organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1634-o1635

11-Butyl-3-meth­­oxy-11H-benzo[a]carbazole

aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca, Izmir, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 May 2010; accepted 8 June 2010; online 16 June 2010)

The title compound, C21H21NO, consists of a carbazole skeleton with a meth­oxy­benzene ring fused to the carbazole, and a butyl group attached to the carbazole N atom. The carbazole skeleton is nearly planar [maximum deviation = 0.078 (2) Å], and it is oriented at a dihedral angle of 4.22 (4)° with respect to the adjacent meth­oxy­benzene ring.

Related literature

For the biological activity of carbazole derivatives, see: Knölker & Reddy (2002[Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4327.]). For the use of carbazole derivatives in the syntheses of indole alkaloids, see: Routier et al. (2001[Routier, S., Coudert, G. & Merour, J.-Y. (2001). Tetrahedron Lett. 42, 7025-7028.]). For the use of benzo[a]carbazoles in cancer treatment, see: Carini et al. (2001[Carini, D. J., Kaltenbach, R. F. III, Liu, J., Benfield, P. A., Boylan, J., Boisclair, M., Brizuela, L., Burton, C. R., Cox, S., Grafstorm, R., Harrison, B. A., Harrison, K., Akamike, E., Markwalder, J. A., Nakano, Y., Seitz, S. P., Sharp, D. M., Trainor, G. L. & Sielecki, T. M. (2001). Bioorg. Med. Chem. Lett. 11, 2209-2211.]). For the anti­tumor activity of a series of simple benzo[a]carbazoles against mammary tumors of rats, leukemia, renal tumors, colon cancer and malignant melanoma tumor cell lines, see: von Angerer & Prekajac (1986[Angerer, E. von & Prekajac, J. (1986). J. Med. Chem. 29, 380-386.]); Pindur & Lemster (1997[Pindur, U. & Lemster, T. (1997). Recent Res. Devel. Org. Bioorg. Chem. pp. 33-54.]). For the extensive application of benzo[a]carbazole derivatives as photographic materials, see: Oliveira et al. (2005[Oliveira, M. M., Salvador, M. A., Coelho, P. J. & Carvalho, L. M. (2005). Tetrahedron, 61, 1681-1691.]. For tetra­hydro­carbazole systems present in the frameworks of a number of indole-type alkaloids of biological inter­est, see: Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.], 2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.], 2002[Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374-o376.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO

  • Mr = 303.39

  • Monoclinic, P 21

  • a = 10.7263 (6) Å

  • b = 5.5562 (3) Å

  • c = 13.8967 (7) Å

  • β = 97.841 (2)°

  • V = 820.46 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.48 × 0.39 × 0.35 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.974

  • 7947 measured reflections

  • 2248 independent reflections

  • 2001 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 2248 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Carbazole derivatives display a range of biological activities, making them attractive compounds to synthetic and medicinal chemists (Knölker & Reddy, 2002). They also have an important role in the syntheses of indole alkaloids, in which their synthetic derivatives, possessing useful pharmacological properties, are currently under investigation (Routier et al., 2001). Benzo -annulated carbazole ring systems are found only rarely in natural products. The benzo[a]carbazoles, containing an aromatic ring fused to the a-face of the carbazole nucleus, are potential candidates for cancer treatment as a result of DNA intercelative binding properties (Carini et al., 2001). A series of simple benzo[a]carbazoles have been shown to bind to estrogen receptors and inhibit the growth of mammary tumors of rats (Angerer & Prekajac, 1986). Some benzo[a]carbazoles exhibit a pronounced antitumor activity against leukemia, renal tumor, colon cancer, and malignant melanoma tumor cell lines (Pindur & Lemster, 1997). Benzo[a]carbazole derivatives have also found extensive application as photographic materials (Oliveira et al., 2005).

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a methoxy benzoato group fused to the a-face of the carbazole nucleus, and a butyl group attached to atom N9 (Fig. 1), where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a) and D (C7/C8/C14—C17) are planar. The carbazole skeleton, containing the rings A, B and C are also nearly planar [with a maximum deviation of 0.078 (2) Å for atom C2] with dihedral angles of A/B = 2.37 (6), A/C = 5.01 (5) and B/C = 2.81 (5) ° Ring D is oriented with respect to the planar carbazole skeleton at a dihedral angle of 4.22 (4) °. So, it is nearly coplanar with the carbazole skeleton. Atoms O1 and C18 displaced by 0.010 (1) and -0.045 (2) Å from the plane of ring D, respectively, while atom C10 is 0.092 (2) Å away from the plane of the carbazole skeleton.

In the crystal structure, molecules are alongated along the c axis and stacked along the b axis (Fig. 2).

Related literature top

For the biological activity of carbazole derivatives, see: Knölker & Reddy (2002). For the use of carbazole derivatives in the syntheses of indole alkaloids, see: Routier et al. (2001). For the use of benzo[a]carbazoles in cancer treatment, see: Carini et al. (2001). For the antitumor activity of a series of simple benzo[a]carbazoles against mammary tumors of rats, leukemia, renal tumors, colon cancer and malignant melanoma tumor cell lines, see: von Angerer & Prekajac (1986); Pindur & Lemster (1997). For the extensive application of benzo[a]carbazole derivatives as photographic materials, see: Oliveira et al. (2005. For tetrahydrocarbazole systems present in the frameworks of a number of indole-type alkaloids of biological interest, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999, 2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of 3-methoxy-11H -benzo[a]carbazole (1.00 g, 4.0 mmol) in dichloromethane (20 ml) was cooled to 273 K, and then sodium hydroxide (2 ml, 50%), tetrabutylammonium hydrogen sulfate (0.10 g) and butyl bromide (0.62 g, 4.5 mmol) were added. The mixture was stirred for 1 h at 273 K, and then 2 h at 298 K. It was washed with hydrochloric acid (50 ml, 10%) and the organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from methanol (yield; 1.15 g, 93%, m.p. 369 K).

Refinement top

H13A, H13B, H13C, H18A, H18B and H18C atoms (for methyl groups) were positioned geometrically with C—H = 0.98 Å and constrained to ride on their parent atoms, Uiso(H) = 1.5Ueq(C). The remaining H atoms were located in difference Fourier maps and refined isotropically. Friedel pairs were merged because of the weak anomalous scatterer of the compound, and the absolute structure was not determined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram.
11-Butyl-3-methoxy-11H-benzo[a]carbazole top
Crystal data top
C21H21NOF(000) = 324
Mr = 303.39Dx = 1.228 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3840 reflections
a = 10.7263 (6) Åθ = 2.3–28.4°
b = 5.5562 (3) ŵ = 0.08 mm1
c = 13.8967 (7) ÅT = 100 K
β = 97.841 (2)°Block, colorless
V = 820.46 (8) Å30.48 × 0.39 × 0.35 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2248 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1314
Tmin = 0.965, Tmax = 0.974k = 76
7947 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2248 reflectionsΔρmax = 0.25 e Å3
270 parametersΔρmin = 0.16 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H21NOV = 820.46 (8) Å3
Mr = 303.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7263 (6) ŵ = 0.08 mm1
b = 5.5562 (3) ÅT = 100 K
c = 13.8967 (7) Å0.48 × 0.39 × 0.35 mm
β = 97.841 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2001 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.974Rint = 0.027
7947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035270 parameters
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
2248 reflectionsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59965 (11)0.9420 (3)0.11895 (9)0.0299 (3)
C11.02958 (17)0.2221 (4)0.41676 (13)0.0246 (4)
H10.9764 (19)0.094 (5)0.4258 (15)0.030 (6)*
C21.14448 (17)0.2475 (4)0.47538 (13)0.0276 (4)
H21.166 (2)0.136 (5)0.5266 (17)0.042 (7)*
C31.22609 (17)0.4381 (4)0.46185 (13)0.0271 (4)
H31.3035 (19)0.447 (4)0.5040 (14)0.022 (5)*
C41.19492 (16)0.6061 (4)0.38921 (13)0.0245 (4)
H41.2520 (17)0.742 (4)0.3796 (13)0.021 (5)*
C4A1.08080 (15)0.5806 (4)0.32759 (12)0.0217 (4)
C51.06152 (16)0.9086 (4)0.19246 (13)0.0232 (4)
H51.1411 (18)0.992 (4)0.2181 (13)0.020 (5)*
C5A1.02208 (15)0.7091 (3)0.24338 (12)0.0210 (4)
C60.98899 (16)0.9848 (4)0.10954 (13)0.0238 (4)
H61.0136 (18)1.120 (5)0.0755 (14)0.025 (5)*
C70.87121 (15)0.8724 (4)0.07581 (12)0.0215 (4)
C80.82600 (15)0.6754 (4)0.12711 (12)0.0205 (4)
C8A0.90768 (15)0.5921 (4)0.21092 (12)0.0197 (3)
C9A0.99973 (15)0.3887 (4)0.34259 (12)0.0214 (4)
N90.89451 (13)0.3987 (3)0.27259 (10)0.0209 (3)
C100.79576 (15)0.2165 (4)0.26464 (13)0.0221 (4)
H1010.8331 (18)0.076 (5)0.2927 (14)0.021 (5)*
H1020.7675 (17)0.185 (4)0.1949 (14)0.021 (5)*
C110.68345 (16)0.2861 (4)0.31519 (13)0.0228 (4)
H1110.7121 (18)0.304 (4)0.3868 (14)0.023 (5)*
H1120.6483 (19)0.442 (5)0.2886 (15)0.027 (6)*
C120.58043 (17)0.0964 (4)0.29886 (15)0.0290 (4)
H1210.6196 (19)0.064 (5)0.3171 (14)0.025 (5)*
H1220.5517 (19)0.077 (5)0.2304 (17)0.036 (6)*
C130.47038 (18)0.1518 (5)0.35479 (16)0.0397 (5)
H13A0.40500.02900.34000.060*
H13B0.43550.31040.33550.060*
H13C0.50020.15160.42470.060*
C140.70388 (16)0.5850 (4)0.09343 (13)0.0248 (4)
H140.668 (2)0.458 (5)0.1282 (15)0.032 (6)*
C150.63327 (16)0.6779 (4)0.01272 (13)0.0264 (4)
H150.549 (2)0.613 (5)0.0092 (17)0.044 (7)*
C160.68014 (16)0.8672 (4)0.03944 (12)0.0242 (4)
C170.79658 (16)0.9641 (4)0.00876 (12)0.0235 (4)
H170.8282 (16)1.097 (4)0.0415 (13)0.015 (5)*
C180.63988 (18)1.1414 (4)0.17108 (14)0.0325 (5)
H18A0.57411.18330.22450.049*
H18B0.71721.09880.19740.049*
H18C0.65611.27940.12720.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (6)0.0399 (9)0.0257 (6)0.0017 (6)0.0027 (5)0.0051 (7)
C10.0267 (9)0.0213 (10)0.0275 (8)0.0008 (8)0.0096 (7)0.0004 (8)
C20.0292 (9)0.0284 (11)0.0259 (9)0.0058 (8)0.0057 (7)0.0023 (8)
C30.0228 (8)0.0342 (12)0.0250 (8)0.0021 (8)0.0062 (7)0.0029 (9)
C40.0212 (8)0.0280 (11)0.0253 (8)0.0024 (8)0.0071 (6)0.0025 (8)
C4A0.0222 (8)0.0219 (9)0.0223 (8)0.0003 (7)0.0077 (6)0.0039 (8)
C50.0215 (8)0.0229 (9)0.0263 (8)0.0032 (7)0.0075 (7)0.0025 (8)
C5A0.0197 (7)0.0218 (9)0.0229 (8)0.0002 (7)0.0072 (6)0.0024 (7)
C60.0262 (8)0.0209 (9)0.0261 (9)0.0032 (8)0.0100 (7)0.0006 (8)
C70.0215 (8)0.0226 (10)0.0220 (8)0.0009 (7)0.0088 (7)0.0025 (7)
C80.0207 (7)0.0203 (9)0.0215 (8)0.0008 (7)0.0065 (6)0.0024 (7)
C8A0.0203 (7)0.0178 (9)0.0225 (8)0.0001 (7)0.0081 (6)0.0021 (7)
C9A0.0199 (7)0.0217 (9)0.0239 (8)0.0016 (7)0.0076 (6)0.0015 (7)
N90.0204 (6)0.0186 (8)0.0240 (7)0.0017 (6)0.0045 (5)0.0000 (6)
C100.0210 (8)0.0189 (9)0.0269 (9)0.0034 (7)0.0051 (7)0.0001 (8)
C110.0212 (8)0.0226 (10)0.0252 (9)0.0026 (7)0.0054 (6)0.0003 (7)
C120.0230 (8)0.0338 (12)0.0307 (10)0.0073 (8)0.0051 (7)0.0015 (9)
C130.0246 (9)0.0471 (15)0.0491 (12)0.0051 (10)0.0112 (8)0.0041 (11)
C140.0247 (8)0.0265 (10)0.0240 (8)0.0033 (8)0.0062 (6)0.0006 (8)
C150.0201 (8)0.0323 (11)0.0272 (9)0.0018 (8)0.0049 (7)0.0012 (8)
C160.0235 (8)0.0286 (10)0.0211 (8)0.0045 (7)0.0051 (7)0.0009 (8)
C170.0246 (8)0.0240 (10)0.0234 (8)0.0005 (7)0.0087 (6)0.0008 (8)
C180.0324 (9)0.0366 (12)0.0283 (9)0.0040 (9)0.0035 (8)0.0064 (9)
Geometric parameters (Å, º) top
O1—C161.371 (2)C10—C111.525 (2)
O1—C181.422 (3)C10—H1010.94 (2)
C1—C21.389 (3)C10—H1020.991 (19)
C1—H10.93 (2)C11—C121.521 (3)
C2—C31.403 (3)C11—H1111.006 (19)
C2—H20.95 (3)C11—H1120.99 (3)
C3—C41.382 (3)C12—C131.530 (3)
C3—H30.95 (2)C12—H1211.00 (2)
C4—H40.99 (2)C12—H1220.97 (2)
C4A—C41.402 (2)C13—H13A0.9800
C4A—C9A1.410 (3)C13—H13B0.9800
C5—C5A1.411 (3)C13—H13C0.9800
C5—H51.00 (2)C14—C81.421 (2)
C5A—C4A1.440 (2)C14—H140.97 (2)
C6—C51.367 (3)C15—C141.366 (3)
C6—H60.95 (2)C15—H150.98 (2)
C7—C61.430 (2)C16—C151.408 (3)
C8—C71.427 (2)C16—C171.373 (3)
C8—C8A1.435 (2)C17—C71.423 (3)
C8A—C5A1.408 (2)C17—H170.96 (2)
C9A—C11.390 (3)C18—H18A0.9800
N9—C8A1.393 (2)C18—H18B0.9800
N9—C9A1.387 (2)C18—H18C0.9800
N9—C101.458 (2)
C16—O1—C18116.45 (15)N9—C10—H101106.4 (12)
C2—C1—C9A117.62 (18)N9—C10—H102108.7 (12)
C2—C1—H1120.6 (13)C11—C10—H101109.8 (12)
C9A—C1—H1121.7 (13)C11—C10—H102109.9 (11)
C1—C2—C3121.20 (18)H101—C10—H102108.3 (19)
C1—C2—H2119.0 (15)C10—C11—H111109.1 (11)
C3—C2—H2119.8 (15)C10—C11—H112109.4 (12)
C2—C3—H3117.8 (14)C12—C11—C10111.04 (16)
C4—C3—C2120.97 (17)C12—C11—H111109.5 (13)
C4—C3—H3121.2 (14)C12—C11—H112108.4 (13)
C3—C4—C4A118.82 (18)H112—C11—H111109.4 (18)
C3—C4—H4121.4 (11)C11—C12—C13112.32 (18)
C4A—C4—H4119.8 (11)C11—C12—H121107.9 (12)
C4—C4A—C5A134.01 (18)C11—C12—H122110.6 (15)
C4—C4A—C9A119.40 (17)C13—C12—H121112.1 (12)
C9A—C4A—C5A106.56 (14)C13—C12—H122111.0 (13)
C5A—C5—H5119.3 (12)H121—C12—H122103 (2)
C6—C5—C5A119.41 (17)C12—C13—H13A109.5
C6—C5—H5121.3 (12)C12—C13—H13B109.5
C5—C5A—C4A132.01 (16)C12—C13—H13C109.5
C8A—C5A—C4A107.26 (16)H13A—C13—H13B109.5
C8A—C5A—C5120.68 (16)H13A—C13—H13C109.5
C5—C6—C7121.13 (17)H13B—C13—H13C109.5
C5—C6—H6120.2 (12)C8—C14—H14120.6 (13)
C7—C6—H6118.5 (12)C15—C14—C8121.32 (18)
C8—C7—C6121.11 (16)C15—C14—H14118.1 (13)
C17—C7—C6119.12 (17)C14—C15—C16120.52 (17)
C17—C7—C8119.75 (16)C14—C15—H15120.0 (16)
C7—C8—C8A116.20 (15)C16—C15—H15119.5 (15)
C14—C8—C7117.85 (17)O1—C16—C15114.31 (16)
C14—C8—C8A125.91 (17)O1—C16—C17125.26 (18)
C5A—C8A—C8121.33 (16)C17—C16—C15120.42 (17)
N9—C8A—C5A108.44 (15)C7—C17—H17118.4 (11)
N9—C8A—C8130.23 (16)C16—C17—C7120.08 (18)
C1—C9A—C4A121.96 (16)C16—C17—H17121.5 (11)
N9—C9A—C1129.06 (17)O1—C18—H18A109.5
N9—C9A—C4A108.98 (15)O1—C18—H18B109.5
C8A—N9—C10128.47 (14)O1—C18—H18C109.5
C9A—N9—C8A108.74 (14)H18A—C18—H18B109.5
C9A—N9—C10122.57 (15)H18A—C18—H18C109.5
N9—C10—C11113.60 (15)H18B—C18—H18C109.5
C18—O1—C16—C15176.75 (16)N9—C8A—C5A—C4A0.40 (19)
C18—O1—C16—C172.2 (3)N9—C8A—C5A—C5178.18 (16)
C9A—C1—C2—C31.6 (3)C8—C8A—C5A—C4A179.64 (15)
C1—C2—C3—C40.4 (3)C8—C8A—C5A—C51.9 (3)
C2—C3—C4—C4A1.2 (3)N9—C9A—C1—C2177.47 (17)
C5A—C4A—C4—C3176.09 (19)C4A—C9A—C1—C21.3 (3)
C9A—C4A—C4—C31.5 (2)C9A—N9—C8A—C5A1.06 (18)
C4—C4A—C9A—N9179.24 (16)C9A—N9—C8A—C8178.97 (17)
C4—C4A—C9A—C10.2 (2)C10—N9—C8A—C5A175.70 (16)
C5A—C4A—C9A—N91.06 (18)C10—N9—C8A—C84.3 (3)
C5A—C4A—C9A—C1177.96 (16)C8A—N9—C9A—C1177.60 (17)
C6—C5—C5A—C4A175.63 (18)C8A—N9—C9A—C4A1.33 (18)
C6—C5—C5A—C8A1.5 (3)C10—N9—C9A—C12.6 (3)
C5—C5A—C4A—C40.8 (3)C10—N9—C9A—C4A176.34 (15)
C5—C5A—C4A—C9A177.03 (18)C9A—N9—C10—C1196.69 (19)
C8A—C5A—C4A—C4178.20 (19)C8A—N9—C10—C1189.3 (2)
C8A—C5A—C4A—C9A0.40 (19)N9—C10—C11—C12176.39 (15)
C7—C6—C5—C5A2.7 (3)C10—C11—C12—C13175.83 (17)
C8—C7—C6—C50.6 (3)C15—C14—C8—C72.1 (3)
C17—C7—C6—C5177.50 (17)C15—C14—C8—C8A179.73 (17)
C8A—C8—C7—C62.6 (2)C16—C15—C14—C80.1 (3)
C8A—C8—C7—C17179.29 (16)O1—C16—C15—C14179.77 (17)
C14—C8—C7—C6175.24 (16)C17—C16—C15—C141.3 (3)
C14—C8—C7—C172.8 (2)O1—C16—C17—C7179.31 (16)
C7—C8—C8A—N9176.22 (16)C15—C16—C17—C70.5 (3)
C7—C8—C8A—C5A3.8 (2)C16—C17—C7—C6176.50 (16)
C14—C8—C8A—N96.1 (3)C16—C17—C7—C81.6 (3)
C14—C8—C8A—C5A173.86 (17)

Experimental details

Crystal data
Chemical formulaC21H21NO
Mr303.39
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.7263 (6), 5.5562 (3), 13.8967 (7)
β (°) 97.841 (2)
V3)820.46 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.39 × 0.35
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7947, 2248, 2001
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections2248
No. of parameters270
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngerer, E. von & Prekajac, J. (1986). J. Med. Chem. 29, 380–386.  PubMed Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarini, D. J., Kaltenbach, R. F. III, Liu, J., Benfield, P. A., Boylan, J., Boisclair, M., Brizuela, L., Burton, C. R., Cox, S., Grafstorm, R., Harrison, B. A., Harrison, K., Akamike, E., Markwalder, J. A., Nakano, Y., Seitz, S. P., Sharp, D. M., Trainor, G. L. & Sielecki, T. M. (2001). Bioorg. Med. Chem. Lett. 11, 2209–2211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4327.  Web of Science PubMed Google Scholar
First citationOliveira, M. M., Salvador, M. A., Coelho, P. J. & Carvalho, L. M. (2005). Tetrahedron, 61, 1681–1691.  Web of Science CrossRef CAS Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationPindur, U. & Lemster, T. (1997). Recent Res. Devel. Org. Bioorg. Chem. pp. 33–54.  Google Scholar
First citationRoutier, S., Coudert, G. & Merour, J.-Y. (2001). Tetrahedron Lett. 42, 7025–7028.  Web of Science CrossRef CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1634-o1635
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds