metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido[4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′]copper(II)

aDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: cft0923@163.com

(Received 9 April 2010; accepted 31 May 2010; online 5 June 2010)

The CuII atom in the title compound, [CuI2(C20H14N4)], has a distorted square-pyramidal coordination formed by the N atoms of the tridentate 4′-(4-pyrid­yl)-2,2′:6′2′′-terpyridine (pyterpy) ligand and two I atoms; one of the I atoms is in the apical position. In contrast to other known square-pyramidal diiodido- and dibromidocopper complexes of the pyterpy ligand in which metal–halogen distances are significantly different, in the title compound the apical and equatorial Cu—I bonds are almost identical [2.6141 (8) and 2.6025 (8) Å, respectively].

Related literature

For related structures, see: Feng et al. (2006[Feng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.]); Hou et al. (2004[Hou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181-m1182.], 2005[Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825-7832.]); Kutoglu et al. (1991[Kutoglu, A., Allmann, R., Folgado, J.-V., Atanasov, M. & Reinen, D. (1991). Z. Naturforsch. Teil B, 46, 1193-1199.]); Shi et al. (2007[Shi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588-598.]); Zhang et al. (2007[Zhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365-4367.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI2(C20H14N4)]

  • Mr = 627.69

  • Monoclinic, P 21 /n

  • a = 11.9882 (8) Å

  • b = 14.642 (1) Å

  • c = 12.0291 (8) Å

  • β = 110.240 (1)°

  • V = 1981.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.23 mm−1

  • T = 294 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.361, Tmax = 0.467

  • 11694 measured reflections

  • 3894 independent reflections

  • 3670 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.091

  • S = 1.30

  • 3894 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terpyridine and its derivatives have been recently receiving increasing attention not only because of their versatility as building blocks in supramolecular assemblies, but also due to the interesting electronic, photonic and magnetic properties of their transition metal complexes.

4'-(4-Pyridyl)-2,2':6'2''-terpyridine (pyterpy) belongs to this group of ligands and has been used to construct a great variety of structurally interesting entities, such as mononuclear complexes (Feng et al., 2006; Hou et al., 2004; Kutoglu et al., 1991; Shi et al., 2007), grid-type coordination polymers (Hou et al., 2005), and self-catenated networks (Zhang et al., 2007).

The structure of the title compound is shown in Fig. 1. The Cu1 atom has a distorted square-pyramidal coordination formed by the N2, N3 and N4 atoms of the pyterpy ligand and the I1 and I2 atoms. The I2 atom occupies the apical position, with bond angles of I2-Cu1-I1, I2-Cu1-N1, I2-Cu1-N2 and I2-Cu1-N3 being equal to 110.98 (3)°, 102.6 (1)°, 107.9 (1)° and 97.3 (1)° respectively, and the widest bond angles in the coordination sphere of the Cu1 atom being I1-Cu1-N3 [141.1 (1)°] and N2-Cu1-N4 [146.4 (2)°].

Rather unexpectedly, in contrast with other diiodo- and dibromo-copper complexes of 2,2':6'2''-terpyridine (terpy) with square-pyramidal coordination (Hou et al., 2004; Feng et al., 2006), where significant difference between the apical and equatorial metal-halogen bonds was observed, in the title compound the Cu1-I1 and Cu1-I2 bonds are almost identical [2.6025 (8) Å and 2.6141 (8) Å respectively]. It is true, however, that the wide angles in the copper coordination sphere (I1-Cu1-N3 and N2-Cu1-N4) are significantly narrower in the title compound than in other terpy complexes with square-pyramidal configuration (see references above), which puts this compound much farther on the transition path to trigonal bipyramid than the mentioned above literature complexes.

The Cu1-N3 bond with the N atom of the central ring of the pyterpy ligand [2.104 (4) Å] is noticeably shorter, than the Cu1-N2 and Cu1-N4 bonds [2.206 (5) Å and 2.199 (5) Å] involving the flanking pyridine rings of the pyterpy ligand. This pattern in the Cu-N bonds, is quite typical for the terpy complexes (see Hou et al., 2004; Feng et al., 2006; Kutoglu et al., 1991).

Related literature top

For related structures, see: Feng et al. (2006); Hou et al. (2004, 2005); Kutoglu et al. (1991); Shi et al. (2007); Zhang et al. (2007).

Experimental top

The mixture of CuI (0.0190 g, 0.1 mmol), 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) (0.0155 g, 0.05 mmol), saturated KI solution (3 ml) and water (6 ml) were placed and sealed in a 10 ml Teflon-lined stainless steel reactor and heated to 140 °C for 72 h, then cooled down to room temperature at a rate of 2°C/20 min. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 40% yield.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å(aromatic) and Uĩso(H) = 1.2Ueq(C)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability ellipsoids.
Diiodido[4'-(4-pyridyl)-2,2':6',2''-terpyridine- κ3N,N',N'']copper(II) top
Crystal data top
[CuI2(C20H14N4)]F(000) = 1188
Mr = 627.69Dx = 2.105 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1523 reflections
a = 11.9882 (8) Åθ = 1.9–20.3°
b = 14.642 (1) ŵ = 4.23 mm1
c = 12.0291 (8) ÅT = 294 K
β = 110.240 (1)°Block, black
V = 1981.1 (2) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3894 independent reflections
Radiation source: fine-focus sealed tube3670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.361, Tmax = 0.467k = 1817
11694 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.30 w = 1/[σ2(Fo2) + (0.0189P)2 + 6.8023P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[CuI2(C20H14N4)]V = 1981.1 (2) Å3
Mr = 627.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9882 (8) ŵ = 4.23 mm1
b = 14.642 (1) ÅT = 294 K
c = 12.0291 (8) Å0.25 × 0.23 × 0.18 mm
β = 110.240 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3670 reflections with I > 2σ(I)
Tmin = 0.361, Tmax = 0.467Rint = 0.028
11694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.30Δρmax = 0.66 e Å3
3894 reflectionsΔρmin = 0.97 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73294 (6)0.14757 (4)0.92788 (6)0.02734 (17)
C11.1049 (6)0.1207 (5)0.5460 (6)0.0409 (15)
H11.07650.17170.49860.049*
C21.0403 (5)0.0897 (4)0.6143 (5)0.0346 (14)
H20.97240.12060.61420.042*
C31.0786 (5)0.0118 (4)0.6828 (5)0.0288 (12)
C41.1830 (5)0.0295 (4)0.6800 (5)0.0343 (13)
H41.21260.08180.72410.041*
C51.2409 (6)0.0091 (4)0.6106 (6)0.0411 (16)
H51.31080.01870.61080.049*
C61.0106 (5)0.0250 (4)0.7539 (5)0.0278 (12)
C70.9499 (5)0.0329 (4)0.8056 (5)0.0304 (13)
H70.95660.09590.80060.036*
C80.8799 (5)0.0042 (4)0.8644 (5)0.0253 (11)
C90.8078 (5)0.0505 (4)0.9195 (5)0.0279 (12)
C100.8152 (5)0.1438 (4)0.9284 (5)0.0347 (13)
H100.86510.17600.89810.042*
C110.7474 (6)0.1892 (4)0.9830 (6)0.0421 (16)
H110.75190.25230.99160.050*
C120.6724 (6)0.1390 (4)1.0249 (6)0.0442 (16)
H120.62490.16771.06120.053*
C130.6698 (6)0.0452 (4)1.0115 (6)0.0404 (15)
H130.61970.01151.04000.048*
C140.8092 (6)0.3530 (4)0.9194 (6)0.0383 (14)
H140.75410.36450.95630.046*
C150.8637 (6)0.4263 (4)0.8878 (6)0.0391 (15)
H150.84460.48580.90160.047*
C160.9473 (6)0.4096 (4)0.8354 (6)0.0417 (16)
H160.98630.45770.81400.050*
C170.9724 (6)0.3199 (4)0.8149 (6)0.0384 (15)
H171.02880.30690.78010.046*
C180.9120 (5)0.2504 (4)0.8473 (5)0.0271 (12)
C190.9295 (5)0.1515 (4)0.8282 (5)0.0259 (12)
C201.0022 (5)0.1191 (4)0.7688 (5)0.0298 (12)
H201.04480.15950.73920.036*
I10.69282 (4)0.20067 (3)1.11708 (4)0.04474 (14)
I20.54357 (4)0.16793 (3)0.73907 (4)0.04683 (14)
N11.2047 (5)0.0826 (4)0.5436 (5)0.0455 (14)
N20.7357 (4)0.0010 (3)0.9595 (4)0.0310 (11)
N30.8694 (4)0.0951 (3)0.8736 (4)0.0267 (10)
N40.8313 (4)0.2670 (3)0.8997 (4)0.0298 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0286 (4)0.0248 (3)0.0331 (4)0.0006 (3)0.0162 (3)0.0012 (3)
C10.046 (4)0.039 (4)0.040 (4)0.006 (3)0.018 (3)0.001 (3)
C20.037 (3)0.030 (3)0.041 (4)0.003 (2)0.019 (3)0.003 (3)
C30.031 (3)0.026 (3)0.031 (3)0.007 (2)0.012 (3)0.005 (2)
C40.036 (3)0.031 (3)0.034 (3)0.002 (3)0.011 (3)0.007 (3)
C50.038 (3)0.043 (4)0.052 (4)0.010 (3)0.027 (3)0.013 (3)
C60.027 (3)0.029 (3)0.029 (3)0.001 (2)0.011 (2)0.001 (2)
C70.038 (3)0.020 (3)0.032 (3)0.003 (2)0.011 (3)0.001 (2)
C80.026 (3)0.023 (3)0.025 (3)0.001 (2)0.006 (2)0.003 (2)
C90.025 (3)0.027 (3)0.029 (3)0.003 (2)0.005 (2)0.002 (2)
C100.036 (3)0.032 (3)0.038 (3)0.002 (2)0.016 (3)0.002 (3)
C110.050 (4)0.026 (3)0.054 (4)0.011 (3)0.022 (3)0.006 (3)
C120.045 (4)0.044 (4)0.054 (4)0.014 (3)0.030 (3)0.003 (3)
C130.038 (3)0.040 (4)0.048 (4)0.004 (3)0.022 (3)0.003 (3)
C140.043 (4)0.032 (3)0.044 (4)0.005 (3)0.019 (3)0.003 (3)
C150.043 (4)0.023 (3)0.049 (4)0.001 (3)0.014 (3)0.001 (3)
C160.043 (4)0.024 (3)0.060 (4)0.007 (3)0.019 (3)0.006 (3)
C170.041 (4)0.029 (3)0.051 (4)0.000 (3)0.023 (3)0.002 (3)
C180.024 (3)0.025 (3)0.031 (3)0.001 (2)0.008 (2)0.004 (2)
C190.030 (3)0.023 (3)0.028 (3)0.002 (2)0.014 (2)0.003 (2)
C200.035 (3)0.025 (3)0.031 (3)0.005 (2)0.014 (3)0.003 (2)
I10.0565 (3)0.0431 (3)0.0441 (3)0.0026 (2)0.0296 (2)0.0038 (2)
I20.0424 (3)0.0349 (2)0.0504 (3)0.00135 (18)0.0003 (2)0.0007 (2)
N10.054 (4)0.041 (3)0.052 (4)0.013 (3)0.032 (3)0.001 (3)
N20.033 (3)0.027 (2)0.038 (3)0.001 (2)0.019 (2)0.000 (2)
N30.029 (2)0.025 (2)0.027 (2)0.0012 (19)0.010 (2)0.0025 (19)
N40.028 (2)0.027 (2)0.036 (3)0.0025 (19)0.013 (2)0.000 (2)
Geometric parameters (Å, º) top
Cu1—N32.104 (4)C9—C101.370 (8)
Cu1—N42.199 (5)C10—C111.380 (8)
Cu1—N22.206 (5)C10—H100.9300
Cu1—I12.6025 (8)C11—C121.383 (9)
Cu1—I22.6141 (8)C11—H110.9300
C1—N11.330 (8)C12—C131.381 (9)
C1—C21.386 (8)C12—H120.9300
C1—H10.9300C13—N21.333 (7)
C2—C31.389 (8)C13—H130.9300
C2—H20.9300C14—N41.325 (7)
C3—C41.401 (8)C14—C151.376 (9)
C3—C61.473 (7)C14—H140.9300
C4—C51.379 (8)C15—C161.378 (9)
C4—H40.9300C15—H150.9300
C5—N11.324 (9)C16—C171.388 (8)
C5—H50.9300C16—H160.9300
C6—C71.396 (8)C17—C181.381 (8)
C6—C201.397 (8)C17—H170.9300
C7—C81.382 (8)C18—N41.347 (7)
C7—H70.9300C18—C191.493 (7)
C8—N31.345 (7)C19—N31.331 (6)
C8—C91.492 (7)C19—C201.387 (8)
C9—N21.340 (7)C20—H200.9300
N3—Cu1—N474.14 (17)C10—C11—C12118.8 (6)
N3—Cu1—N274.17 (17)C10—C11—H11120.6
N4—Cu1—N2146.45 (17)C12—C11—H11120.6
N3—Cu1—I1141.15 (13)C13—C12—C11118.5 (6)
N4—Cu1—I199.68 (13)C13—C12—H12120.7
N2—Cu1—I198.03 (13)C11—C12—H12120.7
N3—Cu1—I2107.86 (13)N2—C13—C12123.0 (6)
N4—Cu1—I297.26 (13)N2—C13—H13118.5
N2—Cu1—I2102.65 (13)C12—C13—H13118.5
I1—Cu1—I2110.98 (3)N4—C14—C15123.3 (6)
N1—C1—C2124.5 (6)N4—C14—H14118.4
N1—C1—H1117.7C15—C14—H14118.4
C2—C1—H1117.7C14—C15—C16118.5 (6)
C1—C2—C3118.9 (6)C14—C15—H15120.7
C1—C2—H2120.6C16—C15—H15120.7
C3—C2—H2120.6C15—C16—C17119.1 (6)
C2—C3—C4117.0 (5)C15—C16—H16120.5
C2—C3—C6120.7 (5)C17—C16—H16120.5
C4—C3—C6122.3 (5)C18—C17—C16118.7 (6)
C5—C4—C3118.7 (6)C18—C17—H17120.7
C5—C4—H4120.7C16—C17—H17120.7
C3—C4—H4120.7N4—C18—C17122.1 (5)
N1—C5—C4125.0 (6)N4—C18—C19114.1 (5)
N1—C5—H5117.5C17—C18—C19123.8 (5)
C4—C5—H5117.5N3—C19—C20121.7 (5)
C7—C6—C20118.0 (5)N3—C19—C18114.4 (5)
C7—C6—C3121.0 (5)C20—C19—C18123.9 (5)
C20—C6—C3121.0 (5)C19—C20—C6119.3 (5)
C8—C7—C6119.4 (5)C19—C20—H20120.4
C8—C7—H7120.3C6—C20—H20120.4
C6—C7—H7120.3C5—N1—C1115.9 (5)
N3—C8—C7121.5 (5)C13—N2—C9117.8 (5)
N3—C8—C9114.2 (5)C13—N2—Cu1125.8 (4)
C7—C8—C9124.3 (5)C9—N2—Cu1116.4 (4)
N2—C9—C10123.0 (5)C19—N3—C8120.0 (5)
N2—C9—C8114.4 (5)C19—N3—Cu1119.4 (3)
C10—C9—C8122.6 (5)C8—N3—Cu1119.5 (4)
C9—C10—C11119.0 (6)C14—N4—C18118.4 (5)
C9—C10—H10120.5C14—N4—Cu1125.3 (4)
C11—C10—H10120.5C18—N4—Cu1116.0 (4)

Experimental details

Crystal data
Chemical formula[CuI2(C20H14N4)]
Mr627.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.9882 (8), 14.642 (1), 12.0291 (8)
β (°) 110.240 (1)
V3)1981.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.23
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.361, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
11694, 3894, 3670
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.091, 1.30
No. of reflections3894
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.97

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation for Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2009QN05).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181–m1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKutoglu, A., Allmann, R., Folgado, J.-V., Atanasov, M. & Reinen, D. (1991). Z. Naturforsch. Teil B, 46, 1193–1199.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588–598.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365–4367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds