metal-organic compounds
Diiodido[4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′]copper(II)
aDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: cft0923@163.com
The CuII atom in the title compound, [CuI2(C20H14N4)], has a distorted square-pyramidal coordination formed by the N atoms of the tridentate 4′-(4-pyridyl)-2,2′:6′2′′-terpyridine (pyterpy) ligand and two I atoms; one of the I atoms is in the apical position. In contrast to other known square-pyramidal diiodido- and dibromidocopper complexes of the pyterpy ligand in which metal–halogen distances are significantly different, in the title compound the apical and equatorial Cu—I bonds are almost identical [2.6141 (8) and 2.6025 (8) Å, respectively].
Related literature
For related structures, see: Feng et al. (2006); Hou et al. (2004, 2005); Kutoglu et al. (1991); Shi et al. (2007); Zhang et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810020635/ya2124sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020635/ya2124Isup2.hkl
The mixture of CuI (0.0190 g, 0.1 mmol), 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) (0.0155 g, 0.05 mmol), saturated KI solution (3 ml) and water (6 ml) were placed and sealed in a 10 ml Teflon-lined stainless steel reactor and heated to 140 °C for 72 h, then cooled down to room temperature at a rate of 2°C/20 min. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 40% yield.
H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å(aromatic) and Uĩso(H) = 1.2Ueq(C)
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CuI2(C20H14N4)] | F(000) = 1188 |
Mr = 627.69 | Dx = 2.105 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1523 reflections |
a = 11.9882 (8) Å | θ = 1.9–20.3° |
b = 14.642 (1) Å | µ = 4.23 mm−1 |
c = 12.0291 (8) Å | T = 294 K |
β = 110.240 (1)° | Block, black |
V = 1981.1 (2) Å3 | 0.25 × 0.23 × 0.18 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3894 independent reflections |
Radiation source: fine-focus sealed tube | 3670 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
phi and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→13 |
Tmin = 0.361, Tmax = 0.467 | k = −18→17 |
11694 measured reflections | l = −8→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.30 | w = 1/[σ2(Fo2) + (0.0189P)2 + 6.8023P] where P = (Fo2 + 2Fc2)/3 |
3894 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.97 e Å−3 |
[CuI2(C20H14N4)] | V = 1981.1 (2) Å3 |
Mr = 627.69 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.9882 (8) Å | µ = 4.23 mm−1 |
b = 14.642 (1) Å | T = 294 K |
c = 12.0291 (8) Å | 0.25 × 0.23 × 0.18 mm |
β = 110.240 (1)° |
Bruker SMART CCD diffractometer | 3894 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3670 reflections with I > 2σ(I) |
Tmin = 0.361, Tmax = 0.467 | Rint = 0.028 |
11694 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.30 | Δρmax = 0.66 e Å−3 |
3894 reflections | Δρmin = −0.97 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.73294 (6) | 0.14757 (4) | 0.92788 (6) | 0.02734 (17) | |
C1 | 1.1049 (6) | −0.1207 (5) | 0.5460 (6) | 0.0409 (15) | |
H1 | 1.0765 | −0.1717 | 0.4986 | 0.049* | |
C2 | 1.0403 (5) | −0.0897 (4) | 0.6143 (5) | 0.0346 (14) | |
H2 | 0.9724 | −0.1206 | 0.6142 | 0.042* | |
C3 | 1.0786 (5) | −0.0118 (4) | 0.6828 (5) | 0.0288 (12) | |
C4 | 1.1830 (5) | 0.0295 (4) | 0.6800 (5) | 0.0343 (13) | |
H4 | 1.2126 | 0.0818 | 0.7241 | 0.041* | |
C5 | 1.2409 (6) | −0.0091 (4) | 0.6106 (6) | 0.0411 (16) | |
H5 | 1.3108 | 0.0187 | 0.6108 | 0.049* | |
C6 | 1.0106 (5) | 0.0250 (4) | 0.7539 (5) | 0.0278 (12) | |
C7 | 0.9499 (5) | −0.0329 (4) | 0.8056 (5) | 0.0304 (13) | |
H7 | 0.9566 | −0.0959 | 0.8006 | 0.036* | |
C8 | 0.8799 (5) | 0.0042 (4) | 0.8644 (5) | 0.0253 (11) | |
C9 | 0.8078 (5) | −0.0505 (4) | 0.9195 (5) | 0.0279 (12) | |
C10 | 0.8152 (5) | −0.1438 (4) | 0.9284 (5) | 0.0347 (13) | |
H10 | 0.8651 | −0.1760 | 0.8981 | 0.042* | |
C11 | 0.7474 (6) | −0.1892 (4) | 0.9830 (6) | 0.0421 (16) | |
H11 | 0.7519 | −0.2523 | 0.9916 | 0.050* | |
C12 | 0.6724 (6) | −0.1390 (4) | 1.0249 (6) | 0.0442 (16) | |
H12 | 0.6249 | −0.1677 | 1.0612 | 0.053* | |
C13 | 0.6698 (6) | −0.0452 (4) | 1.0115 (6) | 0.0404 (15) | |
H13 | 0.6197 | −0.0115 | 1.0400 | 0.048* | |
C14 | 0.8092 (6) | 0.3530 (4) | 0.9194 (6) | 0.0383 (14) | |
H14 | 0.7541 | 0.3645 | 0.9563 | 0.046* | |
C15 | 0.8637 (6) | 0.4263 (4) | 0.8878 (6) | 0.0391 (15) | |
H15 | 0.8446 | 0.4858 | 0.9016 | 0.047* | |
C16 | 0.9473 (6) | 0.4096 (4) | 0.8354 (6) | 0.0417 (16) | |
H16 | 0.9863 | 0.4577 | 0.8140 | 0.050* | |
C17 | 0.9724 (6) | 0.3199 (4) | 0.8149 (6) | 0.0384 (15) | |
H17 | 1.0288 | 0.3069 | 0.7801 | 0.046* | |
C18 | 0.9120 (5) | 0.2504 (4) | 0.8473 (5) | 0.0271 (12) | |
C19 | 0.9295 (5) | 0.1515 (4) | 0.8282 (5) | 0.0259 (12) | |
C20 | 1.0022 (5) | 0.1191 (4) | 0.7688 (5) | 0.0298 (12) | |
H20 | 1.0448 | 0.1595 | 0.7392 | 0.036* | |
I1 | 0.69282 (4) | 0.20067 (3) | 1.11708 (4) | 0.04474 (14) | |
I2 | 0.54357 (4) | 0.16793 (3) | 0.73907 (4) | 0.04683 (14) | |
N1 | 1.2047 (5) | −0.0826 (4) | 0.5436 (5) | 0.0455 (14) | |
N2 | 0.7357 (4) | −0.0010 (3) | 0.9595 (4) | 0.0310 (11) | |
N3 | 0.8694 (4) | 0.0951 (3) | 0.8736 (4) | 0.0267 (10) | |
N4 | 0.8313 (4) | 0.2670 (3) | 0.8997 (4) | 0.0298 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0286 (4) | 0.0248 (3) | 0.0331 (4) | 0.0006 (3) | 0.0162 (3) | −0.0012 (3) |
C1 | 0.046 (4) | 0.039 (4) | 0.040 (4) | 0.006 (3) | 0.018 (3) | −0.001 (3) |
C2 | 0.037 (3) | 0.030 (3) | 0.041 (4) | 0.003 (2) | 0.019 (3) | −0.003 (3) |
C3 | 0.031 (3) | 0.026 (3) | 0.031 (3) | 0.007 (2) | 0.012 (3) | 0.005 (2) |
C4 | 0.036 (3) | 0.031 (3) | 0.034 (3) | 0.002 (3) | 0.011 (3) | 0.007 (3) |
C5 | 0.038 (3) | 0.043 (4) | 0.052 (4) | 0.010 (3) | 0.027 (3) | 0.013 (3) |
C6 | 0.027 (3) | 0.029 (3) | 0.029 (3) | 0.001 (2) | 0.011 (2) | 0.001 (2) |
C7 | 0.038 (3) | 0.020 (3) | 0.032 (3) | 0.003 (2) | 0.011 (3) | −0.001 (2) |
C8 | 0.026 (3) | 0.023 (3) | 0.025 (3) | −0.001 (2) | 0.006 (2) | 0.003 (2) |
C9 | 0.025 (3) | 0.027 (3) | 0.029 (3) | −0.003 (2) | 0.005 (2) | −0.002 (2) |
C10 | 0.036 (3) | 0.032 (3) | 0.038 (3) | −0.002 (2) | 0.016 (3) | 0.002 (3) |
C11 | 0.050 (4) | 0.026 (3) | 0.054 (4) | −0.011 (3) | 0.022 (3) | 0.006 (3) |
C12 | 0.045 (4) | 0.044 (4) | 0.054 (4) | −0.014 (3) | 0.030 (3) | 0.003 (3) |
C13 | 0.038 (3) | 0.040 (4) | 0.048 (4) | −0.004 (3) | 0.022 (3) | −0.003 (3) |
C14 | 0.043 (4) | 0.032 (3) | 0.044 (4) | 0.005 (3) | 0.019 (3) | −0.003 (3) |
C15 | 0.043 (4) | 0.023 (3) | 0.049 (4) | −0.001 (3) | 0.014 (3) | −0.001 (3) |
C16 | 0.043 (4) | 0.024 (3) | 0.060 (4) | −0.007 (3) | 0.019 (3) | 0.006 (3) |
C17 | 0.041 (4) | 0.029 (3) | 0.051 (4) | 0.000 (3) | 0.023 (3) | 0.002 (3) |
C18 | 0.024 (3) | 0.025 (3) | 0.031 (3) | 0.001 (2) | 0.008 (2) | 0.004 (2) |
C19 | 0.030 (3) | 0.023 (3) | 0.028 (3) | −0.002 (2) | 0.014 (2) | 0.003 (2) |
C20 | 0.035 (3) | 0.025 (3) | 0.031 (3) | −0.005 (2) | 0.014 (3) | 0.003 (2) |
I1 | 0.0565 (3) | 0.0431 (3) | 0.0441 (3) | 0.0026 (2) | 0.0296 (2) | −0.0038 (2) |
I2 | 0.0424 (3) | 0.0349 (2) | 0.0504 (3) | −0.00135 (18) | −0.0003 (2) | 0.0007 (2) |
N1 | 0.054 (4) | 0.041 (3) | 0.052 (4) | 0.013 (3) | 0.032 (3) | 0.001 (3) |
N2 | 0.033 (3) | 0.027 (2) | 0.038 (3) | 0.001 (2) | 0.019 (2) | 0.000 (2) |
N3 | 0.029 (2) | 0.025 (2) | 0.027 (2) | 0.0012 (19) | 0.010 (2) | 0.0025 (19) |
N4 | 0.028 (2) | 0.027 (2) | 0.036 (3) | −0.0025 (19) | 0.013 (2) | 0.000 (2) |
Cu1—N3 | 2.104 (4) | C9—C10 | 1.370 (8) |
Cu1—N4 | 2.199 (5) | C10—C11 | 1.380 (8) |
Cu1—N2 | 2.206 (5) | C10—H10 | 0.9300 |
Cu1—I1 | 2.6025 (8) | C11—C12 | 1.383 (9) |
Cu1—I2 | 2.6141 (8) | C11—H11 | 0.9300 |
C1—N1 | 1.330 (8) | C12—C13 | 1.381 (9) |
C1—C2 | 1.386 (8) | C12—H12 | 0.9300 |
C1—H1 | 0.9300 | C13—N2 | 1.333 (7) |
C2—C3 | 1.389 (8) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C14—N4 | 1.325 (7) |
C3—C4 | 1.401 (8) | C14—C15 | 1.376 (9) |
C3—C6 | 1.473 (7) | C14—H14 | 0.9300 |
C4—C5 | 1.379 (8) | C15—C16 | 1.378 (9) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—N1 | 1.324 (9) | C16—C17 | 1.388 (8) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C6—C7 | 1.396 (8) | C17—C18 | 1.381 (8) |
C6—C20 | 1.397 (8) | C17—H17 | 0.9300 |
C7—C8 | 1.382 (8) | C18—N4 | 1.347 (7) |
C7—H7 | 0.9300 | C18—C19 | 1.493 (7) |
C8—N3 | 1.345 (7) | C19—N3 | 1.331 (6) |
C8—C9 | 1.492 (7) | C19—C20 | 1.387 (8) |
C9—N2 | 1.340 (7) | C20—H20 | 0.9300 |
N3—Cu1—N4 | 74.14 (17) | C10—C11—C12 | 118.8 (6) |
N3—Cu1—N2 | 74.17 (17) | C10—C11—H11 | 120.6 |
N4—Cu1—N2 | 146.45 (17) | C12—C11—H11 | 120.6 |
N3—Cu1—I1 | 141.15 (13) | C13—C12—C11 | 118.5 (6) |
N4—Cu1—I1 | 99.68 (13) | C13—C12—H12 | 120.7 |
N2—Cu1—I1 | 98.03 (13) | C11—C12—H12 | 120.7 |
N3—Cu1—I2 | 107.86 (13) | N2—C13—C12 | 123.0 (6) |
N4—Cu1—I2 | 97.26 (13) | N2—C13—H13 | 118.5 |
N2—Cu1—I2 | 102.65 (13) | C12—C13—H13 | 118.5 |
I1—Cu1—I2 | 110.98 (3) | N4—C14—C15 | 123.3 (6) |
N1—C1—C2 | 124.5 (6) | N4—C14—H14 | 118.4 |
N1—C1—H1 | 117.7 | C15—C14—H14 | 118.4 |
C2—C1—H1 | 117.7 | C14—C15—C16 | 118.5 (6) |
C1—C2—C3 | 118.9 (6) | C14—C15—H15 | 120.7 |
C1—C2—H2 | 120.6 | C16—C15—H15 | 120.7 |
C3—C2—H2 | 120.6 | C15—C16—C17 | 119.1 (6) |
C2—C3—C4 | 117.0 (5) | C15—C16—H16 | 120.5 |
C2—C3—C6 | 120.7 (5) | C17—C16—H16 | 120.5 |
C4—C3—C6 | 122.3 (5) | C18—C17—C16 | 118.7 (6) |
C5—C4—C3 | 118.7 (6) | C18—C17—H17 | 120.7 |
C5—C4—H4 | 120.7 | C16—C17—H17 | 120.7 |
C3—C4—H4 | 120.7 | N4—C18—C17 | 122.1 (5) |
N1—C5—C4 | 125.0 (6) | N4—C18—C19 | 114.1 (5) |
N1—C5—H5 | 117.5 | C17—C18—C19 | 123.8 (5) |
C4—C5—H5 | 117.5 | N3—C19—C20 | 121.7 (5) |
C7—C6—C20 | 118.0 (5) | N3—C19—C18 | 114.4 (5) |
C7—C6—C3 | 121.0 (5) | C20—C19—C18 | 123.9 (5) |
C20—C6—C3 | 121.0 (5) | C19—C20—C6 | 119.3 (5) |
C8—C7—C6 | 119.4 (5) | C19—C20—H20 | 120.4 |
C8—C7—H7 | 120.3 | C6—C20—H20 | 120.4 |
C6—C7—H7 | 120.3 | C5—N1—C1 | 115.9 (5) |
N3—C8—C7 | 121.5 (5) | C13—N2—C9 | 117.8 (5) |
N3—C8—C9 | 114.2 (5) | C13—N2—Cu1 | 125.8 (4) |
C7—C8—C9 | 124.3 (5) | C9—N2—Cu1 | 116.4 (4) |
N2—C9—C10 | 123.0 (5) | C19—N3—C8 | 120.0 (5) |
N2—C9—C8 | 114.4 (5) | C19—N3—Cu1 | 119.4 (3) |
C10—C9—C8 | 122.6 (5) | C8—N3—Cu1 | 119.5 (4) |
C9—C10—C11 | 119.0 (6) | C14—N4—C18 | 118.4 (5) |
C9—C10—H10 | 120.5 | C14—N4—Cu1 | 125.3 (4) |
C11—C10—H10 | 120.5 | C18—N4—Cu1 | 116.0 (4) |
Experimental details
Crystal data | |
Chemical formula | [CuI2(C20H14N4)] |
Mr | 627.69 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 11.9882 (8), 14.642 (1), 12.0291 (8) |
β (°) | 110.240 (1) |
V (Å3) | 1981.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.23 |
Crystal size (mm) | 0.25 × 0.23 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.361, 0.467 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11694, 3894, 3670 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.091, 1.30 |
No. of reflections | 3894 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.97 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Foundation for Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2009QN05).
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Feng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035. Web of Science CSD CrossRef CAS Google Scholar
Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181–m1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kutoglu, A., Allmann, R., Folgado, J.-V., Atanasov, M. & Reinen, D. (1991). Z. Naturforsch. Teil B, 46, 1193–1199. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588–598. Web of Science CSD CrossRef CAS Google Scholar
Zhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365–4367. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Terpyridine and its derivatives have been recently receiving increasing attention not only because of their versatility as building blocks in supramolecular assemblies, but also due to the interesting electronic, photonic and magnetic properties of their transition metal complexes.
4'-(4-Pyridyl)-2,2':6'2''-terpyridine (pyterpy) belongs to this group of ligands and has been used to construct a great variety of structurally interesting entities, such as mononuclear complexes (Feng et al., 2006; Hou et al., 2004; Kutoglu et al., 1991; Shi et al., 2007), grid-type coordination polymers (Hou et al., 2005), and self-catenated networks (Zhang et al., 2007).
The structure of the title compound is shown in Fig. 1. The Cu1 atom has a distorted square-pyramidal coordination formed by the N2, N3 and N4 atoms of the pyterpy ligand and the I1 and I2 atoms. The I2 atom occupies the apical position, with bond angles of I2-Cu1-I1, I2-Cu1-N1, I2-Cu1-N2 and I2-Cu1-N3 being equal to 110.98 (3)°, 102.6 (1)°, 107.9 (1)° and 97.3 (1)° respectively, and the widest bond angles in the coordination sphere of the Cu1 atom being I1-Cu1-N3 [141.1 (1)°] and N2-Cu1-N4 [146.4 (2)°].
Rather unexpectedly, in contrast with other diiodo- and dibromo-copper complexes of 2,2':6'2''-terpyridine (terpy) with square-pyramidal coordination (Hou et al., 2004; Feng et al., 2006), where significant difference between the apical and equatorial metal-halogen bonds was observed, in the title compound the Cu1-I1 and Cu1-I2 bonds are almost identical [2.6025 (8) Å and 2.6141 (8) Å respectively]. It is true, however, that the wide angles in the copper coordination sphere (I1-Cu1-N3 and N2-Cu1-N4) are significantly narrower in the title compound than in other terpy complexes with square-pyramidal configuration (see references above), which puts this compound much farther on the transition path to trigonal bipyramid than the mentioned above literature complexes.
The Cu1-N3 bond with the N atom of the central ring of the pyterpy ligand [2.104 (4) Å] is noticeably shorter, than the Cu1-N2 and Cu1-N4 bonds [2.206 (5) Å and 2.199 (5) Å] involving the flanking pyridine rings of the pyterpy ligand. This pattern in the Cu-N bonds, is quite typical for the terpy complexes (see Hou et al., 2004; Feng et al., 2006; Kutoglu et al., 1991).