organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5,6,7-Tetra­chloro-2-(4-fluoro­phen­yl)isoindoline-1,3-dione

aCollege of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: clshangzhou@yahoo.com.cn

(Received 7 June 2010; accepted 15 June 2010; online 23 June 2010)

The title compound, C14H4Cl4FNO2, has crystallographic twofold symmetry with the N and F atoms and two C atoms of the benzene ring located on a twofold rotation axis. The isoindole­dione ring system is almost planar [maximum atomic deviation = 0.036 (3) Å], and is twisted with respect to the florobenzene ring, making a dihedral angle of 58.56 (16)°. Weak inter­molecular C—H⋯Cl hydrogen bonding is present in the crystal structure.

Related literature

The title compound is an inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005[Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233-238.]). For a related structure, see: Xu et al. (2006[Xu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408-o409.]).

[Scheme 1]

Experimental

Crystal data
  • C14H4Cl4FNO2

  • Mr = 378.98

  • Orthorhombic, P c c a

  • a = 7.9400 (16) Å

  • b = 5.6744 (11) Å

  • c = 29.461 (6) Å

  • V = 1327.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]) Tmin = 0.839, Tmax = 0.899

  • 6423 measured reflections

  • 1174 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.204

  • S = 1.04

  • 1174 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl2i 0.95 2.80 3.690 (4) 157
Symmetry code: (i) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been wide investigated in both an academic and industrial context (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. In the title compound, the dihedral angle between the benzene ring and the indole ring system is 58.56 (16)°, which is similar to 59.95 (4)° found in a related compound N-(2-fluorophenyl)phthalimide (Xu et al., 2006). Weak intermolecular C—H···Cl hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005). For a related structure, see: Xu et al. (2006).

Experimental top

An acetic acid solution of tetrachlorophthalic anhydride (28.6 g, 100 mmol) and 4-fluoroaniline (9.45 ml, 100 mmol) was refluxed overnight, and then filtered. The crude produce was recrystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and refined as riding with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4,5,6,7-Tetrachloro-2-(4-fluorophenyl)isoindoline-1,3-dione top
Crystal data top
C14H4Cl4FNO2F(000) = 752
Mr = 378.98Dx = 1.896 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 3007 reflections
a = 7.9400 (16) Åθ = 2.8–27.9°
b = 5.6744 (11) ŵ = 0.91 mm1
c = 29.461 (6) ÅT = 113 K
V = 1327.4 (5) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1174 independent reflections
Radiation source: rotating anode1053 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
k = 66
Tmin = 0.839, Tmax = 0.899l = 3530
6423 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.1623P)2 + 2.0637P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1174 reflectionsΔρmax = 0.84 e Å3
103 parametersΔρmin = 0.74 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (8)
Crystal data top
C14H4Cl4FNO2V = 1327.4 (5) Å3
Mr = 378.98Z = 4
Orthorhombic, PccaMo Kα radiation
a = 7.9400 (16) ŵ = 0.91 mm1
b = 5.6744 (11) ÅT = 113 K
c = 29.461 (6) Å0.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1174 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
1053 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.899Rint = 0.039
6423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.04Δρmax = 0.84 e Å3
1174 reflectionsΔρmin = 0.74 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14081 (12)0.27246 (16)0.00242 (3)0.0266 (5)
Cl20.01306 (11)0.05859 (15)0.08874 (3)0.0246 (5)
F10.25000.50000.39104 (10)0.0445 (10)
O10.0906 (3)0.1621 (5)0.19160 (8)0.0236 (7)
N10.25000.50000.20376 (13)0.0224 (10)
C10.1999 (4)0.4011 (6)0.04757 (10)0.0199 (8)
C20.1431 (4)0.3007 (7)0.08894 (12)0.0209 (9)
C30.1986 (4)0.4021 (6)0.12895 (12)0.0184 (8)
C40.1677 (4)0.3289 (6)0.17733 (11)0.0183 (8)
C50.25000.50000.25202 (14)0.0173 (11)
C60.1893 (4)0.6957 (6)0.27533 (11)0.0206 (8)
H60.14990.82930.25910.025*
C70.1864 (5)0.6948 (7)0.32247 (12)0.0264 (9)
H70.14190.82480.33890.032*
C80.25000.50000.34501 (17)0.0338 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0358 (8)0.0274 (8)0.0165 (7)0.0042 (4)0.0031 (3)0.0059 (3)
Cl20.0301 (7)0.0219 (8)0.0219 (7)0.0043 (3)0.0010 (3)0.0042 (3)
F10.063 (2)0.054 (2)0.0166 (17)0.027 (2)0.0000.000
O10.0269 (14)0.0221 (14)0.0218 (13)0.0051 (10)0.0023 (10)0.0039 (10)
N10.032 (2)0.017 (2)0.017 (2)0.0042 (18)0.0000.000
C10.0228 (18)0.0250 (18)0.0119 (17)0.0079 (13)0.0016 (11)0.0046 (12)
C20.0182 (16)0.0226 (19)0.022 (2)0.0011 (13)0.0021 (11)0.0000 (14)
C30.0179 (16)0.0204 (16)0.0168 (17)0.0031 (13)0.0014 (12)0.0001 (13)
C40.0159 (14)0.0220 (19)0.0171 (18)0.0024 (14)0.0009 (12)0.0013 (13)
C50.014 (2)0.020 (2)0.018 (2)0.0002 (18)0.0000.000
C60.0195 (16)0.0208 (18)0.0213 (18)0.0038 (13)0.0008 (12)0.0016 (14)
C70.0243 (18)0.030 (2)0.0252 (19)0.0066 (15)0.0024 (14)0.0089 (15)
C80.050 (3)0.036 (3)0.015 (2)0.025 (3)0.0000.000
Geometric parameters (Å, º) top
Cl1—C11.709 (3)C3—C3i1.379 (7)
Cl2—C21.719 (4)C3—C41.504 (5)
F1—C81.356 (6)C5—C61.392 (4)
O1—C41.203 (5)C5—C6i1.392 (4)
N1—C41.406 (4)C6—C71.389 (5)
N1—C4i1.406 (4)C6—H60.9500
N1—C51.422 (5)C7—C81.385 (5)
C1—C1i1.376 (7)C7—H70.9500
C1—C21.419 (5)C8—C7i1.385 (5)
C2—C31.384 (5)
C4—N1—C4i112.7 (4)N1—C4—C3105.0 (3)
C4—N1—C5123.7 (2)C6—C5—C6i120.9 (4)
C4i—N1—C5123.7 (2)C6—C5—N1119.6 (2)
C1i—C1—C2120.7 (2)C6i—C5—N1119.6 (2)
C1i—C1—Cl1120.48 (13)C7—C6—C5119.7 (3)
C2—C1—Cl1118.8 (3)C7—C6—H6120.1
C3—C2—C1117.6 (3)C5—C6—H6120.1
C3—C2—Cl2121.8 (3)C8—C7—C6118.4 (4)
C1—C2—Cl2120.6 (3)C8—C7—H7120.8
C3i—C3—C2121.6 (2)C6—C7—H7120.8
C3i—C3—C4108.58 (19)F1—C8—C7i118.6 (2)
C2—C3—C4129.8 (3)F1—C8—C7118.6 (2)
O1—C4—N1125.9 (3)C7i—C8—C7122.7 (5)
O1—C4—C3129.1 (3)
C1i—C1—C2—C33.0 (6)C2—C3—C4—O11.9 (6)
Cl1—C1—C2—C3177.3 (2)C3i—C3—C4—N13.1 (4)
C1i—C1—C2—Cl2178.1 (3)C2—C3—C4—N1178.2 (3)
Cl1—C1—C2—Cl21.6 (4)C4—N1—C5—C6122.6 (2)
C1—C2—C3—C3i1.9 (6)C4i—N1—C5—C657.4 (2)
Cl2—C2—C3—C3i179.2 (3)C4—N1—C5—C6i57.4 (2)
C1—C2—C3—C4176.6 (3)C4i—N1—C5—C6i122.6 (2)
Cl2—C2—C3—C42.3 (5)C6i—C5—C6—C71.1 (2)
C4i—N1—C4—O1178.8 (4)N1—C5—C6—C7178.9 (2)
C5—N1—C4—O11.2 (4)C5—C6—C7—C82.1 (4)
C4i—N1—C4—C31.12 (15)C6—C7—C8—F1178.9 (2)
C5—N1—C4—C3178.88 (15)C6—C7—C8—C7i1.1 (2)
C3i—C3—C4—O1176.8 (4)
Symmetry code: (i) x+1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl2ii0.952.803.690 (4)157
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H4Cl4FNO2
Mr378.98
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)113
a, b, c (Å)7.9400 (16), 5.6744 (11), 29.461 (6)
V3)1327.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2001)
Tmin, Tmax0.839, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
6423, 1174, 1053
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.204, 1.04
No. of reflections1174
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.74

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl2i0.952.803.690 (4)157
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

The work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

References

First citationHan, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233–238.  CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D., Shi, Y.-Q., Chen, B., Cheng, Y.-H. & Gao, X. (2006). Acta Cryst. E62, o408–o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds