organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(4-chloro-2-meth­­oxy-5-oxo-2,5-di­hydro­furan-3-yl)amino]­acetate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 17 June 2010; accepted 23 June 2010; online 30 June 2010)

The title compound, C8H10ClNO5, was obtained via a tandem Michael addition–elimination reaction of 3,4-dichloro-5-meth­oxy­furan-2(5H)-one and glycine methyl ester in the presence of triethyl­amine. The mol­ecular structure contains an approximately planar [maximum atomic deviation = 0.010 (2) Å] five-membered furan­one ring. The crystal packing is stabilized by inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonding.

Related literature

For biologicallly active 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]). For related furan­one structures, see: Song et al. (2009b[Song, X.-M., Li, Z.-Y., Wang, Z.-Y. & Fu, J.-H. (2009b). Acta Cryst. E65, o1838.]); Li et al. (2009[Li, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030.]). For the synthesis, see: Song et al. (2009a[Song, X.-M., Wang, Z.-Y., Fu, J.-H., Li, J. & -, X. (2009a). J. S. China Norm. Univ. (Nat. Sci. Ed.), 4, 75-80.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10ClNO5

  • Mr = 235.62

  • Monoclinic, P 21 /c

  • a = 5.1366 (10) Å

  • b = 9.8316 (19) Å

  • c = 20.685 (4) Å

  • β = 102.532 (4)°

  • V = 1019.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.21 × 0.21 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 3333 measured reflections

  • 1714 independent reflections

  • 1221 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.05

  • 1714 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.06 2.911 (3) 171
C6—H6B⋯O5ii 0.97 2.42 3.366 (3) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2(5H)-Furanone is a simplest sub-unit of a large class of five membered heterocyclic carbonyl compounds. At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008). Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with 3,4-dichloro-5-methoxyfuran-2(5H)-one and glycine methylester in the presence of triethylamine via the tandem Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product.

The structure of the title compound (I) is illustrated in Fig. 1. The title compound contains a five-membered furanone ring and a methoxy connected each other via C4—O3—C5 ether bond. The furanone ring is approximately planar, smilar to that found in a related compound (Song et al., 2009b). Additionally, the molecules are linked by intermolecular hydrogen bonds of N—H···O and C—H···O (Table 1).

Related literature top

For biologicallly active 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For related furanone structures, see: Song et al. (2009b); Li et al. (2009).. For the synthesis, see: Song et al. (2009a).

Experimental top

The precursor 3,4-dichloro-5-methoxyfuran-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009a). After the mixture of glycine methylester (3.0 mmol) and triethylamine (2.8 ml) was dissolved in absolute tetrahydrofuran under nitrogen atmosphere, dichloromethane solution of 3,4-chloro-5-methoxyfuran-2(5H)-furanone (2.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 55 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.2372 g (50.6%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.96-0.98 Å and N—H = 0.86 Å, and were refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the packing of (I). Dashed lines stand for hydrogen bonds.
Methyl 2-[(4-chloro-2-methoxy-5-oxo-2,5-dihydrofuran-3-yl)amino]acetate top
Crystal data top
C8H10ClNO5F(000) = 488
Mr = 235.62Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 826 reflections
a = 5.1366 (10) Åθ = 2.3–25.2°
b = 9.8316 (19) ŵ = 0.38 mm1
c = 20.685 (4) ÅT = 296 K
β = 102.532 (4)°Cubic, colorless
V = 1019.7 (3) Å30.21 × 0.21 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1221 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ϕ and ω scansh = 56
3333 measured reflectionsk = 511
1714 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.3573P]
where P = (Fo2 + 2Fc2)/3
1714 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H10ClNO5V = 1019.7 (3) Å3
Mr = 235.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1366 (10) ŵ = 0.38 mm1
b = 9.8316 (19) ÅT = 296 K
c = 20.685 (4) Å0.21 × 0.21 × 0.21 mm
β = 102.532 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1221 reflections with I > 2σ(I)
3333 measured reflectionsRint = 0.019
1714 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1714 reflectionsΔρmin = 0.18 e Å3
139 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3, TMS): 3.52 (3H, s, CH, CH3), 3.82 (3H, s, CH, CH3), 4.29 (2H, s, CH, CH2), 5.75 (1H, s, CH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60822 (13)0.63332 (7)0.79402 (3)0.0553 (3)
O10.0366 (3)0.45788 (17)0.69305 (7)0.0483 (5)
O20.1905 (4)0.39330 (18)0.79393 (8)0.0539 (5)
O30.0115 (3)0.51417 (18)0.58504 (7)0.0514 (5)
O40.1774 (4)0.86029 (19)0.48157 (8)0.0584 (5)
O50.5179 (4)0.7421 (2)0.54029 (8)0.0643 (6)
N10.3070 (4)0.7560 (2)0.65232 (9)0.0422 (5)
H10.45570.79140.67230.051*
C10.1684 (5)0.4711 (3)0.74761 (11)0.0430 (6)
C20.3270 (5)0.5858 (2)0.73770 (10)0.0391 (6)
C30.2222 (4)0.6466 (2)0.67961 (10)0.0370 (6)
C40.0206 (5)0.5655 (3)0.64653 (11)0.0431 (6)
H40.17880.62340.64220.052*
C50.2212 (6)0.4363 (3)0.58209 (12)0.0557 (7)
H5A0.23450.36030.61180.084*
H5B0.37670.49250.59480.084*
H5C0.20830.40390.53770.084*
C60.1683 (5)0.8198 (3)0.59157 (11)0.0437 (6)
H6A0.14980.91620.59930.052*
H6B0.00920.78130.57850.052*
C70.3126 (5)0.8008 (2)0.53614 (11)0.0406 (6)
C80.2996 (7)0.8523 (3)0.42456 (13)0.0732 (9)
H8A0.28230.76140.40720.110*
H8B0.48510.87550.43780.110*
H8C0.21220.91460.39110.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0510 (4)0.0741 (5)0.0358 (3)0.0075 (3)0.0018 (3)0.0010 (3)
O10.0403 (11)0.0567 (11)0.0465 (9)0.0055 (8)0.0062 (7)0.0025 (9)
O20.0549 (12)0.0595 (12)0.0498 (10)0.0069 (9)0.0166 (8)0.0126 (9)
O30.0497 (12)0.0609 (12)0.0378 (9)0.0078 (9)0.0033 (7)0.0068 (8)
O40.0615 (13)0.0742 (13)0.0422 (9)0.0274 (10)0.0172 (8)0.0172 (9)
O50.0448 (12)0.0992 (16)0.0502 (10)0.0270 (11)0.0129 (8)0.0102 (10)
N10.0366 (12)0.0530 (13)0.0352 (10)0.0009 (10)0.0041 (8)0.0014 (10)
C10.0370 (15)0.0543 (16)0.0393 (13)0.0080 (12)0.0119 (10)0.0011 (13)
C20.0365 (14)0.0498 (15)0.0305 (12)0.0000 (11)0.0061 (9)0.0013 (11)
C30.0323 (14)0.0465 (14)0.0332 (12)0.0073 (11)0.0094 (9)0.0029 (11)
C40.0369 (15)0.0519 (16)0.0389 (13)0.0040 (11)0.0045 (10)0.0006 (12)
C50.0641 (19)0.0567 (17)0.0443 (14)0.0112 (14)0.0074 (12)0.0074 (13)
C60.0427 (16)0.0466 (15)0.0422 (13)0.0086 (12)0.0099 (11)0.0054 (11)
C70.0382 (16)0.0427 (14)0.0400 (13)0.0001 (12)0.0067 (11)0.0007 (11)
C80.087 (2)0.093 (2)0.0451 (15)0.0227 (19)0.0262 (15)0.0180 (16)
Geometric parameters (Å, º) top
Cl1—C21.712 (2)C2—C31.345 (3)
O1—C11.372 (3)C3—C41.513 (3)
O1—C41.444 (3)C4—H40.9800
O2—C11.212 (3)C5—H5A0.9600
O3—C41.378 (3)C5—H5B0.9600
O3—C51.432 (3)C5—H5C0.9600
O4—C71.326 (3)C6—C71.506 (3)
O4—C81.453 (3)C6—H6A0.9700
O5—C71.189 (3)C6—H6B0.9700
N1—C31.331 (3)C8—H8A0.9600
N1—C61.446 (3)C8—H8B0.9600
N1—H10.8600C8—H8C0.9600
C1—C21.432 (4)
C1—O1—C4109.53 (18)O3—C5—H5A109.5
C4—O3—C5115.52 (18)O3—C5—H5B109.5
C7—O4—C8115.4 (2)H5A—C5—H5B109.5
C3—N1—C6125.0 (2)O3—C5—H5C109.5
C3—N1—H1117.5H5A—C5—H5C109.5
C6—N1—H1117.5H5B—C5—H5C109.5
O2—C1—O1121.0 (2)N1—C6—C7112.1 (2)
O2—C1—C2130.7 (2)N1—C6—H6A109.2
O1—C1—C2108.4 (2)C7—C6—H6A109.2
C3—C2—C1110.4 (2)N1—C6—H6B109.2
C3—C2—Cl1127.0 (2)C7—C6—H6B109.2
C1—C2—Cl1122.65 (18)H6A—C6—H6B107.9
N1—C3—C2129.3 (2)O5—C7—O4124.6 (2)
N1—C3—C4123.20 (19)O5—C7—C6125.5 (2)
C2—C3—C4107.5 (2)O4—C7—C6109.9 (2)
O3—C4—O1111.4 (2)O4—C8—H8A109.5
O3—C4—C3114.9 (2)O4—C8—H8B109.5
O1—C4—C3104.20 (17)H8A—C8—H8B109.5
O3—C4—H4108.7O4—C8—H8C109.5
O1—C4—H4108.7H8A—C8—H8C109.5
C3—C4—H4108.7H8B—C8—H8C109.5
C4—O1—C1—O2178.2 (2)C5—O3—C4—C352.9 (3)
C4—O1—C1—C21.2 (2)C1—O1—C4—O3124.6 (2)
O2—C1—C2—C3177.5 (2)C1—O1—C4—C30.2 (2)
O1—C1—C2—C31.9 (3)N1—C3—C4—O357.7 (3)
O2—C1—C2—Cl12.5 (4)C2—C3—C4—O3121.2 (2)
O1—C1—C2—Cl1178.19 (16)N1—C3—C4—O1179.8 (2)
C6—N1—C3—C2175.1 (2)C2—C3—C4—O11.0 (2)
C6—N1—C3—C46.3 (3)C3—N1—C6—C7110.6 (3)
C1—C2—C3—N1179.5 (2)C8—O4—C7—O51.1 (4)
Cl1—C2—C3—N10.4 (4)C8—O4—C7—C6178.5 (2)
C1—C2—C3—C41.7 (3)N1—C6—C7—O50.7 (4)
Cl1—C2—C3—C4178.33 (18)N1—C6—C7—O4179.7 (2)
C5—O3—C4—O165.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.062.911 (3)171
C6—H6B···O5ii0.972.423.366 (3)166
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H10ClNO5
Mr235.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.1366 (10), 9.8316 (19), 20.685 (4)
β (°) 102.532 (4)
V3)1019.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.21 × 0.21 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3333, 1714, 1221
Rint0.019
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.05
No. of reflections1714
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.062.911 (3)171
C6—H6B···O5ii0.972.423.366 (3)166
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Li, Z.-Y., Wang, Z.-Y. & Fu, J.-H. (2009b). Acta Cryst. E65, o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Fu, J.-H., Li, J. & -, X. (2009a). J. S. China Norm. Univ. (Nat. Sci. Ed.), 4, 75–80.  Google Scholar
First citationTanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds