metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m849-m850

(4-Carb­­oxy-2-sulfonato­benzoato-κ2O1,O2)bis­­(1,10-phenanthroline-κ2N,N′)manganese(II)

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: mx_li@mail.shu.edu.cn

(Received 11 June 2010; accepted 19 June 2010; online 26 June 2010)

In the title complex, [Mn(C8H4O7S)(C12H8N2)2], the MnII atom is chelated by one 4-carb­oxy-2-sulfonato­benzoate anion and two phenathroline (phen) ligands in a distorted octa­hedral MnN4O2 geometry. The benzene ring of the 4-carb­oxy-2-sulfonato­benzoate anion is twisted with respect to the two phen ring systems at dihedral angles of 66.38 (9) and 53.56 (9)°. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonding links the mol­ecules into chains running parallel to [100]. Inter­molecular ππ stacking is also observed between parallel phen ring systems, the face-to-face distance being 3.432 (6) Å.

Related literature

The 4-carb­oxy-2-sulfonato­benzoate anion has been used to construct coordination polymers through both carboxyl and sulfonate groups, see: Horike et al. (2006[Horike, S., Matsuda, R., Tanaka, D., Matsubara, S., Mizuno, M., Endo, K. & Kitagawa, S. (2006). J. Am. Chem. Soc. 128, 4222-4223.]); Xiao et al. (2007[Xiao, H.-P., Zheng, Y.-X., Liang, X.-Q., Zuo, J.-L. & You, X.-Z. (2007). J. Mol. Struct. 888, 55-61.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H4O7S)(C12H8N2)2]

  • Mr = 659.52

  • Triclinic, [P \overline 1]

  • a = 9.490 (2) Å

  • b = 9.688 (2) Å

  • c = 16.842 (4) Å

  • α = 73.294 (4)°

  • β = 89.016 (4)°

  • γ = 70.159 (3)°

  • V = 1389.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 K

  • 0.35 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.898

  • 6937 measured reflections

  • 4883 independent reflections

  • 4344 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.07

  • 4883 reflections

  • 407 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.0769 (15)
Mn1—O3 2.1878 (15)
Mn1—N1 2.2824 (17)
Mn1—N2 2.3321 (18)
Mn1—N3 2.2592 (17)
Mn1—N4 2.2458 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O2i 0.82 1.72 2.517 (3) 165
C8—H8⋯O6ii 0.93 2.42 3.209 (4) 142
C18—H18⋯O5iii 0.93 2.46 3.306 (3) 151
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic acids have extensively been used to prepare coordination complexes because of the high affinity of carboxylate function and the versatile coordination modes of the carboxylate groups. Among the aromatic acids, 2-sulfoterephtalate (stp) ligand is useful in the construction of new metal–organic coordination polymers due to its two carboxylate groups and one sulfonate group (Horike et al., 2006; Xiao et al., 2007). Herein, we present a new six-coordinated manganese(II) complex based on stp. The molecular structure of the title compound is shown in Fig.1. The coordination geometry of the Mn(II) is distorted octahedral, in which four positions are occupied by four N atoms of two chelating phen ligands and the other two occupied by two O atoms from one caboxylate and one sulfonate of one stp ligand. The Mn—N distances are in the range 2.2458 (18) - 2.3321 (18) Å. The Mn—O distances are 2.0769 (15) and 2.1878 (15)°. The adjacent molecules are linked by O—H···O intermolecular hydrogen bonds to form a one dimensional chain structure. Furthermore, π-π stacks between phen ligands from adjacent molecules link these chains forming a two dimensional layer.

Related literature top

The 4-carboxy-2-sulfonatobenzoate anion has been used to construct coordination polymers through both carboxyl and sulfonate groups, see: Horike et al. (2006); Xiao et al. (2007).

Experimental top

A mixture of MnCl2.4H2O (39.6 mg, 0.2 mmol), NaH2sta (53.6 mg, 0.2 mmol), phen (90.2 mg, 0.5 mmol) and 8.0 ml of distilled water was placed in a Teflon-lined stainless steel vessel and heated at 403 K for 3 day. After slow cooling to room temperature, yellow block crystals were obtained in 35% yield (based on NaH2stp).

Refinement top

H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound.
(4-Carboxy-2-sulfonatobenzoato-κ2O1,O2)bis(1,10- phenanthroline-κ2N,N')manganese(II) top
Crystal data top
[Mn(C8H4O7S)(C12H8N2)2]Z = 2
Mr = 659.52F(000) = 674
Triclinic, P1Dx = 1.576 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.490 (2) ÅCell parameters from 1000 reflections
b = 9.688 (2) Åθ = 2.3–28.1°
c = 16.842 (4) ŵ = 0.61 mm1
α = 73.294 (4)°T = 298 K
β = 89.016 (4)°Block, yellow
γ = 70.159 (3)°0.35 × 0.22 × 0.18 mm
V = 1389.6 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4883 independent reflections
Radiation source: fine-focus sealed tube4344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scanθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 118
Tmin = 0.815, Tmax = 0.898k = 1111
6937 measured reflectionsl = 2016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1828P]
where P = (Fo2 + 2Fc2)/3
4883 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.57 e Å3
Crystal data top
[Mn(C8H4O7S)(C12H8N2)2]γ = 70.159 (3)°
Mr = 659.52V = 1389.6 (5) Å3
Triclinic, P1Z = 2
a = 9.490 (2) ÅMo Kα radiation
b = 9.688 (2) ŵ = 0.61 mm1
c = 16.842 (4) ÅT = 298 K
α = 73.294 (4)°0.35 × 0.22 × 0.18 mm
β = 89.016 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4883 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4344 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.898Rint = 0.017
6937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
4883 reflectionsΔρmin = 0.57 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.81303 (3)0.62093 (3)0.736333 (18)0.03308 (12)
S10.56855 (5)0.51204 (6)0.67785 (3)0.03438 (15)
O10.89461 (15)0.38212 (16)0.77751 (10)0.0426 (4)
O20.99042 (17)0.1388 (2)0.78338 (16)0.0720 (6)
O30.58796 (16)0.60968 (16)0.72599 (10)0.0419 (3)
O40.68197 (19)0.4882 (2)0.62139 (10)0.0553 (4)
O50.41600 (17)0.56635 (19)0.64207 (10)0.0492 (4)
O60.3320 (2)0.0085 (2)0.89832 (14)0.0753 (6)
O70.23792 (19)0.1821 (2)0.77621 (14)0.0731 (6)
H70.16420.15630.78670.110*
N10.75417 (18)0.6487 (2)0.86416 (10)0.0360 (4)
N21.00468 (19)0.6749 (2)0.79177 (11)0.0377 (4)
N30.93871 (19)0.6367 (2)0.62082 (10)0.0359 (4)
N40.7026 (2)0.8611 (2)0.65126 (11)0.0409 (4)
C10.6354 (3)0.6297 (3)0.90112 (14)0.0454 (5)
H10.56460.61220.87150.055*
C20.6108 (3)0.6344 (3)0.98204 (15)0.0501 (6)
H20.52510.62111.00550.060*
C30.7132 (3)0.6585 (3)1.02633 (14)0.0481 (6)
H30.69960.65901.08110.058*
C40.8391 (2)0.6827 (2)0.98951 (13)0.0401 (5)
C50.9479 (3)0.7165 (3)1.03036 (15)0.0518 (6)
H50.93770.72011.08480.062*
C61.0646 (3)0.7433 (3)0.99153 (16)0.0519 (6)
H61.13190.76901.01880.062*
C71.0876 (2)0.7330 (2)0.90899 (14)0.0407 (5)
C81.2103 (3)0.7554 (3)0.86739 (16)0.0484 (6)
H81.27830.78440.89180.058*
C91.2297 (3)0.7346 (3)0.79113 (16)0.0511 (6)
H91.31140.74800.76290.061*
C101.1254 (3)0.6930 (3)0.75616 (15)0.0458 (5)
H101.14110.67670.70440.055*
C110.9859 (2)0.6951 (2)0.86801 (12)0.0340 (4)
C120.8563 (2)0.6745 (2)0.90764 (12)0.0339 (4)
C131.0580 (2)0.5287 (3)0.60794 (14)0.0432 (5)
H131.09300.43320.64820.052*
C141.1337 (3)0.5519 (3)0.53646 (15)0.0513 (6)
H141.21970.47440.53050.062*
C151.0812 (3)0.6879 (3)0.47598 (15)0.0517 (6)
H151.12970.70380.42750.062*
C160.9538 (3)0.8046 (3)0.48635 (14)0.0463 (5)
C170.8901 (3)0.9513 (3)0.42570 (16)0.0628 (7)
H170.93200.97080.37520.075*
C180.7714 (3)1.0617 (3)0.43993 (16)0.0652 (8)
H180.73251.15640.39930.078*
C190.7035 (3)1.0363 (3)0.51642 (15)0.0508 (6)
C200.5795 (3)1.1480 (3)0.53439 (17)0.0662 (8)
H200.53811.24510.49600.079*
C210.5203 (3)1.1138 (3)0.60796 (17)0.0673 (8)
H210.43731.18670.62040.081*
C220.5843 (3)0.9696 (3)0.66442 (16)0.0545 (6)
H220.54160.94780.71450.065*
C230.7610 (2)0.8935 (2)0.57700 (12)0.0380 (5)
C240.8874 (2)0.7739 (2)0.56166 (12)0.0363 (4)
C250.8833 (2)0.2560 (2)0.78317 (14)0.0385 (5)
C260.7340 (2)0.2323 (2)0.79683 (13)0.0345 (4)
C270.5951 (2)0.3317 (2)0.75298 (12)0.0308 (4)
C280.4700 (2)0.2891 (2)0.76675 (13)0.0348 (4)
H280.37950.35310.73560.042*
C290.4756 (2)0.1545 (2)0.82534 (14)0.0384 (5)
C300.6098 (2)0.0612 (3)0.87331 (16)0.0477 (6)
H300.61370.02600.91610.057*
C310.7366 (2)0.0984 (3)0.85731 (16)0.0471 (6)
H310.82720.03220.88780.057*
C320.3415 (2)0.1064 (3)0.83696 (16)0.0459 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03048 (19)0.03700 (19)0.03069 (19)0.01261 (14)0.00304 (13)0.00756 (14)
S10.0258 (3)0.0387 (3)0.0326 (3)0.0097 (2)0.00071 (19)0.0034 (2)
O10.0307 (8)0.0364 (8)0.0575 (9)0.0123 (6)0.0042 (7)0.0083 (7)
O20.0222 (8)0.0439 (9)0.151 (2)0.0099 (7)0.0107 (10)0.0330 (11)
O30.0327 (8)0.0383 (8)0.0519 (9)0.0108 (6)0.0001 (6)0.0109 (7)
O40.0495 (10)0.0676 (11)0.0433 (9)0.0189 (9)0.0170 (7)0.0111 (8)
O50.0350 (8)0.0501 (9)0.0493 (9)0.0120 (7)0.0151 (7)0.0023 (7)
O60.0592 (12)0.0700 (13)0.0938 (15)0.0415 (10)0.0020 (11)0.0027 (12)
O70.0289 (9)0.0722 (12)0.1011 (15)0.0260 (9)0.0064 (9)0.0102 (11)
N10.0301 (9)0.0414 (9)0.0343 (9)0.0116 (7)0.0020 (7)0.0092 (8)
N20.0344 (9)0.0430 (10)0.0366 (9)0.0152 (8)0.0044 (7)0.0113 (8)
N30.0336 (9)0.0411 (9)0.0333 (8)0.0138 (8)0.0033 (6)0.0108 (8)
N40.0425 (10)0.0407 (10)0.0359 (9)0.0115 (8)0.0067 (8)0.0099 (8)
C10.0388 (12)0.0560 (14)0.0414 (12)0.0178 (10)0.0063 (9)0.0132 (11)
C20.0450 (13)0.0572 (14)0.0450 (13)0.0169 (11)0.0163 (10)0.0122 (11)
C30.0543 (14)0.0476 (13)0.0326 (11)0.0073 (11)0.0060 (10)0.0104 (10)
C40.0416 (12)0.0364 (11)0.0323 (11)0.0021 (9)0.0028 (9)0.0089 (9)
C50.0530 (15)0.0560 (14)0.0405 (13)0.0058 (12)0.0063 (11)0.0208 (11)
C60.0465 (14)0.0579 (14)0.0522 (14)0.0107 (11)0.0104 (11)0.0263 (12)
C70.0360 (11)0.0347 (10)0.0458 (12)0.0056 (9)0.0069 (9)0.0114 (10)
C80.0380 (12)0.0474 (13)0.0619 (15)0.0171 (10)0.0083 (11)0.0161 (12)
C90.0381 (12)0.0605 (15)0.0573 (15)0.0236 (11)0.0048 (11)0.0140 (12)
C100.0406 (12)0.0589 (14)0.0428 (12)0.0245 (11)0.0075 (10)0.0140 (11)
C110.0305 (10)0.0301 (10)0.0350 (11)0.0043 (8)0.0036 (8)0.0074 (8)
C120.0334 (10)0.0292 (10)0.0320 (10)0.0045 (8)0.0019 (8)0.0059 (8)
C130.0381 (12)0.0438 (12)0.0434 (12)0.0092 (10)0.0002 (9)0.0128 (10)
C140.0375 (12)0.0606 (15)0.0562 (15)0.0112 (11)0.0110 (11)0.0256 (13)
C150.0488 (14)0.0632 (15)0.0464 (14)0.0217 (12)0.0159 (11)0.0195 (12)
C160.0493 (13)0.0534 (13)0.0375 (12)0.0212 (11)0.0118 (10)0.0119 (10)
C170.0760 (19)0.0614 (16)0.0414 (14)0.0214 (14)0.0188 (13)0.0049 (12)
C180.081 (2)0.0527 (15)0.0425 (14)0.0143 (14)0.0095 (13)0.0031 (12)
C190.0591 (15)0.0430 (13)0.0409 (13)0.0124 (11)0.0030 (11)0.0052 (10)
C200.081 (2)0.0426 (13)0.0489 (15)0.0014 (13)0.0021 (14)0.0019 (12)
C210.0695 (18)0.0518 (15)0.0547 (16)0.0075 (13)0.0079 (13)0.0119 (13)
C220.0542 (15)0.0508 (14)0.0454 (13)0.0039 (12)0.0125 (11)0.0127 (11)
C230.0405 (11)0.0396 (11)0.0326 (11)0.0148 (9)0.0026 (9)0.0079 (9)
C240.0355 (11)0.0423 (11)0.0344 (11)0.0176 (9)0.0036 (8)0.0112 (9)
C250.0213 (9)0.0388 (11)0.0514 (13)0.0086 (9)0.0034 (8)0.0093 (10)
C260.0236 (10)0.0334 (10)0.0440 (11)0.0078 (8)0.0001 (8)0.0100 (9)
C270.0232 (9)0.0325 (10)0.0342 (10)0.0076 (8)0.0018 (7)0.0088 (8)
C280.0222 (9)0.0357 (10)0.0430 (11)0.0065 (8)0.0001 (8)0.0107 (9)
C290.0266 (10)0.0348 (10)0.0526 (13)0.0095 (8)0.0055 (9)0.0128 (10)
C300.0354 (12)0.0349 (11)0.0628 (15)0.0121 (9)0.0012 (10)0.0000 (11)
C310.0288 (11)0.0376 (11)0.0615 (15)0.0071 (9)0.0098 (10)0.0004 (11)
C320.0298 (11)0.0360 (11)0.0712 (16)0.0117 (9)0.0082 (11)0.0147 (11)
Geometric parameters (Å, º) top
Mn1—O12.0769 (15)C8—C91.356 (4)
Mn1—O32.1878 (15)C8—H80.9300
Mn1—N12.2824 (17)C9—C101.384 (3)
Mn1—N22.3321 (18)C9—H90.9300
Mn1—N32.2592 (17)C10—H100.9300
Mn1—N42.2458 (18)C11—C121.435 (3)
S1—O41.4279 (16)C13—C141.393 (3)
S1—O51.4375 (15)C13—H130.9300
S1—O31.4664 (16)C14—C151.350 (3)
S1—C271.777 (2)C14—H140.9300
O1—C251.240 (2)C15—C161.396 (3)
O2—C251.240 (3)C15—H150.9300
O6—C321.211 (3)C16—C241.407 (3)
O7—C321.290 (3)C16—C171.425 (4)
O7—H70.8200C17—C181.338 (4)
N1—C11.321 (3)C17—H170.9300
N1—C121.354 (3)C18—C191.425 (4)
N2—C101.325 (3)C18—H180.9300
N2—C111.353 (3)C19—C231.395 (3)
N3—C131.320 (3)C19—C201.400 (4)
N3—C241.346 (3)C20—C211.352 (4)
N4—C221.319 (3)C20—H200.9300
N4—C231.356 (3)C21—C221.380 (4)
C1—C21.390 (3)C21—H210.9300
C1—H10.9300C22—H220.9300
C2—C31.355 (4)C23—C241.437 (3)
C2—H20.9300C25—C261.514 (3)
C3—C41.396 (3)C26—C311.393 (3)
C3—H30.9300C26—C271.404 (3)
C4—C121.408 (3)C27—C281.379 (3)
C4—C51.425 (3)C28—C291.376 (3)
C5—C61.339 (4)C28—H280.9300
C5—H50.9300C29—C301.388 (3)
C6—C71.430 (3)C29—C321.489 (3)
C6—H60.9300C30—C311.370 (3)
C7—C81.396 (3)C30—H300.9300
C7—C111.397 (3)C31—H310.9300
O1—Mn1—O387.57 (6)N2—C11—C7122.68 (19)
O1—Mn1—N4159.48 (7)N2—C11—C12117.70 (18)
O3—Mn1—N483.33 (6)C7—C11—C12119.62 (19)
O1—Mn1—N394.44 (6)N1—C12—C4122.37 (19)
O3—Mn1—N3117.20 (6)N1—C12—C11118.32 (18)
N4—Mn1—N373.72 (6)C4—C12—C11119.30 (19)
O1—Mn1—N194.95 (6)N3—C13—C14122.7 (2)
O3—Mn1—N184.76 (6)N3—C13—H13118.7
N4—Mn1—N1102.46 (6)C14—C13—H13118.7
N3—Mn1—N1156.45 (6)C15—C14—C13119.4 (2)
O1—Mn1—N2101.05 (6)C15—C14—H14120.3
O3—Mn1—N2155.60 (6)C13—C14—H14120.3
N4—Mn1—N294.70 (7)C14—C15—C16119.8 (2)
N3—Mn1—N285.15 (6)C14—C15—H15120.1
N1—Mn1—N271.87 (6)C16—C15—H15120.1
O4—S1—O5115.77 (11)C15—C16—C24117.2 (2)
O4—S1—O3111.31 (10)C15—C16—C17123.7 (2)
O5—S1—O3110.92 (10)C24—C16—C17119.2 (2)
O4—S1—C27107.73 (10)C18—C17—C16121.4 (2)
O5—S1—C27105.52 (9)C18—C17—H17119.3
O3—S1—C27104.76 (9)C16—C17—H17119.3
C25—O1—Mn1151.70 (14)C17—C18—C19121.0 (2)
S1—O3—Mn1116.54 (8)C17—C18—H18119.5
C32—O7—H7109.5C19—C18—H18119.5
C1—N1—C12117.95 (18)C23—C19—C20117.4 (2)
C1—N1—Mn1125.22 (15)C23—C19—C18119.4 (2)
C12—N1—Mn1116.60 (13)C20—C19—C18123.2 (2)
C10—N2—C11117.11 (18)C21—C20—C19119.5 (2)
C10—N2—Mn1127.55 (15)C21—C20—H20120.3
C11—N2—Mn1115.29 (13)C19—C20—H20120.3
C13—N3—C24118.33 (18)C20—C21—C22119.3 (2)
C13—N3—Mn1126.69 (15)C20—C21—H21120.3
C24—N3—Mn1114.92 (13)C22—C21—H21120.3
C22—N4—C23117.38 (19)N4—C22—C21123.7 (2)
C22—N4—Mn1127.03 (16)N4—C22—H22118.2
C23—N4—Mn1115.51 (13)C21—C22—H22118.2
N1—C1—C2123.3 (2)N4—C23—C19122.7 (2)
N1—C1—H1118.4N4—C23—C24117.44 (19)
C2—C1—H1118.4C19—C23—C24119.82 (19)
C3—C2—C1119.2 (2)N3—C24—C16122.51 (19)
C3—C2—H2120.4N3—C24—C23118.39 (18)
C1—C2—H2120.4C16—C24—C23119.1 (2)
C2—C3—C4119.8 (2)O1—C25—O2124.36 (19)
C2—C3—H3120.1O1—C25—C26120.81 (18)
C4—C3—H3120.1O2—C25—C26114.69 (18)
C3—C4—C12117.4 (2)C31—C26—C27117.82 (18)
C3—C4—C5123.2 (2)C31—C26—C25116.49 (18)
C12—C4—C5119.4 (2)C27—C26—C25125.68 (18)
C6—C5—C4121.0 (2)C28—C27—C26119.48 (18)
C6—C5—H5119.5C28—C27—S1116.47 (15)
C4—C5—H5119.5C26—C27—S1124.05 (15)
C5—C6—C7121.3 (2)C29—C28—C27121.75 (18)
C5—C6—H6119.4C29—C28—H28119.1
C7—C6—H6119.4C27—C28—H28119.1
C8—C7—C11117.7 (2)C28—C29—C30119.05 (19)
C8—C7—C6123.0 (2)C28—C29—C32121.21 (19)
C11—C7—C6119.3 (2)C30—C29—C32119.7 (2)
C9—C8—C7119.7 (2)C31—C30—C29119.6 (2)
C9—C8—H8120.2C31—C30—H30120.2
C7—C8—H8120.2C29—C30—H30120.2
C8—C9—C10118.7 (2)C30—C31—C26122.0 (2)
C8—C9—H9120.7C30—C31—H31119.0
C10—C9—H9120.7C26—C31—H31119.0
N2—C10—C9124.1 (2)O6—C32—O7124.7 (2)
N2—C10—H10118.0O6—C32—C29122.5 (2)
C9—C10—H10118.0O7—C32—C29112.8 (2)
O3—Mn1—O1—C2522.0 (3)C1—N1—C12—C40.6 (3)
N4—Mn1—O1—C2541.6 (4)Mn1—N1—C12—C4175.35 (15)
N3—Mn1—O1—C2595.1 (3)C1—N1—C12—C11179.93 (19)
N1—Mn1—O1—C25106.6 (3)Mn1—N1—C12—C115.1 (2)
N2—Mn1—O1—C25179.0 (3)C3—C4—C12—N11.9 (3)
O4—S1—O3—Mn121.97 (13)C5—C4—C12—N1177.40 (19)
O5—S1—O3—Mn1152.41 (9)C3—C4—C12—C11178.60 (18)
C27—S1—O3—Mn194.20 (10)C5—C4—C12—C112.1 (3)
O1—Mn1—O3—S152.43 (10)N2—C11—C12—N15.4 (3)
N4—Mn1—O3—S1109.14 (10)C7—C11—C12—N1175.34 (18)
N3—Mn1—O3—S141.31 (11)N2—C11—C12—C4175.11 (18)
N1—Mn1—O3—S1147.63 (10)C7—C11—C12—C44.2 (3)
N2—Mn1—O3—S1164.19 (11)C24—N3—C13—C141.0 (3)
O1—Mn1—N1—C176.97 (18)Mn1—N3—C13—C14176.08 (17)
O3—Mn1—N1—C110.13 (18)N3—C13—C14—C152.5 (4)
N4—Mn1—N1—C192.10 (18)C13—C14—C15—C161.3 (4)
N3—Mn1—N1—C1169.89 (17)C14—C15—C16—C241.0 (4)
N2—Mn1—N1—C1176.99 (19)C14—C15—C16—C17179.7 (3)
O1—Mn1—N1—C1297.39 (14)C15—C16—C17—C18177.3 (3)
O3—Mn1—N1—C12175.52 (14)C24—C16—C17—C182.0 (4)
N4—Mn1—N1—C1293.55 (14)C16—C17—C18—C190.3 (5)
N3—Mn1—N1—C1215.7 (2)C17—C18—C19—C230.7 (4)
N2—Mn1—N1—C122.64 (13)C17—C18—C19—C20179.8 (3)
O1—Mn1—N2—C1090.70 (19)C23—C19—C20—C210.6 (4)
O3—Mn1—N2—C10160.28 (17)C18—C19—C20—C21179.0 (3)
N4—Mn1—N2—C1076.07 (19)C19—C20—C21—C220.7 (5)
N3—Mn1—N2—C102.88 (19)C23—N4—C22—C211.7 (4)
N1—Mn1—N2—C10177.7 (2)Mn1—N4—C22—C21178.3 (2)
O1—Mn1—N2—C1191.80 (15)C20—C21—C22—N40.5 (5)
O3—Mn1—N2—C1117.2 (2)C22—N4—C23—C191.7 (3)
N4—Mn1—N2—C11101.42 (14)Mn1—N4—C23—C19178.69 (18)
N3—Mn1—N2—C11174.61 (15)C22—N4—C23—C24178.3 (2)
N1—Mn1—N2—C110.17 (13)Mn1—N4—C23—C241.4 (2)
O1—Mn1—N3—C1320.27 (18)C20—C19—C23—N40.6 (4)
O3—Mn1—N3—C13109.82 (17)C18—C19—C23—N4179.8 (2)
N4—Mn1—N3—C13176.81 (19)C20—C19—C23—C24179.4 (2)
N1—Mn1—N3—C1393.0 (2)C18—C19—C23—C240.1 (4)
N2—Mn1—N3—C1380.47 (18)C13—N3—C24—C161.5 (3)
O1—Mn1—N3—C24162.55 (14)Mn1—N3—C24—C16178.94 (17)
O3—Mn1—N3—C2473.01 (15)C13—N3—C24—C23177.63 (19)
N4—Mn1—N3—C240.37 (14)Mn1—N3—C24—C230.2 (2)
N1—Mn1—N3—C2484.2 (2)C15—C16—C24—N32.5 (3)
N2—Mn1—N3—C2496.71 (14)C17—C16—C24—N3178.1 (2)
O1—Mn1—N4—C22120.9 (2)C15—C16—C24—C23176.6 (2)
O3—Mn1—N4—C2256.7 (2)C17—C16—C24—C232.7 (3)
N3—Mn1—N4—C22177.6 (2)N4—C23—C24—N31.1 (3)
N1—Mn1—N4—C2226.5 (2)C19—C23—C24—N3179.0 (2)
N2—Mn1—N4—C2298.9 (2)N4—C23—C24—C16178.1 (2)
O1—Mn1—N4—C2355.7 (3)C19—C23—C24—C161.8 (3)
O3—Mn1—N4—C23119.97 (16)Mn1—O1—C25—O2144.8 (3)
N3—Mn1—N4—C230.93 (15)Mn1—O1—C25—C2639.7 (4)
N1—Mn1—N4—C23156.92 (15)O1—C25—C26—C31134.3 (2)
N2—Mn1—N4—C2384.47 (15)O2—C25—C26—C3141.6 (3)
C12—N1—C1—C20.2 (3)O1—C25—C26—C2746.9 (3)
Mn1—N1—C1—C2174.10 (18)O2—C25—C26—C27137.2 (2)
N1—C1—C2—C30.5 (4)C31—C26—C27—C284.6 (3)
C1—C2—C3—C41.9 (4)C25—C26—C27—C28174.23 (19)
C2—C3—C4—C122.5 (3)C31—C26—C27—S1176.47 (17)
C2—C3—C4—C5176.8 (2)C25—C26—C27—S14.7 (3)
C3—C4—C5—C6178.0 (2)O4—S1—C27—C28129.68 (16)
C12—C4—C5—C61.2 (3)O5—S1—C27—C285.45 (18)
C4—C5—C6—C72.5 (4)O3—S1—C27—C28111.71 (16)
C5—C6—C7—C8178.0 (2)O4—S1—C27—C2649.3 (2)
C5—C6—C7—C110.3 (4)O5—S1—C27—C26173.55 (17)
C11—C7—C8—C92.4 (3)O3—S1—C27—C2669.29 (18)
C6—C7—C8—C9176.0 (2)C26—C27—C28—C293.1 (3)
C7—C8—C9—C100.7 (4)S1—C27—C28—C29177.84 (16)
C11—N2—C10—C91.7 (3)C27—C28—C29—C301.7 (3)
Mn1—N2—C10—C9175.73 (18)C27—C28—C29—C32177.2 (2)
C8—C9—C10—N21.5 (4)C28—C29—C30—C315.0 (3)
C10—N2—C11—C70.1 (3)C32—C29—C30—C31174.0 (2)
Mn1—N2—C11—C7177.91 (15)C29—C30—C31—C263.5 (4)
C10—N2—C11—C12179.41 (19)C27—C26—C31—C301.3 (3)
Mn1—N2—C11—C122.8 (2)C25—C26—C31—C30177.6 (2)
C8—C7—C11—N22.1 (3)C28—C29—C32—O6163.7 (2)
C6—C7—C11—N2176.2 (2)C30—C29—C32—O617.3 (4)
C8—C7—C11—C12178.61 (19)C28—C29—C32—O714.8 (3)
C6—C7—C11—C123.0 (3)C30—C29—C32—O7164.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.821.722.517 (3)165
C8—H8···O6ii0.932.423.209 (4)142
C18—H18···O5iii0.932.463.306 (3)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C8H4O7S)(C12H8N2)2]
Mr659.52
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.490 (2), 9.688 (2), 16.842 (4)
α, β, γ (°)73.294 (4), 89.016 (4), 70.159 (3)
V3)1389.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.35 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.815, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
6937, 4883, 4344
Rint0.017
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.07
No. of reflections4883
No. of parameters407
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Mn1—O12.0769 (15)Mn1—N22.3321 (18)
Mn1—O32.1878 (15)Mn1—N32.2592 (17)
Mn1—N12.2824 (17)Mn1—N42.2458 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.821.722.517 (3)165
C8—H8···O6ii0.932.423.209 (4)142
C18—H18···O5iii0.932.463.306 (3)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102), the Excellent Youth Teachers Foundation of Shanghai Municipal Education Commission and the Innovation Foundation of Shanghai University, China.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHorike, S., Matsuda, R., Tanaka, D., Matsubara, S., Mizuno, M., Endo, K. & Kitagawa, S. (2006). J. Am. Chem. Soc. 128, 4222–4223.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-P., Zheng, Y.-X., Liang, X.-Q., Zuo, J.-L. & You, X.-Z. (2007). J. Mol. Struct. 888, 55–61.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m849-m850
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds