1 | 0.0267 (9) | 0.0213 (10) | 0.0275 (8) | 0.0008 (8) | 0.0096 (7) | −0.0004 (8) |
C2 | 0.0292 (9) | 0.0284 (11) | 0.0259 (9) | 0.0058 (8) | 0.0057 (7) | 0.0023 (8) |
C3 | 0.0228 (8) | 0.0342 (12) | 0.0250 (8) | 0.0021 (8) | 0.0062 (7) | −0.0029 (9) |
C4 | 0.0212 (8) | 0.0280 (11) | 0.0253 (8) | −0.0024 (8) | 0.0071 (6) | −0.0025 (8) |
C4A | 0.0222 (8) | 0.0219 (9) | 0.0223 (8) | 0.0003 (7) | 0.0077 (6) | −0.0039 (8) |
C5 | 0.0215 (8) | 0.0229 (9) | 0.0263 (8) | −0.0032 (7) | 0.0075 (7) | −0.0025 (8) |
C5A | 0.0197 (7) | 0.0218 (9) | 0.0229 (8) | 0.0002 (7) | 0.0072 (6) | −0.0024 (7) |
C6 | 0.0262 (8) | 0.0209 (9) | 0.0261 (9) | −0.0032 (8) | 0.0100 (7) | 0.0006 (8) |
C7 | 0.0215 (8) | 0.0226 (10) | 0.0220 (8) | 0.0009 (7) | 0.0088 (7) | −0.0025 (7) |
C8 | 0.0207 (7) | 0.0203 (9) | 0.0215 (8) | 0.0008 (7) | 0.0065 (6) | −0.0024 (7) |
C8A | 0.0203 (7) | 0.0178 (9) | 0.0225 (8) | 0.0001 (7) | 0.0081 (6) | −0.0021 (7) |
C9A | 0.0199 (7) | 0.0217 (9) | 0.0239 (8) | 0.0016 (7) | 0.0076 (6) | −0.0015 (7) |
N9 | 0.0204 (6) | 0.0186 (8) | 0.0240 (7) | −0.0017 (6) | 0.0045 (5) | 0.0000 (6) |
C10 | 0.0210 (8) | 0.0189 (9) | 0.0269 (9) | −0.0034 (7) | 0.0051 (7) | −0.0001 (8) |
C11 | 0.0212 (8) | 0.0226 (10) | 0.0252 (9) | −0.0026 (7) | 0.0054 (6) | 0.0003 (7) |
C12 | 0.0230 (8) | 0.0338 (12) | 0.0307 (10) | −0.0073 (8) | 0.0051 (7) | −0.0015 (9) |
C13 | 0.0246 (9) | 0.0471 (15) | 0.0491 (12) | −0.0051 (10) | 0.0112 (8) | 0.0041 (11) |
C14 | 0.0247 (8) | 0.0265 (10) | 0.0240 (8) | −0.0033 (8) | 0.0062 (6) | 0.0006 (8) |
C15 | 0.0201 (8) | 0.0323 (11) | 0.0272 (9) | −0.0018 (8) | 0.0049 (7) | −0.0012 (8) |
C16 | 0.0235 (8) | 0.0286 (10) | 0.0211 (8) | 0.0045 (7) | 0.0051 (7) | −0.0009 (8) |
C17 | 0.0246 (8) | 0.0240 (10) | 0.0234 (8) | 0.0005 (7) | 0.0087 (6) | −0.0008 (8) |
C18 | 0.0324 (9) | 0.0366 (12) | 0.0283 (9) | 0.0040 (9) | 0.0035 (8) | 0.0064 (9) |
O1—C16 | 1.371 (2) | C10—C11 | 1.525 (2) |
O1—C18 | 1.422 (3) | C10—H101 | 0.94 (2) |
C1—C2 | 1.389 (3) | C10—H102 | 0.991 (19) |
C1—H1 | 0.93 (2) | C11—C12 | 1.521 (3) |
C2—C3 | 1.403 (3) | C11—H111 | 1.006 (19) |
C2—H2 | 0.95 (3) | C11—H112 | 0.99 (3) |
C3—C4 | 1.382 (3) | C12—C13 | 1.530 (3) |
C3—H3 | 0.95 (2) | C12—H121 | 1.00 (2) |
C4—H4 | 0.99 (2) | C12—H122 | 0.97 (2) |
C4A—C4 | 1.402 (2) | C13—H13A | 0.9800 |
C4A—C9A | 1.410 (3) | C13—H13B | 0.9800 |
C5—C5A | 1.411 (3) | C13—H13C | 0.9800 |
C5—H5 | 1.00 (2) | C14—C8 | 1.421 (2) |
C5A—C4A | 1.440 (2) | C14—H14 | 0.97 (2) |
C6—C5 | 1.367 (3) | C15—C14 | 1.366 (3) |
C6—H6 | 0.95 (2) | C15—H15 | 0.98 (2) |
C7—C6 | 1.430 (2) | C16—C15 | 1.408 (3) |
C8—C7 | 1.427 (2) | C16—C17 | 1.373 (3) |
C8—C8A | 1.435 (2) | C17—C7 | 1.423 (3) |
C8A—C5A | 1.408 (2) | C17—H17 | 0.96 (2) |
C9A—C1 | 1.390 (3) | C18—H18A | 0.9800 |
N9—C8A | 1.393 (2) | C18—H18B | 0.9800 |
N9—C9A | 1.387 (2) | C18—H18C | 0.9800 |
N9—C10 | 1.458 (2) | ||
C16—O1—C18 | 116.45 (15) | N9—C10—H101 | 106.4 (12) |
C2—C1—C9A | 117.62 (18) | N9—C10—H102 | 108.7 (12) |
C2—C1—H1 | 120.6 (13) | C11—C10—H101 | 109.8 (12) |
C9A—C1—H1 | 121.7 (13) | C11—C10—H102 | 109.9 (11) |
C1—C2—C3 | 121.20 (18) | H101—C10—H102 | 108.3 (19) |
C1—C2—H2 | 119.0 (15) | C10—C11—H111 | 109.1 (11) |
C3—C2—H2 | 119.8 (15) | C10—C11—H112 | 109.4 (12) |
C2—C3—H3 | 117.8 (14) | C12—C11—C10 | 111.04 (16) |
C4—C3—C2 | 120.97 (17) | C12—C11—H111 | 109.5 (13) |
C4—C3—H3 | 121.2 (14) | C12—C11—H112 | 108.4 (13) |
C3—C4—C4A | 118.82 (18) | H112—C11—H111 | 109.4 (18) |
C3—C4—H4 | 121.4 (11) | C11—C12—C13 | 112.32 (18) |
C4A—C4—H4 | 119.8 (11) | C11—C12—H121 | 107.9 (12) |
C4—C4A—C5A | 134.01 (18) | C11—C12—H122 | 110.6 (15) |
C4—C4A—C9A | 119.40 (17) | C13—C12—H121 | 112.1 (12) |
C9A—C4A—C5A | 106.56 (14) | C13—C12—H122 | 111.0 (13) |
C5A—C5—H5 | 119.3 (12) | H121—C12—H122 | 103 (2) |
C6—C5—C5A | 119.41 (17) | C12—C13—H13A | 109.5 |
C6—C5—H5 | 121.3 (12) | C12—C13—H13B | 109.5 |
C5—C5A—C4A | 132.01 (16) | C12—C13—H13C | 109.5 |
C8A—C5A—C4A | 107.26 (16) | H13A—C13—H13B | 109.5 |
C8A—C5A—C5 | 120.68 (16) | H13A—C13—H13C | 109.5 |
C5—C6—C7 | 121.13 (17) | H13B—C13—H13C | 109.5 |
C5—C6—H6 | 120.2 (12) | C8—C14—H14 | 120.6 (13) |
C7—C6—H6 | 118.5 (12) | C15—C14—C8 | 121.32 (18) |
C8—C7—C6 | 121.11 (16) | C15—C14—H14 | 118.1 (13) |
C17—C7—C6 | 119.12 (17) | C14—C15—C16 | 120.52 (17) |
C17—C7—C8 | 119.75 (16) | C14—C15—H15 | 120.0 (16) |
C7—C8—C8A | 116.20 (15) | C16—C15—H15 | 119.5 (15) |
C14—C8—C7 | 117.85 (17) | O1—C16—C15 | 114.31 (16) |
C14—C8—C8A | 125.91 (17) | O1—C16—C17 | 125.26 (18) |
C5A—C8A—C8 | 121.33 (16) | C17—C16—C15 | 120.42 (17) |
N9—C8A—C5A | 108.44 (15) | C7—C17—H17 | 118.4 (11) |
N9—C8A—C8 | 130.23 (16) | C16—C17—C7 | 120.08 (18) |
C1—C9A—C4A | 121.96 (16) | C16—C17—H17 | 121.5 (11) |
N9—C9A—C1 | 129.06 (17) | O1—C18—H18A | 109.5 |
N9—C9A—C4A | 108.98 (15) | O1—C18—H18B | 109.5 |
C8A—N9—C10 | 128.47 (14) | O1—C18—H18C | 109.5 |
C9A—N9—C8A | 108.74 (14) | H18A—C18—H18B | 109.5 |
C9A—N9—C10 | 122.57 (15) | H18A—C18—H18C | 109.5 |
N9—C10—C11 | 113.60 (15) | H18B—C18—H18C | 109.5 |
C18—O1—C16—C15 | 176.75 (16) | N9—C8A—C5A—C4A | 0.40 (19) |
C18—O1—C16—C17 | −2.2 (3) | N9—C8A—C5A—C5 | 178.18 (16) |
C9A—C1—C2—C3 | 1.6 (3) | C8—C8A—C5A—C4A | −179.64 (15) |
C1—C2—C3—C4 | −0.4 (3) | C8—C8A—C5A—C5 | −1.9 (3) |
C2—C3—C4—C4A | −1.2 (3) | N9—C9A—C1—C2 | 177.47 (17) |
C5A—C4A—C4—C3 | −176.09 (19) | C4A—C9A—C1—C2 | −1.3 (3) |
C9A—C4A—C4—C3 | 1.5 (2) | C9A—N9—C8A—C5A | −1.06 (18) |
C4—C4A—C9A—N9 | −179.24 (16) | C9A—N9—C8A—C8 | 178.97 (17) |
C4—C4A—C9A—C1 | −0.2 (2) | C10—N9—C8A—C5A | −175.70 (16) |
C5A—C4A—C9A—N9 | −1.06 (18) | C10—N9—C8A—C8 | 4.3 (3) |
C5A—C4A—C9A—C1 | 177.96 (16) | C8A—N9—C9A—C1 | −177.60 (17) |
C6—C5—C5A—C4A | 175.63 (18) | C8A—N9—C9A—C4A | 1.33 (18) |
C6—C5—C5A—C8A | −1.5 (3) | C10—N9—C9A—C1 | −2.6 (3) |
C5—C5A—C4A—C4 | 0.8 (3) | C10—N9—C9A—C4A | 176.34 (15) |
C5—C5A—C4A—C9A | −177.03 (18) | C9A—N9—C10—C11 | 96.69 (19) |
C8A—C5A—C4A—C4 | 178.20 (19) | C8A—N9—C10—C11 | −89.3 (2) |
C8A—C5A—C4A—C9A | 0.40 (19) | N9—C10—C11—C12 | 176.39 (15) |
C7—C6—C5—C5A | 2.7 (3) | C10—C11—C12—C13 | 175.83 (17) |
C8—C7—C6—C5 | −0.6 (3) | C15—C14—C8—C7 | 2.1 (3) |
C17—C7—C6—C5 | 177.50 (17) | C15—C14—C8—C8A | 179.73 (17) |
C8A—C8—C7—C6 | −2.6 (2) | C16—C15—C14—C8 | −0.1 (3) |
C8A—C8—C7—C17 | 179.29 (16) | O1—C16—C15—C14 | 179.77 (17) |
C14—C8—C7—C6 | 175.24 (16) | C17—C16—C15—C14 | −1.3 (3) |
C14—C8—C7—C17 | −2.8 (2) | O1—C16—C17—C7 | 179.31 (16) |
C7—C8—C8A—N9 | −176.22 (16) | C15—C16—C17—C7 | 0.5 (3) |
C7—C8—C8A—C5A | 3.8 (2) | C16—C17—C7—C6 | −176.50 (16) |
C14—C8—C8A—N9 | 6.1 (3) | C16—C17—C7—C8 | 1.6 (3) |
C14—C8—C8A—C5A | −173.86 (17) |
Experimental details
Crystal data | |
Chemical formula | C21H21NO |
Mr | 303.39 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 10.7263 (6), 5.5562 (3), 13.8967 (7) |
β (°) | 97.841 (2) |
V (Å3) | 820.46 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.48 × 0.39 × 0.35 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.965, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7947, 2248, 2001 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.091, 1.04 |
No. of reflections | 2248 |
No. of parameters | 270 |
No. of restraints | ? |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.16 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer.
References
Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Angerer, E. von & Prekajac, J. (1986). J. Med. Chem. 29, 380–386. PubMed Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carini, D. J., Kaltenbach, R. F. III, Liu, J., Benfield, P. A., Boylan, J., Boisclair, M., Brizuela, L., Burton, C. R., Cox, S., Grafstorm, R., Harrison, B. A., Harrison, K., Akamike, E., Markwalder, J. A., Nakano, Y., Seitz, S. P., Sharp, D. M., Trainor, G. L. & Sielecki, T. M. (2001). Bioorg. Med. Chem. Lett. 11, 2209–2211. Web of Science CrossRef PubMed CAS Google Scholar
Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4327. Web of Science PubMed Google Scholar
Oliveira, M. M., Salvador, M. A., Coelho, P. J. & Carvalho, L. M. (2005). Tetrahedron, 61, 1681–1691. Web of Science CrossRef CAS Google Scholar
Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242. CAS Google Scholar
Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press. Google Scholar
Pindur, U. & Lemster, T. (1997). Recent Res. Devel. Org. Bioorg. Chem. pp. 33–54. Google Scholar
Routier, S., Coudert, G. & Merour, J.-Y. (2001). Tetrahedron Lett. 42, 7025–7028. Web of Science CrossRef CAS Google Scholar
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbazole derivatives display a range of biological activities, making them attractive compounds to synthetic and medicinal chemists (Knölker & Reddy, 2002). They also have an important role in the syntheses of indole alkaloids, in which their synthetic derivatives, possessing useful pharmacological properties, are currently under investigation (Routier et al., 2001). Benzo -annulated carbazole ring systems are found only rarely in natural products. The benzo[a]carbazoles, containing an aromatic ring fused to the a-face of the carbazole nucleus, are potential candidates for cancer treatment as a result of DNA intercelative binding properties (Carini et al., 2001). A series of simple benzo[a]carbazoles have been shown to bind to estrogen receptors and inhibit the growth of mammary tumors of rats (Angerer & Prekajac, 1986). Some benzo[a]carbazoles exhibit a pronounced antitumor activity against leukemia, renal tumor, colon cancer, and malignant melanoma tumor cell lines (Pindur & Lemster, 1997). Benzo[a]carbazole derivatives have also found extensive application as photographic materials (Oliveira et al., 2005).
Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.
The title compound consists of a carbazole skeleton with a methoxy benzoato group fused to the a-face of the carbazole nucleus, and a butyl group attached to atom N9 (Fig. 1), where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.
An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a) and D (C7/C8/C14—C17) are planar. The carbazole skeleton, containing the rings A, B and C are also nearly planar [with a maximum deviation of 0.078 (2) Å for atom C2] with dihedral angles of A/B = 2.37 (6), A/C = 5.01 (5) and B/C = 2.81 (5) ° Ring D is oriented with respect to the planar carbazole skeleton at a dihedral angle of 4.22 (4) °. So, it is nearly coplanar with the carbazole skeleton. Atoms O1 and C18 displaced by 0.010 (1) and -0.045 (2) Å from the plane of ring D, respectively, while atom C10 is 0.092 (2) Å away from the plane of the carbazole skeleton.
In the crystal structure, molecules are alongated along the c axis and stacked along the b axis (Fig. 2).