organic compounds
Methyl 2-[(4-chloro-2-methoxy-5-oxo-2,5-dihydrofuran-3-yl)amino]acetate
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com
The title compound, C8H10ClNO5, was obtained via a tandem Michael addition–elimination reaction of 3,4-dichloro-5-methoxyfuran-2(5H)-one and glycine methyl ester in the presence of triethylamine. The molecular structure contains an approximately planar [maximum atomic deviation = 0.010 (2) Å] five-membered furanone ring. The crystal packing is stabilized by intermolecular N—H⋯O and weak C—H⋯O hydrogen bonding.
Related literature
For biologicallly active 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For related furanone structures, see: Song et al. (2009b); Li et al. (2009). For the synthesis, see: Song et al. (2009a).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681002461X/xu2785sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681002461X/xu2785Isup2.hkl
The precursor 3,4-dichloro-5-methoxyfuran-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009a). After the mixture of glycine methylester (3.0 mmol) and triethylamine (2.8 ml) was dissolved in absolute tetrahydrofuran under nitrogen atmosphere, dichloromethane solution of 3,4-chloro-5-methoxyfuran-2(5H)-furanone (2.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 55 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel
with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.2372 g (50.6%).H atoms were positioned in calculated positions with C—H = 0.96-0.98 Å and N—H = 0.86 Å, and were refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the other H atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H10ClNO5 | F(000) = 488 |
Mr = 235.62 | Dx = 1.535 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 826 reflections |
a = 5.1366 (10) Å | θ = 2.3–25.2° |
b = 9.8316 (19) Å | µ = 0.38 mm−1 |
c = 20.685 (4) Å | T = 296 K |
β = 102.532 (4)° | Cubic, colorless |
V = 1019.7 (3) Å3 | 0.21 × 0.21 × 0.21 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 1221 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 25.2°, θmin = 2.0° |
ϕ and ω scans | h = −5→6 |
3333 measured reflections | k = −5→11 |
1714 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0339P)2 + 0.3573P] where P = (Fo2 + 2Fc2)/3 |
1714 reflections | (Δ/σ)max < 0.001 |
139 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C8H10ClNO5 | V = 1019.7 (3) Å3 |
Mr = 235.62 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.1366 (10) Å | µ = 0.38 mm−1 |
b = 9.8316 (19) Å | T = 296 K |
c = 20.685 (4) Å | 0.21 × 0.21 × 0.21 mm |
β = 102.532 (4)° |
Bruker APEXII CCD diffractometer | 1221 reflections with I > 2σ(I) |
3333 measured reflections | Rint = 0.019 |
1714 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.18 e Å−3 |
1714 reflections | Δρmin = −0.18 e Å−3 |
139 parameters |
Experimental. 1H NMR (400 MHz, CDCl3, TMS): 3.52 (3H, s, CH, CH3), 3.82 (3H, s, CH, CH3), 4.29 (2H, s, CH, CH2), 5.75 (1H, s, CH). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.60822 (13) | 0.63332 (7) | 0.79402 (3) | 0.0553 (3) | |
O1 | −0.0366 (3) | 0.45788 (17) | 0.69305 (7) | 0.0483 (5) | |
O2 | 0.1905 (4) | 0.39330 (18) | 0.79393 (8) | 0.0539 (5) | |
O3 | −0.0115 (3) | 0.51417 (18) | 0.58504 (7) | 0.0514 (5) | |
O4 | 0.1774 (4) | 0.86029 (19) | 0.48157 (8) | 0.0584 (5) | |
O5 | 0.5179 (4) | 0.7421 (2) | 0.54029 (8) | 0.0643 (6) | |
N1 | 0.3070 (4) | 0.7560 (2) | 0.65232 (9) | 0.0422 (5) | |
H1 | 0.4557 | 0.7914 | 0.6723 | 0.051* | |
C1 | 0.1684 (5) | 0.4711 (3) | 0.74761 (11) | 0.0430 (6) | |
C2 | 0.3270 (5) | 0.5858 (2) | 0.73770 (10) | 0.0391 (6) | |
C3 | 0.2222 (4) | 0.6466 (2) | 0.67961 (10) | 0.0370 (6) | |
C4 | −0.0206 (5) | 0.5655 (3) | 0.64653 (11) | 0.0431 (6) | |
H4 | −0.1788 | 0.6234 | 0.6422 | 0.052* | |
C5 | 0.2212 (6) | 0.4363 (3) | 0.58209 (12) | 0.0557 (7) | |
H5A | 0.2345 | 0.3603 | 0.6118 | 0.084* | |
H5B | 0.3767 | 0.4925 | 0.5948 | 0.084* | |
H5C | 0.2083 | 0.4039 | 0.5377 | 0.084* | |
C6 | 0.1683 (5) | 0.8198 (3) | 0.59157 (11) | 0.0437 (6) | |
H6A | 0.1498 | 0.9162 | 0.5993 | 0.052* | |
H6B | −0.0092 | 0.7813 | 0.5785 | 0.052* | |
C7 | 0.3126 (5) | 0.8008 (2) | 0.53614 (11) | 0.0406 (6) | |
C8 | 0.2996 (7) | 0.8523 (3) | 0.42456 (13) | 0.0732 (9) | |
H8A | 0.2823 | 0.7614 | 0.4072 | 0.110* | |
H8B | 0.4851 | 0.8755 | 0.4378 | 0.110* | |
H8C | 0.2122 | 0.9146 | 0.3911 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0510 (4) | 0.0741 (5) | 0.0358 (3) | −0.0075 (3) | −0.0018 (3) | −0.0010 (3) |
O1 | 0.0403 (11) | 0.0567 (11) | 0.0465 (9) | −0.0055 (8) | 0.0062 (7) | 0.0025 (9) |
O2 | 0.0549 (12) | 0.0595 (12) | 0.0498 (10) | 0.0069 (9) | 0.0166 (8) | 0.0126 (9) |
O3 | 0.0497 (12) | 0.0609 (12) | 0.0378 (9) | 0.0078 (9) | −0.0033 (7) | −0.0068 (8) |
O4 | 0.0615 (13) | 0.0742 (13) | 0.0422 (9) | 0.0274 (10) | 0.0172 (8) | 0.0172 (9) |
O5 | 0.0448 (12) | 0.0992 (16) | 0.0502 (10) | 0.0270 (11) | 0.0129 (8) | 0.0102 (10) |
N1 | 0.0366 (12) | 0.0530 (13) | 0.0352 (10) | −0.0009 (10) | 0.0041 (8) | 0.0014 (10) |
C1 | 0.0370 (15) | 0.0543 (16) | 0.0393 (13) | 0.0080 (12) | 0.0119 (10) | −0.0011 (13) |
C2 | 0.0365 (14) | 0.0498 (15) | 0.0305 (12) | 0.0000 (11) | 0.0061 (9) | −0.0013 (11) |
C3 | 0.0323 (14) | 0.0465 (14) | 0.0332 (12) | 0.0073 (11) | 0.0094 (9) | −0.0029 (11) |
C4 | 0.0369 (15) | 0.0519 (16) | 0.0389 (13) | 0.0040 (11) | 0.0045 (10) | 0.0006 (12) |
C5 | 0.0641 (19) | 0.0567 (17) | 0.0443 (14) | 0.0112 (14) | 0.0074 (12) | −0.0074 (13) |
C6 | 0.0427 (16) | 0.0466 (15) | 0.0422 (13) | 0.0086 (12) | 0.0099 (11) | 0.0054 (11) |
C7 | 0.0382 (16) | 0.0427 (14) | 0.0400 (13) | 0.0001 (12) | 0.0067 (11) | −0.0007 (11) |
C8 | 0.087 (2) | 0.093 (2) | 0.0451 (15) | 0.0227 (19) | 0.0262 (15) | 0.0180 (16) |
Cl1—C2 | 1.712 (2) | C2—C3 | 1.345 (3) |
O1—C1 | 1.372 (3) | C3—C4 | 1.513 (3) |
O1—C4 | 1.444 (3) | C4—H4 | 0.9800 |
O2—C1 | 1.212 (3) | C5—H5A | 0.9600 |
O3—C4 | 1.378 (3) | C5—H5B | 0.9600 |
O3—C5 | 1.432 (3) | C5—H5C | 0.9600 |
O4—C7 | 1.326 (3) | C6—C7 | 1.506 (3) |
O4—C8 | 1.453 (3) | C6—H6A | 0.9700 |
O5—C7 | 1.189 (3) | C6—H6B | 0.9700 |
N1—C3 | 1.331 (3) | C8—H8A | 0.9600 |
N1—C6 | 1.446 (3) | C8—H8B | 0.9600 |
N1—H1 | 0.8600 | C8—H8C | 0.9600 |
C1—C2 | 1.432 (4) | ||
C1—O1—C4 | 109.53 (18) | O3—C5—H5A | 109.5 |
C4—O3—C5 | 115.52 (18) | O3—C5—H5B | 109.5 |
C7—O4—C8 | 115.4 (2) | H5A—C5—H5B | 109.5 |
C3—N1—C6 | 125.0 (2) | O3—C5—H5C | 109.5 |
C3—N1—H1 | 117.5 | H5A—C5—H5C | 109.5 |
C6—N1—H1 | 117.5 | H5B—C5—H5C | 109.5 |
O2—C1—O1 | 121.0 (2) | N1—C6—C7 | 112.1 (2) |
O2—C1—C2 | 130.7 (2) | N1—C6—H6A | 109.2 |
O1—C1—C2 | 108.4 (2) | C7—C6—H6A | 109.2 |
C3—C2—C1 | 110.4 (2) | N1—C6—H6B | 109.2 |
C3—C2—Cl1 | 127.0 (2) | C7—C6—H6B | 109.2 |
C1—C2—Cl1 | 122.65 (18) | H6A—C6—H6B | 107.9 |
N1—C3—C2 | 129.3 (2) | O5—C7—O4 | 124.6 (2) |
N1—C3—C4 | 123.20 (19) | O5—C7—C6 | 125.5 (2) |
C2—C3—C4 | 107.5 (2) | O4—C7—C6 | 109.9 (2) |
O3—C4—O1 | 111.4 (2) | O4—C8—H8A | 109.5 |
O3—C4—C3 | 114.9 (2) | O4—C8—H8B | 109.5 |
O1—C4—C3 | 104.20 (17) | H8A—C8—H8B | 109.5 |
O3—C4—H4 | 108.7 | O4—C8—H8C | 109.5 |
O1—C4—H4 | 108.7 | H8A—C8—H8C | 109.5 |
C3—C4—H4 | 108.7 | H8B—C8—H8C | 109.5 |
C4—O1—C1—O2 | 178.2 (2) | C5—O3—C4—C3 | 52.9 (3) |
C4—O1—C1—C2 | −1.2 (2) | C1—O1—C4—O3 | 124.6 (2) |
O2—C1—C2—C3 | −177.5 (2) | C1—O1—C4—C3 | 0.2 (2) |
O1—C1—C2—C3 | 1.9 (3) | N1—C3—C4—O3 | 57.7 (3) |
O2—C1—C2—Cl1 | 2.5 (4) | C2—C3—C4—O3 | −121.2 (2) |
O1—C1—C2—Cl1 | −178.19 (16) | N1—C3—C4—O1 | 179.8 (2) |
C6—N1—C3—C2 | −175.1 (2) | C2—C3—C4—O1 | 1.0 (2) |
C6—N1—C3—C4 | 6.3 (3) | C3—N1—C6—C7 | −110.6 (3) |
C1—C2—C3—N1 | 179.5 (2) | C8—O4—C7—O5 | −1.1 (4) |
Cl1—C2—C3—N1 | −0.4 (4) | C8—O4—C7—C6 | 178.5 (2) |
C1—C2—C3—C4 | −1.7 (3) | N1—C6—C7—O5 | −0.7 (4) |
Cl1—C2—C3—C4 | 178.33 (18) | N1—C6—C7—O4 | 179.7 (2) |
C5—O3—C4—O1 | −65.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.06 | 2.911 (3) | 171 |
C6—H6B···O5ii | 0.97 | 2.42 | 3.366 (3) | 166 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H10ClNO5 |
Mr | 235.62 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 5.1366 (10), 9.8316 (19), 20.685 (4) |
β (°) | 102.532 (4) |
V (Å3) | 1019.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.21 × 0.21 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3333, 1714, 1221 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.088, 1.05 |
No. of reflections | 1714 |
No. of parameters | 139 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.06 | 2.911 (3) | 171 |
C6—H6B···O5ii | 0.97 | 2.42 | 3.366 (3) | 166 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1, y, z. |
Acknowledgements
The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).
References
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831. Web of Science CrossRef PubMed CAS Google Scholar
Li, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, X.-M., Li, Z.-Y., Wang, Z.-Y. & Fu, J.-H. (2009b). Acta Cryst. E65, o1838. Web of Science CSD CrossRef IUCr Journals Google Scholar
Song, X.-M., Wang, Z.-Y., Fu, J.-H., Li, J. & -, X. (2009a). J. S. China Norm. Univ. (Nat. Sci. Ed.), 4, 75–80. Google Scholar
Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2(5H)-Furanone is a simplest sub-unit of a large class of five membered heterocyclic carbonyl compounds. At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008). Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with 3,4-dichloro-5-methoxyfuran-2(5H)-one and glycine methylester in the presence of triethylamine via the tandem Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product.
The structure of the title compound (I) is illustrated in Fig. 1. The title compound contains a five-membered furanone ring and a methoxy connected each other via C4—O3—C5 ether bond. The furanone ring is approximately planar, smilar to that found in a related compound (Song et al., 2009b). Additionally, the molecules are linked by intermolecular hydrogen bonds of N—H···O and C—H···O (Table 1).