metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m805-m806

Bis(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(nitrato-κ2O,O′)lead(II)

aDepartment of Biotechnology, Yuanpei University, HsinChu, Taiwan 30015, and bDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, HsinChu, Taiwan 30015
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 7 June 2010; accepted 10 June 2010; online 16 June 2010)

In the title complex, [Pb(NO3)2(C14H12N2)2], the lead ion is chelated by two 2,9-dimethyl-1,10-phenanthroline (dmphen) ligands and two nitrate anions in a slightly distorted square-anti­prismatic geometry. Intra- and inter­molecular ππ stacking is present in the crystal structure, and the centroid–centroid distances between the benzene and pyridine rings of adjacent dmphen ligands are 3.492 (3) and 3.592 (3) Å, respectively. Inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions help to stabilize the crystal structure.

Related literature

The 2,9-dimethyl-1,10-phenanthroline ligand and its substituted derivatives play an important role in the development of coordination chemistry (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]). For related structures of 2,9-dimethyl-1,10-phenanthroline complexes, see: Ding et al. (2006[Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540-m2542.]); Harvey et al. (2004[Harvey, M. A., Baggio, S., Ibañez, A. & Baggio, R. (2004). Acta Cryst. C60, m382-m385.]); Kaes et al. (2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]); Xuan & Zhao (2007[Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m3180-m3181.]); Zhao & Xuan (2007[Zhao, P.-Z. & Xuan, X.-P. (2007). Acta Cryst. E63, m3179.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(NO3)2(C14H12N2)2]

  • Mr = 747.73

  • Orthorhombic, P n a 21

  • a = 19.9164 (4) Å

  • b = 8.0173 (1) Å

  • c = 16.3575 (3) Å

  • V = 2611.90 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.52 mm−1

  • T = 100 K

  • 0.32 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.286, Tmax = 0.458

  • 13236 measured reflections

  • 5091 independent reflections

  • 4126 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.040

  • S = 0.91

  • 5091 reflections

  • 375 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1469 Friedel pairs

  • Flack parameter: 0.011 (5)

Table 1
Selected bond lengths (Å)

Pb1—O1 2.685 (3)
Pb1—O2 2.703 (4)
Pb1—O4 2.689 (3)
Pb1—O5 2.687 (3)
Pb1—N3 2.702 (3)
Pb1—N4 2.669 (3)
Pb1—N5 2.721 (3)
Pb1—N6 2.712 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H1⋯O2 0.98 2.57 3.272 (7) 128
C13—H1⋯O5 0.98 2.53 3.286 (5) 134
C13—H2⋯O4i 0.98 2.59 3.496 (5) 153
C10—H5⋯O3ii 0.95 2.53 3.192 (5) 127
C8—H6⋯O6iii 0.95 2.54 3.376 (5) 147
C4—H9⋯O2iv 0.95 2.48 3.401 (6) 163
C14—H10⋯O1 0.98 2.58 3.555 (11) 177
C27—H13⋯O5 0.98 2.35 3.324 (5) 172
C24—H17⋯O6v 0.95 2.42 3.158 (5) 135
C19—H20⋯O4iv 0.95 2.59 3.482 (6) 156
C28—H22⋯O4 0.98 2.40 3.346 (9) 161
C28—H24⋯O1 0.98 2.55 3.104 (4) 116
C14—H11⋯Cg4 0.98 2.77 3.415 (4) 124
C27—H14⋯Cg1 0.98 2.69 3.419 (4) 131
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z]; (iii) [-x+2, -y+3, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, -y+4, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

2,9-Dimethyl-1,10-phenanthroline ligand and its substituted derivates play an important role in the development of coordination chemistry (Kaes et al.,2000). There are several reports on coordination of 2,9-dimethyl-1,10-phenanthroline to metals, such as [Co(NO3)2(C14H12N2)(H2O)] (Ding et al., 2006), [Pb(C14H12N2)(C7H5O3)2].C14H12N2.H2O (Zhao & Xuan, 2007), [Mn(C7H5O3)2(C14H12N2)(H2O)](C14H12N2.C2H6O.H2O) (Xuan & Zhao, 2007) and [Hg(C2H3O2)2(C14H12N2)] (Harvey et al., 2004).

In the structure of the title compound the lead ion is eight-coordinated by four N atoms of two dmphen ligands, four O atoms of two nitrate anions. The resulting coordination is a square antiprismatic geometry, as shown in Fig 1. The Pb—O and Pb—N bond lengths are listed in Table 1. In the crystal structure, there are several C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2 and Fig 2. On the other hand, π-π stacking interactions are between neighboring heteraromatic ring with centroid-centroid distance in the range 3.492 (3)~3.917 (2) Å, the shortest is between Cg3 (N5/C15,C23—C26)··· Cg5 (C1,C2,C6—C9) is 3.492 (3) Å and dihedral angle between two rings is 7.8 (2)°. In additional, C—H···π interactions [C14 —H11··· Cg4 (N6/C16—C20) and C27—H14··· Cg1 (N2/C1,C9—C12); full details and symmetry codes are given in Table 2)] are also present.

Related literature top

The 2,9-dimethyl-1,10-phenanthroline ligand and its substituted derivatives play an important role in the development of coordination chemistry (see Kaes et al., 2000). For related structures of 2,9-dimethyl-1,10-phenanthroline complexes, see: Ding et al. (2006); Harvey et al. (2004); Kaes et al. (2000); Xuan & Zhao (2007); Zhao & Xuan (2007).

Experimental top

The mixture of Pb(NO3)2 (165.5 mg, 0.50 mmole) with dmphen (108.1 mg, 0.50 mmole) in 10 ml H2O was seal in a 25 ml stainless-steel reactor with a Teflon linear, heat to 180 °C for 72 hr, and then slowly cooled to room temperature. The pale yellow crystals of the title compound were obtained in 65.85% yield (based on Pb).

Refinement top

H atoms were positioned geometrically with C—H = 0.95 (aromatic) and 0.98 Å (methyl), and refined in the riding-model with Uiso(H)= 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the b axis. Hydrogen-bonding associations are shown as dotted lines.
Bis(2,9-dimethyl-1,10-phenanthroline-κ2N,N')bis(nitrato- κ2O,O')lead(II) top
Crystal data top
[Pb(NO3)2(C14H12N2)2]F(000) = 1456
Mr = 747.73Dx = 1.902 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8515 reflections
a = 19.9164 (4) Åθ = 2.4–29.0°
b = 8.0173 (1) ŵ = 6.52 mm1
c = 16.3575 (3) ÅT = 100 K
V = 2611.90 (8) Å3Block, pale yellow
Z = 40.32 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
5091 independent reflections
Radiation source: fine-focus sealed tube4126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω–scanθmax = 29.1°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 2626
Tmin = 0.286, Tmax = 0.458k = 1010
13236 measured reflectionsl = 1522
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.020
5091 reflectionsΔρmax = 1.66 e Å3
375 parametersΔρmin = 0.71 e Å3
13 restraintsAbsolute structure: Flack (1983), 1469 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (5)
Crystal data top
[Pb(NO3)2(C14H12N2)2]V = 2611.90 (8) Å3
Mr = 747.73Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.9164 (4) ŵ = 6.52 mm1
b = 8.0173 (1) ÅT = 100 K
c = 16.3575 (3) Å0.32 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
5091 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
4126 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.458Rint = 0.030
13236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.040Δρmax = 1.66 e Å3
S = 0.91Δρmin = 0.71 e Å3
5091 reflectionsAbsolute structure: Flack (1983), 1469 Friedel pairs
375 parametersAbsolute structure parameter: 0.011 (5)
13 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.81279 (1)0.68918 (1)0.27495 (2)0.0123 (1)
O10.67839 (13)0.6637 (3)0.2709 (6)0.0430 (12)
O20.72791 (16)0.4501 (5)0.2212 (3)0.0459 (13)
O30.61990 (14)0.4502 (4)0.2321 (2)0.0248 (10)
O40.80174 (17)0.8914 (4)0.1445 (2)0.0298 (11)
O50.86851 (17)0.6812 (4)0.12537 (19)0.0270 (11)
O60.87017 (17)0.8896 (4)0.0410 (2)0.0289 (11)
N10.67479 (17)0.5206 (4)0.2413 (2)0.0202 (11)
N20.84797 (18)0.8229 (5)0.1027 (2)0.0190 (12)
N30.88824 (16)0.4171 (4)0.3076 (2)0.0127 (10)
N40.82737 (17)0.5960 (4)0.4306 (2)0.0134 (11)
N50.92384 (17)0.8515 (4)0.3302 (2)0.0129 (10)
N60.79763 (16)0.9939 (4)0.3445 (2)0.0132 (11)
C10.9218 (2)0.4374 (5)0.3792 (3)0.0136 (11)
C20.8902 (2)0.5331 (5)0.4438 (3)0.0147 (12)
C30.7958 (2)0.6729 (5)0.4913 (3)0.0170 (14)
C40.8267 (2)0.6970 (5)0.5682 (3)0.0213 (14)
C50.8905 (2)0.6395 (5)0.5801 (3)0.0230 (14)
C60.9239 (2)0.5531 (5)0.5186 (3)0.0173 (12)
C70.9892 (3)0.4878 (9)0.5286 (5)0.0233 (18)
C81.0189 (2)0.3935 (5)0.4696 (3)0.0210 (14)
C90.9856 (2)0.3655 (5)0.3941 (3)0.0160 (12)
C101.0119 (2)0.2629 (5)0.3315 (3)0.0197 (14)
C110.9761 (2)0.2353 (4)0.2627 (4)0.0169 (19)
C120.9135 (2)0.3154 (5)0.2516 (2)0.0168 (11)
C130.8733 (3)0.2845 (5)0.1756 (3)0.0227 (17)
C140.7256 (2)0.7309 (5)0.4779 (3)0.0210 (16)
C150.9087 (2)0.9389 (5)0.3990 (3)0.0132 (11)
C160.8436 (2)1.0192 (5)0.4054 (3)0.0140 (11)
C170.7408 (2)1.0801 (5)0.3454 (3)0.0170 (12)
C180.7262 (2)1.1946 (6)0.4074 (3)0.0233 (14)
C190.7695 (2)1.2141 (5)0.4706 (3)0.0220 (16)
C200.8303 (2)1.1234 (5)0.4725 (3)0.0197 (16)
C210.8778 (3)1.1361 (5)0.5382 (3)0.0220 (14)
C220.9370 (3)1.0579 (5)0.5340 (3)0.0240 (14)
C230.9550 (2)0.9622 (5)0.4634 (3)0.0190 (14)
C241.0187 (2)0.8927 (5)0.4539 (3)0.0220 (16)
C251.0347 (2)0.8135 (5)0.3827 (3)0.0210 (14)
C260.9861 (2)0.7931 (5)0.3218 (3)0.0147 (12)
C271.0043 (2)0.7101 (5)0.2427 (3)0.0173 (12)
C280.69100 (18)1.0494 (4)0.2774 (7)0.0222 (10)
H10.845100.381900.164100.0340*
H20.844800.186300.183500.0340*
H30.903800.265200.129500.0340*
H40.993000.162300.221800.0200*
H51.054900.213200.337900.0230*
H61.062000.346200.479000.0250*
H71.013100.510400.577700.0280*
H80.912400.658600.630900.0270*
H90.803400.752400.611000.0260*
H100.713500.715600.420300.0310*
H110.722100.849200.492200.0310*
H120.695000.665900.512300.0310*
H130.965500.712400.205800.0260*
H141.017300.594200.253200.0260*
H151.041900.769500.217400.0260*
H161.078900.772000.374500.0250*
H171.050800.900500.496700.0270*
H180.967501.065900.578500.0290*
H190.867001.200600.585100.0260*
H200.759001.289000.513700.0270*
H210.686101.258500.405200.0280*
H220.714201.000100.230400.0330*
H230.670401.155300.261100.0330*
H240.656000.972700.296500.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0120 (1)0.0136 (1)0.0112 (1)0.0004 (1)0.0004 (2)0.0012 (2)
O10.0227 (15)0.0283 (15)0.078 (3)0.0031 (12)0.010 (3)0.026 (3)
O20.0156 (18)0.041 (2)0.081 (3)0.0035 (16)0.0004 (19)0.036 (2)
O30.0145 (16)0.0271 (17)0.0329 (18)0.0074 (13)0.0005 (15)0.0012 (15)
O40.036 (2)0.0275 (19)0.026 (2)0.0107 (15)0.0072 (17)0.0043 (16)
O50.035 (2)0.0249 (18)0.0212 (18)0.0146 (17)0.0073 (16)0.0059 (16)
O60.036 (2)0.0262 (18)0.0245 (19)0.0001 (15)0.0157 (17)0.0075 (16)
N10.015 (2)0.0205 (18)0.025 (2)0.0011 (14)0.0044 (16)0.0020 (15)
N20.019 (2)0.022 (2)0.016 (2)0.0018 (18)0.0026 (17)0.0026 (19)
N30.0139 (18)0.0095 (17)0.0148 (18)0.0008 (14)0.0024 (14)0.0023 (14)
N40.014 (2)0.0145 (19)0.0117 (19)0.0053 (15)0.0022 (16)0.0006 (16)
N50.0123 (18)0.0112 (17)0.0152 (19)0.0040 (13)0.0022 (16)0.0021 (14)
N60.0154 (19)0.0103 (17)0.0140 (19)0.0031 (13)0.0055 (16)0.0010 (14)
C10.013 (2)0.0107 (19)0.017 (2)0.0035 (16)0.0004 (18)0.0052 (18)
C20.018 (2)0.009 (2)0.017 (2)0.0054 (16)0.001 (2)0.0047 (17)
C30.026 (3)0.010 (2)0.015 (2)0.0037 (17)0.0009 (19)0.0038 (18)
C40.030 (3)0.018 (2)0.016 (2)0.006 (2)0.006 (2)0.005 (2)
C50.036 (3)0.018 (2)0.015 (2)0.006 (2)0.004 (2)0.0011 (19)
C60.024 (2)0.014 (2)0.014 (2)0.0049 (18)0.001 (2)0.0050 (18)
C70.017 (4)0.028 (3)0.025 (2)0.004 (3)0.016 (3)0.004 (2)
C80.018 (2)0.018 (2)0.027 (3)0.0011 (18)0.007 (2)0.011 (2)
C90.014 (2)0.013 (2)0.021 (2)0.0027 (16)0.004 (2)0.0091 (18)
C100.015 (2)0.013 (2)0.031 (3)0.0048 (16)0.005 (2)0.0071 (19)
C110.018 (2)0.0147 (18)0.018 (5)0.0016 (14)0.008 (2)0.0014 (19)
C120.020 (2)0.0125 (18)0.018 (2)0.0080 (18)0.0029 (17)0.0019 (19)
C130.031 (3)0.018 (3)0.019 (3)0.002 (2)0.002 (2)0.005 (2)
C140.026 (3)0.019 (2)0.018 (3)0.0002 (18)0.011 (2)0.0016 (19)
C150.015 (2)0.0085 (19)0.016 (2)0.0037 (16)0.0011 (19)0.0079 (18)
C160.020 (2)0.0061 (19)0.016 (2)0.0048 (16)0.005 (2)0.0034 (17)
C170.017 (2)0.014 (2)0.020 (2)0.0009 (18)0.006 (2)0.0031 (19)
C180.021 (2)0.019 (2)0.030 (3)0.003 (2)0.007 (2)0.001 (2)
C190.031 (3)0.016 (2)0.019 (3)0.0051 (19)0.013 (2)0.0041 (19)
C200.025 (3)0.013 (2)0.021 (3)0.0071 (17)0.008 (2)0.0013 (19)
C210.036 (3)0.017 (2)0.013 (2)0.010 (2)0.000 (2)0.0008 (18)
C220.035 (3)0.022 (2)0.015 (2)0.013 (2)0.009 (2)0.002 (2)
C230.025 (3)0.016 (2)0.016 (2)0.0101 (18)0.003 (2)0.0034 (18)
C240.020 (3)0.022 (2)0.024 (3)0.0088 (19)0.008 (2)0.006 (2)
C250.015 (2)0.025 (2)0.023 (3)0.003 (2)0.002 (2)0.008 (2)
C260.015 (2)0.008 (2)0.021 (2)0.0051 (18)0.003 (2)0.003 (2)
C270.012 (2)0.019 (2)0.021 (2)0.0039 (19)0.0028 (19)0.000 (2)
C280.0195 (17)0.0201 (16)0.0269 (19)0.0059 (15)0.003 (4)0.004 (5)
Geometric parameters (Å, º) top
Pb1—O12.685 (3)C15—C231.412 (6)
Pb1—O22.703 (4)C16—C201.405 (6)
Pb1—O42.689 (3)C17—C181.399 (7)
Pb1—O52.687 (3)C17—C281.511 (10)
Pb1—N32.702 (3)C18—C191.355 (6)
Pb1—N42.669 (3)C19—C201.413 (6)
Pb1—N52.721 (3)C20—C211.435 (7)
Pb1—N62.712 (3)C21—C221.337 (8)
O1—N11.247 (5)C22—C231.432 (7)
O2—N11.244 (5)C23—C241.394 (6)
O3—N11.240 (4)C24—C251.364 (7)
O4—N21.272 (5)C25—C261.399 (6)
O5—N21.263 (5)C26—C271.499 (7)
O6—N21.225 (5)C4—H90.9500
N3—C11.358 (6)C5—H80.9500
N3—C121.326 (5)C7—H70.9500
N4—C21.366 (5)C8—H60.9500
N4—C31.327 (6)C10—H50.9500
N5—C151.360 (6)C11—H40.9500
N5—C261.333 (5)C13—H10.9800
N6—C161.368 (6)C13—H20.9800
N6—C171.326 (5)C13—H30.9800
C1—C21.450 (6)C14—H100.9800
C1—C91.416 (6)C14—H110.9800
C2—C61.405 (7)C14—H120.9800
C3—C41.414 (7)C18—H210.9500
C3—C141.490 (6)C19—H200.9500
C4—C51.366 (6)C21—H190.9500
C5—C61.391 (6)C22—H180.9500
C6—C71.412 (7)C24—H170.9500
C7—C81.361 (9)C25—H160.9500
C8—C91.420 (7)C27—H130.9800
C9—C101.414 (6)C27—H140.9800
C10—C111.351 (7)C27—H150.9800
C11—C121.414 (6)C28—H220.9800
C12—C131.499 (6)C28—H230.9800
C15—C161.451 (6)C28—H240.9800
Pb1···H13.1300C14···C163.503 (6)
Pb1···H103.1000C15···C11vii3.524 (7)
Pb1···H133.2500C15···C10vii3.492 (6)
Pb1···H223.2600C15···C33.447 (6)
O1···O22.137 (6)C15···C23.355 (6)
O1···C283.104 (4)C16···C33.254 (6)
O1···C25i3.401 (7)C16···C143.503 (6)
O2···C4ii3.401 (6)C17···C143.554 (6)
O2···C133.272 (7)C18···O6ix3.302 (6)
O2···O12.137 (6)C19···N2ix3.302 (6)
O3···C11iii3.266 (5)C19···O6ix3.323 (5)
O3···C10iii3.192 (5)C19···N4vii3.336 (5)
O4···O52.169 (5)C19···C2vii3.537 (6)
O4···C283.346 (9)C20···C2vii3.526 (6)
O5···C133.286 (5)C20···C1vii3.462 (6)
O5···C273.324 (5)C21···C6vii3.482 (6)
O5···O42.169 (5)C21···C7vii3.591 (8)
O6···C19ii3.323 (5)C21···C2vii3.546 (6)
O6···C8iv3.376 (5)C22···C8vii3.318 (6)
O6···C18ii3.302 (6)C22···C9vii3.501 (6)
O6···C24v3.158 (5)C22···C53.561 (6)
O1···H16i2.6600C23···C10vii3.428 (6)
O1···H242.5500C23···C63.458 (6)
O1···H15i2.9100C23···C53.462 (6)
O1···H222.8700C23···C9vii3.480 (6)
O1···H102.5800C24···C63.478 (6)
O2···H23vi2.7100C24···C10vii3.583 (6)
O2···H12.5700C24···C73.518 (8)
O2···H9ii2.4800C24···O6xii3.158 (5)
O3···H15i2.7400C25···O1xiii3.401 (7)
O3···H5iii2.5300C26···C13.264 (6)
O3···H4iii2.6900C26···C23.461 (6)
O3···H23vi2.6100C27···O53.324 (5)
O4···H222.4000C27···C13.531 (6)
O4···H20ii2.5900C28···O13.104 (4)
O4···H2vii2.5900C28···O43.346 (9)
O5···H6iv2.7700C1···H143.0700
O5···H132.3500C9···H143.0100
O5···H12.5300C10···H142.9500
O6···H17v2.4200C11···H143.0000
O6···H6iv2.5400C12···H143.0400
O6···H12viii2.6100C17···H113.0500
O6···H20ii2.7300C18···H113.1000
O6···H21ii2.7000C19···H113.0900
N2···C19ii3.302 (6)C20···H113.1000
N3···N42.752 (5)H1···Pb13.1300
N3···C22.415 (6)H1···O22.5700
N4···C163.433 (5)H1···O52.5300
N4···C12.421 (5)H2···O4vi2.5900
N4···N32.752 (5)H3···H42.4700
N4···N53.253 (5)H3···H7iv2.5900
N4···C19vi3.336 (5)H4···H32.4700
N4···C153.232 (5)H4···O3xi2.6900
N5···C162.424 (5)H5···H62.5500
N5···C11vii3.431 (5)H5···O3xi2.5300
N5···N43.253 (5)H6···H52.5500
N5···N62.771 (5)H6···O5x2.7700
N5···C13.416 (5)H6···O6x2.5400
N5···C23.228 (5)H7···H82.4900
N6···C143.356 (5)H7···H3x2.5900
N6···N52.771 (5)H8···H72.4900
N6···C152.425 (5)H9···O2ix2.4800
N1···H23vi2.9500H10···Pb13.1000
N2···H20ii2.5900H10···O12.5800
C1···C20vi3.462 (6)H11···C173.0500
C1···C263.264 (6)H11···C183.1000
C1···C273.531 (6)H11···C193.0900
C2···C20vi3.526 (6)H11···C203.1000
C2···C153.355 (6)H12···O6xiv2.6100
C2···C19vi3.537 (6)H13···Pb13.2500
C2···C21vi3.546 (6)H13···O52.3500
C2···C263.461 (6)H14···C13.0700
C3···C163.254 (6)H14···C93.0100
C3···C153.447 (6)H14···C102.9500
C4···O2ix3.401 (6)H14···C113.0000
C5···C233.462 (6)H14···C123.0400
C5···C223.561 (6)H15···O1xiii2.9100
C6···C243.478 (6)H15···O3xiii2.7400
C6···C21vi3.482 (6)H16···O1xiii2.6600
C6···C233.458 (6)H17···H182.5100
C7···C243.518 (8)H17···O6xii2.4200
C7···C21vi3.591 (8)H18···H172.5100
C8···C22vi3.318 (6)H19···H202.5500
C8···O6x3.376 (5)H20···H192.5500
C9···C22vi3.501 (6)H20···O4ix2.5900
C9···C23vi3.480 (6)H20···O6ix2.7300
C10···C23vi3.428 (6)H20···N2ix2.5900
C10···C24vi3.583 (6)H21···H232.5200
C10···C15vi3.492 (6)H21···O6ix2.7000
C10···O3xi3.192 (5)H22···Pb13.2600
C11···C15vi3.524 (7)H22···O12.8700
C11···O3xi3.266 (5)H22···O42.4000
C11···N5vi3.431 (5)H23···O2vii2.7100
C13···O23.272 (7)H23···O3vii2.6100
C13···O53.286 (5)H23···N1vii2.9500
C14···C173.554 (6)H23···H212.5200
C14···N63.356 (5)H24···O12.5500
O1—Pb1—O246.73 (13)C11—C12—C13120.2 (4)
O1—Pb1—O486.83 (18)N5—C15—C16119.1 (4)
O1—Pb1—O5112.8 (2)N5—C15—C23122.7 (4)
O1—Pb1—N3119.85 (10)C16—C15—C23118.1 (4)
O1—Pb1—N496.4 (2)N6—C16—C15118.7 (4)
O1—Pb1—N5148.75 (15)N6—C16—C20122.1 (4)
O1—Pb1—N688.16 (12)C15—C16—C20119.3 (4)
O2—Pb1—O496.79 (12)N6—C17—C18121.8 (4)
O2—Pb1—O586.86 (12)N6—C17—C28117.9 (4)
O2—Pb1—N380.77 (10)C18—C17—C28120.3 (4)
O2—Pb1—N4100.36 (12)C17—C18—C19119.8 (4)
O2—Pb1—N5162.89 (10)C18—C19—C20120.2 (4)
O2—Pb1—N6134.89 (10)C16—C20—C19116.8 (4)
O4—Pb1—O547.60 (10)C16—C20—C21120.2 (4)
O4—Pb1—N3133.56 (10)C19—C20—C21123.0 (4)
O4—Pb1—N4159.17 (10)C20—C21—C22120.6 (4)
O4—Pb1—N592.39 (10)C21—C22—C23120.9 (5)
O4—Pb1—N677.33 (10)C15—C23—C22120.6 (4)
O5—Pb1—N386.05 (10)C15—C23—C24117.3 (4)
O5—Pb1—N4144.77 (10)C22—C23—C24122.1 (4)
O5—Pb1—N588.75 (10)C23—C24—C25119.6 (4)
O5—Pb1—N6116.70 (10)C24—C25—C26120.1 (4)
N3—Pb1—N461.64 (10)N5—C26—C25122.0 (4)
N3—Pb1—N582.44 (10)N5—C26—C27118.0 (4)
N3—Pb1—N6134.93 (10)C25—C26—C27120.0 (4)
N4—Pb1—N574.25 (10)C3—C4—H9120.00
N4—Pb1—N682.19 (10)C5—C4—H9120.00
N5—Pb1—N661.33 (10)C4—C5—H8120.00
Pb1—O1—N197.9 (2)C6—C5—H8120.00
Pb1—O2—N197.1 (3)C6—C7—H7119.00
Pb1—O4—N296.1 (2)C8—C7—H7119.00
Pb1—O5—N296.4 (2)C7—C8—H6120.00
O1—N1—O2118.2 (3)C9—C8—H6120.00
O1—N1—O3121.1 (3)C9—C10—H5120.00
O2—N1—O3120.7 (3)C11—C10—H5120.00
O4—N2—O5117.7 (3)C10—C11—H4120.00
O4—N2—O6121.1 (4)C12—C11—H4120.00
O5—N2—O6121.2 (4)C12—C13—H1109.00
Pb1—N3—C1110.3 (2)C12—C13—H2109.00
Pb1—N3—C12124.8 (2)C12—C13—H3109.00
C1—N3—C12118.9 (3)H1—C13—H2109.00
Pb1—N4—C2110.7 (3)H1—C13—H3109.00
Pb1—N4—C3122.2 (3)H2—C13—H3109.00
C2—N4—C3119.2 (4)C3—C14—H10109.00
Pb1—N5—C15110.0 (2)C3—C14—H11110.00
Pb1—N5—C26123.7 (3)C3—C14—H12109.00
C15—N5—C26118.2 (4)H10—C14—H11109.00
Pb1—N6—C16111.4 (2)H10—C14—H12109.00
Pb1—N6—C17124.7 (3)H11—C14—H12109.00
C16—N6—C17119.1 (4)C17—C18—H21120.00
N3—C1—C2118.6 (4)C19—C18—H21120.00
N3—C1—C9122.8 (4)C18—C19—H20120.00
C2—C1—C9118.7 (4)C20—C19—H20120.00
N4—C2—C1118.5 (4)C20—C21—H19120.00
N4—C2—C6122.2 (4)C22—C21—H19120.00
C1—C2—C6119.2 (4)C21—C22—H18120.00
N4—C3—C4121.5 (4)C23—C22—H18120.00
N4—C3—C14118.7 (4)C23—C24—H17120.00
C4—C3—C14119.8 (4)C25—C24—H17120.00
C3—C4—C5119.1 (4)C24—C25—H16120.00
C4—C5—C6120.7 (4)C26—C25—H16120.00
C2—C6—C5117.3 (4)C26—C27—H13109.00
C2—C6—C7119.9 (5)C26—C27—H14109.00
C5—C6—C7122.8 (5)C26—C27—H15109.00
C6—C7—C8121.6 (6)H13—C27—H14110.00
C7—C8—C9120.1 (4)H13—C27—H15109.00
C1—C9—C8120.3 (4)H14—C27—H15109.00
C1—C9—C10116.4 (4)C17—C28—H22109.00
C8—C9—C10123.3 (4)C17—C28—H23110.00
C9—C10—C11120.2 (4)C17—C28—H24110.00
C10—C11—C12119.9 (4)H22—C28—H23109.00
N3—C12—C11121.7 (4)H22—C28—H24109.00
N3—C12—C13118.2 (4)H23—C28—H24109.00
O2—Pb1—O1—N12.2 (3)Pb1—O5—N2—O6167.8 (3)
O4—Pb1—O1—N1104.6 (5)Pb1—N3—C1—C233.0 (4)
O5—Pb1—O1—N163.7 (5)Pb1—N3—C1—C9148.7 (3)
N3—Pb1—O1—N135.2 (6)C12—N3—C1—C2172.9 (4)
N4—Pb1—O1—N196.1 (5)C12—N3—C1—C95.5 (6)
N5—Pb1—O1—N1166.0 (3)Pb1—N3—C12—C11146.5 (3)
N6—Pb1—O1—N1178.0 (5)Pb1—N3—C12—C1334.4 (5)
O1—Pb1—O2—N12.2 (3)C1—N3—C12—C113.6 (6)
O4—Pb1—O2—N181.3 (3)C1—N3—C12—C13175.5 (4)
O5—Pb1—O2—N1128.0 (3)Pb1—N4—C2—C135.5 (4)
N3—Pb1—O2—N1145.5 (3)Pb1—N4—C2—C6146.8 (3)
N4—Pb1—O2—N186.8 (3)C3—N4—C2—C1174.9 (4)
N6—Pb1—O2—N12.5 (4)C3—N4—C2—C62.8 (6)
O1—Pb1—O4—N2133.4 (3)Pb1—N4—C3—C4143.4 (3)
O2—Pb1—O4—N287.6 (2)Pb1—N4—C3—C1438.1 (5)
O5—Pb1—O4—N28.2 (2)C2—N4—C3—C42.6 (6)
N3—Pb1—O4—N23.9 (3)C2—N4—C3—C14176.0 (4)
N4—Pb1—O4—N2127.1 (3)Pb1—N5—C15—C1637.0 (4)
N5—Pb1—O4—N277.9 (2)Pb1—N5—C15—C23146.2 (3)
N6—Pb1—O4—N2137.8 (2)C26—N5—C15—C16173.3 (4)
O1—Pb1—O5—N270.6 (2)C26—N5—C15—C233.5 (6)
O2—Pb1—O5—N2110.4 (2)Pb1—N5—C26—C25142.7 (3)
O4—Pb1—O5—N28.3 (2)Pb1—N5—C26—C2740.0 (5)
N3—Pb1—O5—N2168.6 (2)C15—N5—C26—C252.6 (6)
N4—Pb1—O5—N2146.0 (2)C15—N5—C26—C27174.7 (4)
N5—Pb1—O5—N286.1 (2)Pb1—N6—C16—C1530.5 (4)
N6—Pb1—O5—N229.4 (3)Pb1—N6—C16—C20151.2 (3)
O1—Pb1—N3—C1115.3 (3)C17—N6—C16—C15173.1 (4)
O1—Pb1—N3—C1292.4 (4)C17—N6—C16—C205.3 (6)
O2—Pb1—N3—C1142.0 (3)Pb1—N6—C17—C18152.3 (3)
O2—Pb1—N3—C1265.8 (3)Pb1—N6—C17—C2826.9 (6)
O4—Pb1—N3—C1127.4 (3)C16—N6—C17—C180.8 (6)
O4—Pb1—N3—C1224.8 (4)C16—N6—C17—C28180.0 (4)
O5—Pb1—N3—C1130.6 (3)N3—C1—C2—N41.3 (6)
O5—Pb1—N3—C1221.7 (3)N3—C1—C2—C6179.1 (4)
N4—Pb1—N3—C134.8 (3)C9—C1—C2—N4177.1 (4)
N4—Pb1—N3—C12173.0 (3)C9—C1—C2—C60.7 (6)
N5—Pb1—N3—C141.3 (3)N3—C1—C9—C8178.8 (4)
N5—Pb1—N3—C12110.9 (3)N3—C1—C9—C103.1 (6)
N6—Pb1—N3—C16.0 (3)C2—C1—C9—C82.8 (6)
N6—Pb1—N3—C12146.2 (3)C2—C1—C9—C10175.3 (4)
O1—Pb1—N4—C2156.1 (3)N4—C2—C6—C50.5 (6)
O1—Pb1—N4—C355.4 (3)N4—C2—C6—C7179.0 (5)
O2—Pb1—N4—C2109.0 (3)C1—C2—C6—C5177.2 (4)
O2—Pb1—N4—C3102.5 (3)C1—C2—C6—C73.3 (7)
O4—Pb1—N4—C2106.1 (3)N4—C3—C4—C50.1 (6)
O4—Pb1—N4—C342.4 (5)C14—C3—C4—C5178.4 (4)
O5—Pb1—N4—C29.6 (3)C3—C4—C5—C62.3 (6)
O5—Pb1—N4—C3158.1 (3)C4—C5—C6—C22.1 (6)
N3—Pb1—N4—C235.5 (2)C4—C5—C6—C7178.5 (5)
N3—Pb1—N4—C3176.0 (3)C2—C6—C7—C85.3 (9)
N5—Pb1—N4—C254.4 (3)C5—C6—C7—C8175.2 (5)
N5—Pb1—N4—C394.1 (3)C6—C7—C8—C93.2 (9)
N6—Pb1—N4—C2116.7 (3)C7—C8—C9—C10.9 (7)
N6—Pb1—N4—C331.8 (3)C7—C8—C9—C10177.0 (5)
O1—Pb1—N5—C1521.7 (5)C1—C9—C10—C111.2 (6)
O1—Pb1—N5—C26169.5 (4)C8—C9—C10—C11176.9 (4)
O4—Pb1—N5—C15109.5 (3)C9—C10—C11—C122.9 (6)
O4—Pb1—N5—C26102.7 (3)C10—C11—C12—N30.5 (6)
O5—Pb1—N5—C15157.0 (3)C10—C11—C12—C13179.6 (4)
O5—Pb1—N5—C2655.3 (3)N5—C15—C16—N64.8 (6)
N3—Pb1—N5—C15116.8 (3)N5—C15—C16—C20173.6 (4)
N3—Pb1—N5—C2630.9 (3)C23—C15—C16—N6178.2 (4)
N4—Pb1—N5—C1554.3 (3)C23—C15—C16—C203.4 (6)
N4—Pb1—N5—C2693.5 (3)N5—C15—C23—C22178.9 (4)
N6—Pb1—N5—C1535.4 (3)N5—C15—C23—C240.7 (6)
N6—Pb1—N5—C26176.9 (4)C16—C15—C23—C222.0 (6)
O1—Pb1—N6—C16139.5 (3)C16—C15—C23—C24176.2 (4)
O1—Pb1—N6—C1715.4 (4)N6—C16—C20—C195.9 (6)
O2—Pb1—N6—C16139.7 (3)N6—C16—C20—C21175.1 (4)
O2—Pb1—N6—C1715.2 (4)C15—C16—C20—C19172.5 (4)
O4—Pb1—N6—C16133.3 (3)C15—C16—C20—C216.6 (6)
O4—Pb1—N6—C1771.8 (3)N6—C17—C18—C192.9 (7)
O5—Pb1—N6—C16105.8 (3)C28—C17—C18—C19176.2 (5)
O5—Pb1—N6—C1799.3 (3)C17—C18—C19—C202.2 (7)
N3—Pb1—N6—C167.4 (3)C18—C19—C20—C162.0 (6)
N3—Pb1—N6—C17147.5 (3)C18—C19—C20—C21178.9 (4)
N4—Pb1—N6—C1642.9 (3)C16—C20—C21—C224.4 (7)
N4—Pb1—N6—C17112.0 (3)C19—C20—C21—C22174.6 (4)
N5—Pb1—N6—C1633.4 (3)C20—C21—C22—C231.2 (7)
N5—Pb1—N6—C17171.7 (4)C21—C22—C23—C154.4 (7)
Pb1—O1—N1—O24.0 (6)C21—C22—C23—C24173.7 (4)
Pb1—O1—N1—O3176.0 (3)C15—C23—C24—C253.1 (6)
Pb1—O2—N1—O13.9 (6)C22—C23—C24—C25175.1 (4)
Pb1—O2—N1—O3176.1 (3)C23—C24—C25—C264.0 (6)
Pb1—O4—N2—O514.7 (4)C24—C25—C26—N51.1 (6)
Pb1—O4—N2—O6167.8 (3)C24—C25—C26—C27178.4 (4)
Pb1—O5—N2—O414.7 (4)
Symmetry codes: (i) x1/2, y+7/2, z; (ii) x+3/2, y1/2, z1/2; (iii) x1/2, y+5/2, z; (iv) x+2, y+3, z1/2; (v) x+2, y+4, z1/2; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+3/2, y+1/2, z1/2; (ix) x+3/2, y+1/2, z+1/2; (x) x+2, y+3, z+1/2; (xi) x+1/2, y+5/2, z; (xii) x+2, y+4, z+1/2; (xiii) x+1/2, y+7/2, z; (xiv) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H1···O20.982.573.272 (7)128
C13—H1···O50.982.533.286 (5)134
C13—H2···O4vi0.982.593.496 (5)153
C10—H5···O3xi0.952.533.192 (5)127
C8—H6···O6x0.952.543.376 (5)147
C4—H9···O2ix0.952.483.401 (6)163
C14—H10···O10.982.583.555 (11)177
C27—H13···O50.982.353.324 (5)172
C24—H17···O6xii0.952.423.158 (5)135
C19—H20···O4ix0.952.593.482 (6)156
C28—H22···O40.982.403.346 (9)161
C28—H24···O10.982.553.104 (4)116
C14—H11···Cg40.982.773.415 (4)124
C27—H14···Cg10.982.693.419 (4)131
Symmetry codes: (vi) x, y1, z; (ix) x+3/2, y+1/2, z+1/2; (x) x+2, y+3, z+1/2; (xi) x+1/2, y+5/2, z; (xii) x+2, y+4, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(NO3)2(C14H12N2)2]
Mr747.73
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)19.9164 (4), 8.0173 (1), 16.3575 (3)
V3)2611.90 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.52
Crystal size (mm)0.32 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini-S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.286, 0.458
No. of measured, independent and
observed [I > 2σ(I)] reflections
13236, 5091, 4126
Rint0.030
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.040, 0.91
No. of reflections5091
No. of parameters375
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 0.71
Absolute structureFlack (1983), 1469 Friedel pairs
Absolute structure parameter0.011 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pb1—O12.685 (3)Pb1—N32.702 (3)
Pb1—O22.703 (4)Pb1—N42.669 (3)
Pb1—O42.689 (3)Pb1—N52.721 (3)
Pb1—O52.687 (3)Pb1—N62.712 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H1···O20.982.5703.272 (7)128
C13—H1···O50.982.5303.286 (5)134
C13—H2···O4i0.982.5903.496 (5)153
C10—H5···O3ii0.952.5303.192 (5)127
C8—H6···O6iii0.952.5403.376 (5)147
C4—H9···O2iv0.952.4803.401 (6)163
C14—H10···O10.982.5803.555 (11)177
C27—H13···O50.982.3503.324 (5)172
C24—H17···O6v0.952.4203.158 (5)135
C19—H20···O4iv0.952.5903.482 (6)156
C28—H22···O40.982.4003.346 (9)161
C28—H24···O10.982.5503.104 (4)116
C14—H11···Cg40.982.773.415 (4)124
C27—H14···Cg10.982.693.419 (4)131
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+5/2, z; (iii) x+2, y+3, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+2, y+4, z+1/2.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationDing, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m2540–m2542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarvey, M. A., Baggio, S., Ibañez, A. & Baggio, R. (2004). Acta Cryst. C60, m382–m385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m3180–m3181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z. & Xuan, X.-P. (2007). Acta Cryst. E63, m3179.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m805-m806
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds