organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(3-Chloro­phen­yl)-N-(4-hy­dr­oxy-3-meth­­oxy­benz­yl)acryl­amide

aDepartment of Chemistry, Zunyi Normal College, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 11 June 2010; accepted 13 June 2010; online 18 June 2010)

In the title compound, C17H16ClNO3, the 4-hy­droxy-3-meth­oxy­benzyl group is planar [maximum atomic deviation = 0.0138 (16) Å] and is nearly perpendicular to the chloro­benzene ring, making a dihedral angle of 84.67 (4)°. The chloro­benzene and amide groups are located on the opposite sides of the C=C bond, showing an E configuration. The relatively long C=O bond distance of 1.2364 (19) Å and the short C—N bond distance of 1.341 (2) Å suggest electron delocalization in the amide fragment. Inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a derivative of capsaicin. For the biological activity of capsaicin, see: Kaga et al. (1989[Kaga, H., Miura, M. & Orito, K. A. (1989). J. Org. Chem. 54, 3477-3478.]). For a related structure, see: Huang et al. (2010[Huang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, o877.]). For electron delocal­ization in amide groups, see: Xia et al. (2009[Xia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16ClNO3

  • Mr = 317.76

  • Monoclinic, P 21 /c

  • a = 9.036 (3) Å

  • b = 14.972 (5) Å

  • c = 11.768 (4) Å

  • β = 95.047 (5)°

  • V = 1585.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 K

  • 0.40 × 0.38 × 0.36 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • 7733 measured reflections

  • 2848 independent reflections

  • 1680 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 0.87

  • 2848 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.12 2.960 (2) 165
O3—H3A⋯O1ii 0.82 1.84 2.6491 (18) 172
C2—H2⋯O1iii 0.93 2.41 3.298 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a derivative of capsaicin, which has been shown a variety of biological activities including mutagenicity (Kaga et al. 1989). We prepared the compound recently in the laboratory and determined its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The chlorobenzene and amide groups are located on the opposite sides of the C7 C8 bond, showing the E molecular configuration. The hydroxymethoxybenzyl moiety is planar [the maximum atomic deviation being 0.0138 (16) Å for O2 atom], and is nearly perpendicular to the chlorobenzene ring with a dihedral angle of 84.67 (4)°. The dihedral angle between the amide fragment and hydroxymethoxybenzene ring is 89.69 (13)°, which agrees with 85.66 (9)° found in the related derivative of capsaicin, N-(4-hydroxy-3-methoxybenzyl)-3-chloro-2,2-dimethylpropanamide (Huang et al. 2010). The longer C9O1 bond distance of 1.2364 (19) Å and the shorter C9—N1 bond distance of 1.341 (2) Å suggest the electron delocalization in the amide fragment, which is comparable to that found in the related compound N-(4-Hydroxy-3-methoxybenzyl)benzamide (Xia et al. 2009).

Intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonding are present in the crystal structure (Table 1), which helps to stabilize the crystal structure.

Related literature top

The title compound is a derivative of capsaicin. For the biological activity of capsaicin, see: Kaga et al. (1989). For a related structure, see: Huang et al. (2010). For electron delocalization in amide groups, see: Xia et al. (2009).

Experimental top

4-Hydroxy-3-methoxy benzylamine HCl salt (4.7 g, 25 mmol) and dimethylformamide (25 ml) were added to a 100 ml 3-necked flask equipped with an additional funnel, a thermometer and a magnetic stirrer. Water solution (10 ml) of NaOH (2.0 g) was added at room temperature. The mixture was stirred at 308 K for 30 min and then cooled to 273 K. An ether solution (10 ml) of 3-(3-chlorophenyl)acryloyl chloride (5.0 g, 25 mmol) was added dropwise at about 273 K over 20 min. After stirred for 2 h at room temperature the mixture was poured into water, and then extracted with ethyl acetate. The ethyl acetate extract was washed with 1 M HCl followed by saturated NaHCO3 and brine. The extract was then dried over anhydrous Na2SO4 and filtered. Solvents were removed under vacuum at about 308 K to give a solid crude. Recrystallization was performed twice with an absolute ethyl acetate to obtain single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with O—H = 0.82, N—H = 0.86 Å, C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl, 1.5Ueq(O) for hydroxy and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms).
(E)-3-(3-Chlorophenyl)-N-(4-hydroxy-3-methoxybenzyl)acrylamide top
Crystal data top
C17H16ClNO3F(000) = 664
Mr = 317.76Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2246 reflections
a = 9.036 (3) Åθ = 2.6–24.8°
b = 14.972 (5) ŵ = 0.25 mm1
c = 11.768 (4) ÅT = 294 K
β = 95.047 (5)°Prism, colorless
V = 1585.9 (9) Å30.40 × 0.38 × 0.36 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1680 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.2°, θmin = 3.2°
Detector resolution: 10.0 pixels mm-1h = 1010
ω scansk = 1417
7733 measured reflectionsl = 1412
2848 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0403P)2]
where P = (Fo2 + 2Fc2)/3
2848 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H16ClNO3V = 1585.9 (9) Å3
Mr = 317.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.036 (3) ŵ = 0.25 mm1
b = 14.972 (5) ÅT = 294 K
c = 11.768 (4) Å0.40 × 0.38 × 0.36 mm
β = 95.047 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1680 reflections with I > 2σ(I)
7733 measured reflectionsRint = 0.034
2848 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 0.87Δρmax = 0.18 e Å3
2848 reflectionsΔρmin = 0.18 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00757 (8)0.14493 (4)0.27966 (5)0.0860 (2)
N10.40981 (17)0.25930 (9)0.46714 (12)0.0486 (4)
H1N0.44010.28560.40850.058*
O10.43789 (14)0.13850 (8)0.58155 (9)0.0512 (3)
O20.26985 (16)0.62811 (8)0.51708 (10)0.0635 (4)
O30.44518 (16)0.63463 (8)0.70403 (9)0.0565 (4)
H3A0.48010.63040.77050.085*
C10.9795 (2)0.03509 (13)0.32316 (15)0.0521 (5)
C20.8564 (2)0.01564 (12)0.37947 (14)0.0466 (5)
H20.79090.06070.39610.056*
C30.8309 (2)0.07197 (12)0.41124 (14)0.0419 (4)
C40.9333 (2)0.13733 (13)0.38823 (14)0.0514 (5)
H40.91790.19620.40970.062*
C51.0569 (2)0.11562 (14)0.33406 (16)0.0600 (5)
H51.12540.15980.32010.072*
C61.0807 (2)0.02909 (15)0.30013 (16)0.0605 (6)
H61.16370.01460.26240.073*
C70.6954 (2)0.09312 (12)0.46534 (13)0.0434 (5)
H70.65860.04990.51210.052*
C80.6219 (2)0.16872 (12)0.45275 (13)0.0431 (5)
H80.65880.21310.40770.052*
C90.4838 (2)0.18648 (12)0.50668 (13)0.0391 (4)
C110.2816 (2)0.29694 (12)0.51673 (16)0.0534 (5)
H11A0.24950.25660.57420.064*
H11B0.20030.30410.45790.064*
C120.32141 (19)0.38656 (11)0.57021 (14)0.0424 (4)
C130.2720 (2)0.46507 (12)0.51713 (14)0.0451 (5)
H130.21010.46220.44980.054*
C140.3129 (2)0.54727 (11)0.56242 (14)0.0427 (5)
C150.4062 (2)0.55182 (11)0.66299 (13)0.0414 (4)
C160.4549 (2)0.47407 (13)0.71542 (14)0.0498 (5)
H160.51720.47660.78260.060*
C170.4126 (2)0.39228 (12)0.66993 (15)0.0522 (5)
H170.44620.34030.70700.063*
C180.1775 (3)0.62875 (14)0.41375 (17)0.0868 (8)
H18A0.22620.59780.35600.130*
H18B0.15840.68930.39010.130*
H18C0.08530.59960.42490.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0954 (5)0.0612 (4)0.1017 (5)0.0236 (3)0.0111 (4)0.0185 (3)
N10.0612 (11)0.0352 (9)0.0511 (9)0.0042 (8)0.0150 (8)0.0023 (7)
O10.0566 (9)0.0501 (8)0.0473 (7)0.0021 (7)0.0067 (6)0.0142 (6)
O20.0950 (11)0.0383 (8)0.0529 (8)0.0033 (7)0.0171 (7)0.0047 (6)
O30.0828 (10)0.0437 (8)0.0415 (7)0.0120 (7)0.0033 (7)0.0015 (6)
C10.0558 (14)0.0497 (12)0.0502 (11)0.0095 (11)0.0011 (10)0.0019 (9)
C20.0452 (12)0.0418 (11)0.0520 (11)0.0003 (9)0.0005 (9)0.0042 (9)
C30.0423 (12)0.0406 (11)0.0421 (10)0.0008 (9)0.0004 (8)0.0013 (8)
C40.0567 (13)0.0445 (11)0.0535 (11)0.0041 (11)0.0076 (10)0.0025 (9)
C50.0569 (14)0.0612 (15)0.0630 (12)0.0134 (12)0.0107 (11)0.0010 (11)
C60.0534 (14)0.0742 (16)0.0553 (12)0.0056 (13)0.0118 (10)0.0004 (11)
C70.0480 (12)0.0400 (11)0.0418 (10)0.0041 (10)0.0020 (8)0.0026 (8)
C80.0542 (13)0.0345 (11)0.0412 (9)0.0027 (9)0.0072 (9)0.0011 (8)
C90.0475 (12)0.0324 (10)0.0367 (9)0.0034 (9)0.0001 (8)0.0055 (8)
C110.0503 (13)0.0409 (11)0.0695 (12)0.0010 (10)0.0076 (10)0.0041 (10)
C120.0408 (11)0.0360 (11)0.0516 (11)0.0038 (9)0.0095 (9)0.0010 (9)
C130.0469 (12)0.0439 (11)0.0440 (10)0.0016 (10)0.0008 (8)0.0040 (9)
C140.0523 (12)0.0347 (11)0.0412 (10)0.0035 (9)0.0052 (9)0.0033 (8)
C150.0488 (12)0.0387 (11)0.0373 (9)0.0045 (9)0.0079 (8)0.0020 (8)
C160.0551 (13)0.0499 (12)0.0428 (10)0.0025 (10)0.0043 (9)0.0024 (9)
C170.0586 (14)0.0424 (12)0.0550 (11)0.0130 (10)0.0025 (10)0.0075 (9)
C180.124 (2)0.0588 (14)0.0691 (14)0.0223 (15)0.0405 (14)0.0010 (11)
Geometric parameters (Å, º) top
Cl1—C11.747 (2)C7—C81.314 (2)
N1—C91.341 (2)C7—H70.9300
N1—C111.456 (2)C8—C91.473 (3)
N1—H1N0.8600C8—H80.9300
O1—C91.2364 (19)C11—C121.512 (2)
O2—C141.366 (2)C11—H11A0.9700
O2—C181.413 (2)C11—H11B0.9700
O3—C151.366 (2)C12—C171.376 (2)
O3—H3A0.8200C12—C131.386 (2)
C1—C61.370 (3)C13—C141.379 (2)
C1—C21.375 (3)C13—H130.9300
C2—C31.389 (2)C14—C151.393 (2)
C2—H20.9300C15—C161.372 (2)
C3—C41.389 (2)C16—C171.377 (2)
C3—C71.464 (3)C16—H160.9300
C4—C51.373 (3)C17—H170.9300
C4—H40.9300C18—H18A0.9600
C5—C61.378 (3)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—H60.9300
C9—N1—C11124.46 (15)N1—C9—C8114.38 (16)
C9—N1—H1N117.8N1—C11—C12110.01 (15)
C11—N1—H1N117.8N1—C11—H11A109.7
C14—O2—C18117.95 (14)C12—C11—H11A109.7
C15—O3—H3A109.5N1—C11—H11B109.7
C6—C1—C2121.96 (18)C12—C11—H11B109.7
C6—C1—Cl1119.05 (17)H11A—C11—H11B108.2
C2—C1—Cl1118.99 (16)C17—C12—C13118.45 (16)
C1—C2—C3119.33 (18)C17—C12—C11120.86 (16)
C1—C2—H2120.3C13—C12—C11120.64 (16)
C3—C2—H2120.3C14—C13—C12121.19 (16)
C2—C3—C4118.94 (17)C14—C13—H13119.4
C2—C3—C7119.09 (17)C12—C13—H13119.4
C4—C3—C7121.95 (17)O2—C14—C13125.63 (15)
C5—C4—C3120.44 (18)O2—C14—C15114.78 (15)
C5—C4—H4119.8C13—C14—C15119.59 (15)
C3—C4—H4119.8O3—C15—C16123.29 (15)
C4—C5—C6120.7 (2)O3—C15—C14117.58 (15)
C4—C5—H5119.6C16—C15—C14119.13 (16)
C6—C5—H5119.6C15—C16—C17120.86 (16)
C1—C6—C5118.6 (2)C15—C16—H16119.6
C1—C6—H6120.7C17—C16—H16119.6
C5—C6—H6120.7C12—C17—C16120.77 (16)
C8—C7—C3124.84 (17)C12—C17—H17119.6
C8—C7—H7117.6C16—C17—H17119.6
C3—C7—H7117.6O2—C18—H18A109.5
C7—C8—C9123.09 (17)O2—C18—H18B109.5
C7—C8—H8118.5H18A—C18—H18B109.5
C9—C8—H8118.5O2—C18—H18C109.5
O1—C9—N1122.10 (17)H18A—C18—H18C109.5
O1—C9—C8123.52 (16)H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.122.960 (2)165
O3—H3A···O1ii0.821.842.6491 (18)172
C2—H2···O1iii0.932.413.298 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H16ClNO3
Mr317.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.036 (3), 14.972 (5), 11.768 (4)
β (°) 95.047 (5)
V3)1585.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.38 × 0.36
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7733, 2848, 1680
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 0.87
No. of reflections2848
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.122.960 (2)165
O3—H3A···O1ii0.821.842.6491 (18)172
C2—H2···O1iii0.932.413.298 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-L., Wang, W.-L. & Shan, S. (2010). Acta Cryst. E66, o877.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaga, H., Miura, M. & Orito, K. A. (1989). J. Org. Chem. 54, 3477–3478.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, L.-Y., Wang, W.-L., Wang, S.-H., Huang, Y.-L. & Shan, S. (2009). Acta Cryst. E65, o1899.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds