organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-3,3′-Di­methyl-1,1′-di­phenyl-4,4′-{(ethane-1,2-diyldi­imino)­bis­­[(2-fur­yl)methyl­­idyne]}di-1H-pyrazol-5(4H)-one

aEast China University of Science and Technology, Collage of Chemistry and Molecular Engineering, Mei Long Road 130, Shanghai 200237, People's Republic of China
*Correspondence e-mail: wanghaiwen@ecust.edu.cn

(Received 23 May 2010; accepted 26 May 2010; online 5 June 2010)

The complete molecule of the title compound of the title compound, C32H28N6O4, is generated by crystallographic inversion symmetry. The dihedral angles between the pyrazalone ring and the pendant phenyl and furan rings are 15.65 (8) and 65.06 (8)°, respectively. In the crystal, the molecules are linked by N—H⋯O, C—H⋯O and weak C—H⋯π interactions.

Related literature

For general background to pyrazolo­nes, see: Casas et al. (2007[Casas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.]); Li et al. (2000[Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233-236.]); Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.], 2008[Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. Inorg. Chem. 24, 990-993.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N6O4

  • Mr = 560.60

  • Monoclinic, P 21 /c

  • a = 10.7438 (6) Å

  • b = 7.6999 (4) Å

  • c = 16.8273 (9) Å

  • β = 93.937 (1)°

  • V = 1388.77 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 8081 measured reflections

  • 3145 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.02

  • 3145 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.92 (2) 1.91 (2) 2.693 (2) 142.0 (17)
C16—H16ACg3i 0.97 2.70 3.575 (2) 151
C3—H3⋯O1ii 0.93 2.54 3.389 (2) 152
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiffbases derived from 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (PMFP) have found extensive application in coordination chemistry and in antibacterial activation (Zhang et al., 2007, 2008; Li et al., 2000). In order to expand this field, a novel bis-schiff base has been synthesized and its crystal structure is reported herein for the first time.

The molecular structure of the title compound (I) is shown in Fig.1. The molecule adopts a staggered conformation about the C9—C9i bond (symmetry code: (i) -x, y + 1/2, -z + 1/2) due to the centrosymmetry. Atoms O1, C7, C8 and C11 of the PMFP moiety and N3 of the ethylenediamine group are almost coplanar, the largest deviation being 0.063 (11) Å for atom C11. The phenyl and furan rings are slightly twisted with respect to the central pyrazolone ring making dihedral angles of 15.65 (8)° and 65.06 (8)°, respectively, indicating a high degree of conjugation and electron delocalization.

The cohesion of the crystal is assured by a strong intramolecular hydrogen bond N3—H3A···O1 (Table 1). Three weak hydrogen bonds C2—H2···O1, C3—H3···O1 and C16–16 A···Cg(3) (Cg(3) denotes the C1—C6 ring centroid) also contribute to the stabilization of the crystal structure.

Related literature top

For general background to pyrazolones, see: Casas et al. (2007); Jensen (1959); Li et al. (2000); Zhang et al. (2007, 2008).

Experimental top

All reagents were obtained from commercial sources and used without further purification. PMFP was synthesized according to the method proposed by Jensen (Jensen, 1959). Ethylenediamine1.0 mmol (0.067 ml) was added dropwise to a stirred solution of PMFP 2.0 mmol (0.5365 g) in anhydrous ethanol (25 ml) at ambient temperature.After refluxing for 6 h, the solvent was removed and a pure yellowish product was obtained upon recrystallization from EtOH/n-heptane (V/V = 1) in 78% yield. mp: 181–182°C.

Refinement top

The H atom bonded to N3 was located in a difference map and refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93 for phenyl, 0.96 for methyl and 0.97 Å for methylene H atoms, and refined as riding, with Uiso(H) = 1.2Ueq (C) for phenyl and methylene H, and 1.5eqU(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at the 30% probability level). Symmetry code: (i) -x, y+1/2, -z+1/2.
(E,E)-3,3'-Dimethyl-1,1'-diphenyl-4,4'-{(ethane-1,2- diyldiimino)bis[(2-furyl)methylidyne]}di-1H-pyrazol-5(4H)-one top
Crystal data top
C32H28N6O4F(000) = 588
Mr = 560.60Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1740 reflections
a = 10.7438 (6) Åθ = 2.4–22.9°
b = 7.6999 (4) ŵ = 0.09 mm1
c = 16.8273 (9) ÅT = 295 K
β = 93.937 (1)°Block, yellow
V = 1388.77 (13) Å30.22 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
phi and ω scansh = 1213
8081 measured reflectionsk = 106
3145 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2282P]
where P = (Fo2 + 2Fc2)/3
3145 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C32H28N6O4V = 1388.77 (13) Å3
Mr = 560.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7438 (6) ŵ = 0.09 mm1
b = 7.6999 (4) ÅT = 295 K
c = 16.8273 (9) Å0.22 × 0.20 × 0.20 mm
β = 93.937 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1934 reflections with I > 2σ(I)
8081 measured reflectionsRint = 0.026
3145 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
3145 reflectionsΔρmin = 0.21 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79340 (17)1.2879 (2)0.11911 (11)0.0503 (4)
C20.86997 (19)1.2531 (3)0.18661 (11)0.0628 (5)
H20.90521.14350.19420.075*
C30.8939 (2)1.3819 (4)0.24275 (14)0.0784 (7)
H30.94481.35840.28840.094*
C40.8430 (2)1.5442 (4)0.23149 (16)0.0832 (8)
H40.86001.63080.26920.100*
C50.7671 (2)1.5788 (3)0.16450 (15)0.0755 (7)
H50.73291.68900.15700.091*
C60.74101 (18)1.4516 (3)0.10811 (13)0.0598 (5)
H60.68871.47530.06310.072*
C70.83098 (17)1.0057 (2)0.04804 (11)0.0494 (4)
C80.76317 (16)0.9266 (2)0.01917 (10)0.0477 (4)
C90.66731 (17)1.0489 (3)0.04361 (11)0.0529 (5)
C100.5737 (2)1.0478 (3)0.11395 (13)0.0757 (7)
H10A0.50980.96400.10540.114*
H10B0.61451.01780.16100.114*
H10C0.53691.16100.12040.114*
C110.79841 (15)0.7652 (2)0.04839 (10)0.0453 (4)
C120.71716 (18)0.6668 (2)0.10479 (10)0.0510 (5)
C130.59548 (17)0.6410 (3)0.10780 (11)0.0566 (5)
H130.54080.68370.07200.068*
C140.5636 (2)0.5375 (3)0.17468 (13)0.0728 (6)
H140.48410.49880.19150.087*
C150.6675 (2)0.5054 (3)0.20900 (13)0.0743 (6)
H150.67330.44020.25510.089*
C160.95252 (16)0.5224 (2)0.03384 (11)0.0498 (5)
H16A0.99080.51530.08430.060*
H16B0.88360.44080.03500.060*
H3A0.9502 (18)0.768 (3)0.0148 (12)0.072 (6)*
N10.76746 (14)1.1578 (2)0.06110 (8)0.0525 (4)
N20.67014 (15)1.1852 (2)0.00285 (9)0.0586 (4)
N30.90719 (14)0.6974 (2)0.02175 (10)0.0523 (4)
O10.92691 (12)0.95452 (17)0.08686 (8)0.0615 (4)
O20.76644 (13)0.5832 (2)0.16638 (8)0.0703 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (10)0.0503 (11)0.0489 (10)0.0084 (9)0.0096 (8)0.0029 (9)
C20.0687 (13)0.0644 (13)0.0550 (11)0.0098 (11)0.0030 (10)0.0045 (10)
C30.0795 (15)0.0934 (19)0.0622 (14)0.0174 (14)0.0041 (11)0.0200 (13)
C40.0753 (15)0.0879 (19)0.0887 (18)0.0172 (14)0.0219 (14)0.0418 (15)
C50.0656 (13)0.0618 (14)0.1014 (18)0.0080 (11)0.0215 (13)0.0244 (13)
C60.0572 (11)0.0562 (12)0.0673 (12)0.0035 (10)0.0143 (10)0.0061 (10)
C70.0528 (10)0.0465 (10)0.0481 (10)0.0005 (9)0.0017 (8)0.0039 (8)
C80.0505 (10)0.0465 (10)0.0452 (9)0.0000 (8)0.0029 (8)0.0006 (8)
C90.0550 (11)0.0534 (11)0.0490 (10)0.0044 (9)0.0051 (8)0.0015 (9)
C100.0822 (15)0.0761 (16)0.0647 (13)0.0176 (13)0.0249 (11)0.0040 (12)
C110.0472 (10)0.0460 (10)0.0426 (9)0.0017 (8)0.0022 (8)0.0051 (8)
C120.0622 (12)0.0480 (10)0.0425 (9)0.0011 (9)0.0002 (8)0.0025 (8)
C130.0475 (10)0.0667 (13)0.0559 (11)0.0026 (9)0.0049 (8)0.0122 (10)
C140.0565 (12)0.0862 (17)0.0741 (14)0.0062 (12)0.0086 (11)0.0161 (12)
C150.0718 (14)0.0852 (16)0.0641 (13)0.0018 (13)0.0076 (11)0.0288 (12)
C160.0482 (10)0.0454 (10)0.0561 (11)0.0007 (8)0.0052 (8)0.0022 (8)
N10.0594 (9)0.0474 (9)0.0494 (9)0.0036 (8)0.0063 (7)0.0026 (7)
N20.0625 (10)0.0552 (10)0.0564 (9)0.0090 (8)0.0087 (8)0.0015 (8)
N30.0497 (9)0.0426 (9)0.0636 (10)0.0014 (7)0.0020 (8)0.0042 (8)
O10.0619 (8)0.0561 (8)0.0635 (8)0.0046 (7)0.0177 (7)0.0037 (7)
O20.0630 (9)0.0847 (11)0.0632 (9)0.0002 (8)0.0047 (7)0.0147 (8)
Geometric parameters (Å, º) top
C1—C21.382 (3)C10—H10A0.9600
C1—C61.387 (3)C10—H10B0.9600
C1—N11.413 (2)C10—H10C0.9600
C2—C31.382 (3)C11—N31.330 (2)
C2—H20.9300C11—C121.457 (2)
C3—C41.372 (4)C12—C131.320 (2)
C3—H30.9300C12—O21.358 (2)
C4—C51.371 (4)C13—C141.402 (3)
C4—H40.9300C13—H130.9300
C5—C61.379 (3)C14—C151.315 (3)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—O21.378 (2)
C7—O11.246 (2)C15—H150.9300
C7—N11.380 (2)C16—N31.452 (2)
C7—C81.438 (2)C16—C16i1.516 (3)
C8—C111.398 (3)C16—H16A0.9700
C8—C91.435 (2)C16—H16B0.9700
C9—N21.307 (2)N1—N21.399 (2)
C9—C101.500 (2)N3—H3A0.92 (2)
C2—C1—C6119.95 (18)H10A—C10—H10C109.5
C2—C1—N1120.52 (18)H10B—C10—H10C109.5
C6—C1—N1119.54 (17)N3—C11—C8118.92 (16)
C3—C2—C1119.7 (2)N3—C11—C12119.25 (17)
C3—C2—H2120.2C8—C11—C12121.79 (16)
C1—C2—H2120.2C13—C12—O2109.65 (16)
C4—C3—C2120.4 (2)C13—C12—C11130.61 (17)
C4—C3—H3119.8O2—C12—C11119.74 (16)
C2—C3—H3119.8C12—C13—C14107.65 (18)
C5—C4—C3119.9 (2)C12—C13—H13126.2
C5—C4—H4120.0C14—C13—H13126.2
C3—C4—H4120.0C15—C14—C13106.94 (18)
C4—C5—C6120.6 (2)C15—C14—H14126.5
C4—C5—H5119.7C13—C14—H14126.5
C6—C5—H5119.7C14—C15—O2109.74 (18)
C5—C6—C1119.5 (2)C14—C15—H15125.1
C5—C6—H6120.3O2—C15—H15125.1
C1—C6—H6120.3N3—C16—C16i108.70 (18)
O1—C7—N1125.83 (17)N3—C16—H16A109.9
O1—C7—C8129.37 (17)C16i—C16—H16A109.9
N1—C7—C8104.79 (15)N3—C16—H16B109.9
C11—C8—C9133.55 (16)C16i—C16—H16B109.9
C11—C8—C7121.23 (16)H16A—C16—H16B108.3
C9—C8—C7105.20 (16)C7—N1—N2111.73 (14)
N2—C9—C8111.62 (16)C7—N1—C1129.44 (15)
N2—C9—C10117.60 (17)N2—N1—C1118.64 (15)
C8—C9—C10130.68 (18)C9—N2—N1106.47 (15)
C9—C10—H10A109.5C11—N3—C16127.80 (16)
C9—C10—H10B109.5C11—N3—H3A112.4 (12)
H10A—C10—H10B109.5C16—N3—H3A119.0 (13)
C9—C10—H10C109.5C12—O2—C15106.01 (15)
C6—C1—C2—C30.1 (3)C8—C11—C12—O2139.07 (18)
N1—C1—C2—C3179.80 (18)O2—C12—C13—C140.6 (2)
C1—C2—C3—C40.6 (3)C11—C12—C13—C14179.5 (2)
C2—C3—C4—C50.6 (4)C12—C13—C14—C150.0 (3)
C3—C4—C5—C60.1 (3)C13—C14—C15—O20.6 (3)
C4—C5—C6—C10.7 (3)O1—C7—N1—N2174.61 (17)
C2—C1—C6—C50.7 (3)C8—C7—N1—N24.5 (2)
N1—C1—C6—C5179.56 (17)O1—C7—N1—C10.1 (3)
O1—C7—C8—C113.0 (3)C8—C7—N1—C1179.26 (17)
N1—C7—C8—C11177.92 (16)C2—C1—N1—C719.0 (3)
O1—C7—C8—C9175.32 (19)C6—C1—N1—C7161.30 (18)
N1—C7—C8—C93.75 (19)C2—C1—N1—N2166.60 (16)
C11—C8—C9—N2179.9 (2)C6—C1—N1—N213.1 (2)
C7—C8—C9—N21.9 (2)C8—C9—N2—N10.8 (2)
C11—C8—C9—C103.7 (4)C10—C9—N2—N1177.56 (17)
C7—C8—C9—C10174.3 (2)C7—N1—N2—C93.4 (2)
C9—C8—C11—N3167.09 (19)C1—N1—N2—C9178.82 (16)
C7—C8—C11—N310.7 (3)C8—C11—N3—C16169.17 (17)
C9—C8—C11—C1215.3 (3)C12—C11—N3—C168.5 (3)
C7—C8—C11—C12166.92 (16)C16i—C16—N3—C11154.74 (19)
N3—C11—C12—C13136.6 (2)C13—C12—O2—C150.9 (2)
C8—C11—C12—C1341.0 (3)C11—C12—O2—C15179.14 (18)
N3—C11—C12—O243.3 (2)C14—C15—O2—C120.9 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–c6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.92 (2)1.91 (2)2.693 (2)142.0 (17)
C16—H16A···Cg3ii0.972.703.575 (2)151
C3—H3···O1iii0.932.543.389 (2)152
Symmetry codes: (ii) x, y, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H28N6O4
Mr560.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.7438 (6), 7.6999 (4), 16.8273 (9)
β (°) 93.937 (1)
V3)1388.77 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8081, 3145, 1934
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.02
No. of reflections3145
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–c6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.92 (2)1.91 (2)2.693 (2)142.0 (17)
C16—H16A···Cg3i0.972.703.575 (2)151
C3—H3···O1ii0.932.543.389 (2)152
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the College of Chemistry and Mol­ecular Engineering, East China University of Science and Technology.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.  Web of Science CrossRef CAS Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationLi, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds