organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­phenyl­methyl-4-ethyl­piperazine-1,4-diium dichloride

aInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and bDepartment of General Surgery, Center of Minimally Invasive Surgery, the 81st Hospital of PLA, Nanjing 210002, People's Republic of China
*Correspondence e-mail: qiaohy2010@gmail.com

(Received 4 June 2010; accepted 23 June 2010; online 30 June 2010)

In the title compound, C19H26N22+·2Cl, the piperazinediium ring exhibits a chair conformation. The dihedral angle between the two benzene ring planes is 76.45 (13)°. Both amine-group H atoms participate in hydrogen bonding with the two Cl atoms.

Related literature

The title compound was obtained in our search for a strong anti-Helicobacter pylori secondary metabolite. For general background to H. pylori, see: Gebert et al. (2003[Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. (2003). Science, 301, 1099-1102.]); Li et al. (2007[Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361-1369.]); Moran & Upton (1986[Moran, A. P. & Upton, M. E. (1986). J. Appl. Bacteriol. 60, 103-110.]). For bond lengths and angles in related structures, see: Raves et al. (1992[Raves, M. L., Kanters, J. A. & Tollenaere, J. P. (1992). Acta Cryst. C48, 1712-1713.]); Ilangovan et al. (2007[Ilangovan, A., Kumar, R. G., Liang, H., Balasubramani, K. & Muthiah, P. T. (2007). Acta Cryst. E63, o4087.]).

[Scheme 1]

Experimental

Crystal data
  • C19H26N22+·2Cl

  • Mr = 353.32

  • Monoclinic, P 21 /c

  • a = 15.069 (3) Å

  • b = 7.2950 (15) Å

  • c = 18.565 (4) Å

  • β = 106.35 (3)°

  • V = 1958.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.907, Tmax = 0.968

  • 3684 measured reflections

  • 3542 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.028

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.157

  • S = 1.03

  • 3542 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl2 0.96 (4) 2.09 (4) 3.028 (3) 165 (3)
N2—H2B⋯Cl1 0.85 (4) 2.16 (4) 3.006 (3) 174 (3)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The human pathogenic bacterium Helicobacter pylori has been ascertained to be an antiological agent for chronic active gastritis and a significant determinant in peptic and duodenal ulcer diseases (Gebert et al., 2003; Li et al., 2007). Sustained infection with this bacterium could lead to development of gastric cancer (Moran & Upton, 1986). Endophytic metabolites are recognized as a versatile arsenal of antimicrobial agents, since some endophytes have been shown to possess superior biosynthetic capabilities owing to their presumable gene recombination with the host, while residing and reproducing inside the healthy plant tissues. Our particular attention was extended to anti-Helicobacter pylori constituents. A detailed bioassay-guided fractionation of the culture extract of Fusarium sp., an endophytic fungus in Quercus variabilis Bl., was performed to afford a strong anti-H. pylori secondary metabolite. In this paper we report the structural information for the title compound, C19H26N22+.2Cl-, for which the asymmetric unit contains one 1-(diphenylmethyl)-4-ethylpiperazine-1,4-diium dication and two chloride anions. The bond lengths and angles of the title compound are in normal ranges when comparing with similar structures reported previously (Raves et al., 1992; Ilangovan et al., 2007). In the title compound, the piperazine fragment is in a chair conformation. The dihedral angle between the two benzene ring planes is 76.45 (13) °. Both amine-group H atoms participate in hydrogen bonding with the two Cl atoms.

Related literature top

The title compound was obtained in our serach for a strong anti-Helicobacter pylori secondary metabolite. For general background to H. pylori, see: Gebert et al. (2003); Li et al. (2007); Moran & Upton (1986). For bond lengths and angles in related structures, see: Raves et al. (1992); Ilangovan et al. (2007).

Experimental top

The cultivation of Fusarium sp. AMB-111, an endophytic fungus in Quercus variabilis, extraction and isolation were described in a preceding communication. A residue (149 g) from the dark brown tarry mass was obtained after depositing lipids, which was then subjected to column chromatography (CC) on silica gel (1300 g, 200–300 mesh), eluting with chloroform/methanol (1:0–0:1) to give seven fractions (F-1: 28.3 g, F-2: 12.2 g, F-3: 12.5 g, F-4: 14.0 g, F-5: 13.7 g, F-6: 12.3 g and F-7: 27.4 g). F-2, showing pronounced anti-Helicobacter pylori activity, was re-chromatographed over Si-gel column eluting with chloroform/acetone (50:1–4:1) to afford four subfractions (F-2–1: 4.5 g, F-2–2: 1.4 g, F-2–3: 2.3 g and F-2–4: 2.0 g). F-2–2 was subjected to gel filtration over Sephadex LH-20 with chloroform/methanol (1:1), followed by recrystalization repeatedly to give the title compound, a yellow crystal (300 mg).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
1-Diphenylmethyl-4-ethylpiperazine-1,4-diium dichloride top
Crystal data top
C19H26N22+·2ClF(000) = 752
Mr = 353.32Dx = 1.198 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.069 (3) Åθ = 9–12°
b = 7.2950 (15) ŵ = 0.33 mm1
c = 18.565 (4) ÅT = 293 K
β = 106.35 (3)°Block, yellow
V = 1958.3 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2θ scanh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.907, Tmax = 0.968l = 2221
3684 measured reflections200 standard reflections every 3 reflections
3542 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.065P)2 + 0.1129P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H26N22+·2ClV = 1958.3 (7) Å3
Mr = 353.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.069 (3) ŵ = 0.33 mm1
b = 7.2950 (15) ÅT = 293 K
c = 18.565 (4) Å0.30 × 0.20 × 0.10 mm
β = 106.35 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2101 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.907, Tmax = 0.968200 standard reflections every 3 reflections
3684 measured reflections intensity decay: 1%
3542 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
3542 reflectionsΔρmin = 0.25 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6307 (3)0.4082 (10)0.0245 (3)0.0936 (17)
H1A0.60520.40380.02730.112*
C20.6600 (4)0.2480 (8)0.0637 (3)0.0916 (16)
H2A0.65490.13690.03830.110*
C30.6968 (3)0.2534 (6)0.1407 (2)0.0710 (13)
H3A0.71580.14590.16760.085*
C40.7053 (2)0.4206 (5)0.17766 (19)0.0473 (9)
C50.6766 (3)0.5794 (6)0.1372 (2)0.0576 (10)
H5A0.68300.69150.16190.069*
C60.6387 (3)0.5729 (8)0.0607 (3)0.0816 (14)
H6A0.61870.67990.03380.098*
C70.7408 (2)0.4406 (4)0.26239 (18)0.0404 (8)
H7A0.76270.56720.27190.049*
C80.6648 (2)0.4179 (5)0.30018 (19)0.0444 (9)
C90.6408 (3)0.5678 (5)0.3367 (2)0.0572 (10)
H9A0.67470.67580.34130.069*
C100.5665 (3)0.5563 (7)0.3663 (2)0.0754 (13)
H10A0.55060.65780.39030.090*
C110.5164 (3)0.4010 (8)0.3610 (2)0.0766 (14)
H11A0.46640.39570.38100.092*
C120.5400 (3)0.2510 (7)0.3258 (2)0.0729 (13)
H12A0.50560.14370.32220.087*
C130.6142 (3)0.2571 (6)0.2956 (2)0.0606 (11)
H13A0.63000.15410.27240.073*
C140.9003 (2)0.3678 (4)0.26354 (17)0.0410 (8)
H14A0.91480.49700.27210.049*
H14B0.88010.34760.20970.049*
C150.9859 (2)0.2566 (5)0.29714 (17)0.0432 (9)
H15A0.97270.12810.28540.052*
H15B1.03420.29410.27510.052*
C160.9435 (2)0.2275 (5)0.41299 (18)0.0458 (9)
H16A0.96380.24680.46690.055*
H16B0.92950.09830.40390.055*
C170.8575 (2)0.3387 (5)0.37957 (17)0.0464 (9)
H17A0.80930.29960.40150.056*
H17B0.87050.46680.39210.056*
C181.1074 (3)0.1783 (5)0.4132 (2)0.0553 (10)
H18A1.15050.20610.38450.066*
H18B1.09500.04760.40910.066*
C191.1516 (3)0.2259 (6)0.4946 (2)0.0720 (13)
H19A1.20730.15610.51320.108*
H19B1.10950.19750.52340.108*
H19C1.16600.35430.49890.108*
Cl11.05758 (8)0.68359 (12)0.40163 (5)0.0639 (4)
Cl20.80657 (8)0.09301 (13)0.27873 (7)0.0756 (4)
H1B0.807 (2)0.193 (5)0.2866 (18)0.059 (11)*
H2B1.033 (2)0.392 (5)0.3885 (19)0.056 (11)*
N10.82357 (19)0.3192 (4)0.29633 (14)0.0370 (7)
N21.0189 (2)0.2800 (4)0.37993 (15)0.0401 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (4)0.141 (5)0.045 (3)0.003 (4)0.003 (2)0.009 (3)
C20.105 (4)0.097 (4)0.064 (3)0.014 (3)0.010 (3)0.028 (3)
C30.095 (3)0.062 (3)0.047 (3)0.010 (3)0.005 (2)0.012 (2)
C40.044 (2)0.054 (2)0.044 (2)0.0073 (19)0.0123 (17)0.0052 (19)
C50.057 (3)0.061 (3)0.052 (2)0.004 (2)0.011 (2)0.006 (2)
C60.078 (3)0.100 (4)0.059 (3)0.013 (3)0.007 (3)0.012 (3)
C70.049 (2)0.0257 (17)0.047 (2)0.0090 (16)0.0137 (17)0.0047 (15)
C80.044 (2)0.045 (2)0.044 (2)0.0045 (18)0.0120 (17)0.0011 (17)
C90.067 (3)0.053 (2)0.058 (2)0.001 (2)0.027 (2)0.0058 (19)
C100.081 (3)0.085 (4)0.071 (3)0.010 (3)0.039 (3)0.010 (3)
C110.062 (3)0.108 (4)0.064 (3)0.001 (3)0.026 (2)0.009 (3)
C120.060 (3)0.086 (3)0.076 (3)0.028 (3)0.024 (2)0.003 (3)
C130.064 (3)0.062 (3)0.057 (2)0.012 (2)0.019 (2)0.005 (2)
C140.051 (2)0.0358 (19)0.0404 (19)0.0036 (17)0.0191 (17)0.0005 (15)
C150.060 (2)0.0354 (18)0.0395 (19)0.0084 (17)0.0220 (17)0.0077 (15)
C160.061 (2)0.043 (2)0.0389 (19)0.0094 (19)0.0220 (18)0.0034 (16)
C170.055 (2)0.050 (2)0.039 (2)0.0078 (19)0.0220 (17)0.0059 (17)
C180.059 (2)0.040 (2)0.063 (2)0.008 (2)0.012 (2)0.0043 (19)
C190.068 (3)0.077 (3)0.064 (3)0.011 (2)0.005 (2)0.001 (2)
Cl10.1106 (9)0.0332 (5)0.0560 (6)0.0187 (5)0.0369 (6)0.0078 (4)
Cl20.0951 (9)0.0287 (5)0.0988 (9)0.0145 (5)0.0205 (7)0.0052 (5)
N10.0494 (18)0.0276 (14)0.0358 (15)0.0083 (14)0.0151 (13)0.0055 (12)
N20.0539 (19)0.0269 (16)0.0408 (17)0.0027 (14)0.0155 (14)0.0052 (13)
Geometric parameters (Å, º) top
C1—C61.366 (7)C13—H13A0.9300
C1—C21.382 (7)C14—N11.493 (4)
C1—H1A0.9300C14—C151.502 (4)
C2—C31.381 (6)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.388 (5)C15—N21.486 (4)
C3—H3A0.9300C15—H15A0.9700
C4—C51.382 (5)C15—H15B0.9700
C4—C71.519 (4)C16—N21.486 (4)
C5—C61.373 (5)C16—C171.506 (5)
C5—H5A0.9300C16—H16A0.9700
C6—H6A0.9300C16—H16B0.9700
C7—C81.512 (5)C17—N11.492 (4)
C7—N11.514 (4)C17—H17A0.9700
C7—H7A0.9800C17—H17B0.9700
C8—C91.387 (5)C18—N21.499 (4)
C8—C131.388 (5)C18—C191.510 (5)
C9—C101.382 (5)C18—H18A0.9700
C9—H9A0.9300C18—H18B0.9700
C10—C111.350 (6)C19—H19A0.9600
C10—H10A0.9300C19—H19B0.9600
C11—C121.371 (6)C19—H19C0.9600
C11—H11A0.9300N1—H1B0.96 (4)
C12—C131.386 (5)N2—H2B0.85 (4)
C12—H12A0.9300
C6—C1—C2120.9 (4)N1—C14—H14B109.2
C6—C1—H1A119.6C15—C14—H14B109.2
C2—C1—H1A119.6H14A—C14—H14B107.9
C3—C2—C1119.8 (5)N2—C15—C14111.4 (3)
C3—C2—H2A120.1N2—C15—H15A109.3
C1—C2—H2A120.1C14—C15—H15A109.3
C2—C3—C4119.4 (4)N2—C15—H15B109.3
C2—C3—H3A120.3C14—C15—H15B109.3
C4—C3—H3A120.3H15A—C15—H15B108.0
C5—C4—C3119.8 (3)N2—C16—C17111.1 (3)
C5—C4—C7116.6 (3)N2—C16—H16A109.4
C3—C4—C7123.5 (3)C17—C16—H16A109.4
C6—C5—C4120.6 (4)N2—C16—H16B109.4
C6—C5—H5A119.7C17—C16—H16B109.4
C4—C5—H5A119.7H16A—C16—H16B108.0
C1—C6—C5119.5 (5)N1—C17—C16112.3 (3)
C1—C6—H6A120.2N1—C17—H17A109.1
C5—C6—H6A120.2C16—C17—H17A109.1
C8—C7—N1112.7 (3)N1—C17—H17B109.1
C8—C7—C4112.2 (3)C16—C17—H17B109.1
N1—C7—C4112.6 (3)H17A—C17—H17B107.9
C8—C7—H7A106.3N2—C18—C19112.9 (3)
N1—C7—H7A106.3N2—C18—H18A109.0
C4—C7—H7A106.3C19—C18—H18A109.0
C9—C8—C13118.8 (3)N2—C18—H18B109.0
C9—C8—C7118.4 (3)C19—C18—H18B109.0
C13—C8—C7122.6 (3)H18A—C18—H18B107.8
C10—C9—C8119.9 (4)C18—C19—H19A109.5
C10—C9—H9A120.1C18—C19—H19B109.5
C8—C9—H9A120.1H19A—C19—H19B109.5
C11—C10—C9121.4 (4)C18—C19—H19C109.5
C11—C10—H10A119.3H19A—C19—H19C109.5
C9—C10—H10A119.3H19B—C19—H19C109.5
C10—C11—C12119.4 (4)C17—N1—C14108.7 (3)
C10—C11—H11A120.3C17—N1—C7112.2 (3)
C12—C11—H11A120.3C14—N1—C7109.4 (2)
C11—C12—C13120.9 (4)C17—N1—H1B106 (2)
C11—C12—H12A119.5C14—N1—H1B110 (2)
C13—C12—H12A119.5C7—N1—H1B110 (2)
C12—C13—C8119.6 (4)C16—N2—C15109.0 (3)
C12—C13—H13A120.2C16—N2—C18113.4 (3)
C8—C13—H13A120.2C15—N2—C18111.7 (3)
N1—C14—C15112.0 (3)C16—N2—H2B111 (2)
N1—C14—H14A109.2C15—N2—H2B107 (2)
C15—C14—H14A109.2C18—N2—H2B104 (2)
C6—C1—C2—C30.9 (8)C10—C11—C12—C130.1 (7)
C1—C2—C3—C41.0 (8)C11—C12—C13—C80.8 (6)
C2—C3—C4—C50.2 (6)C9—C8—C13—C121.5 (6)
C2—C3—C4—C7177.2 (4)C7—C8—C13—C12174.2 (3)
C3—C4—C5—C60.8 (6)N1—C14—C15—N257.9 (4)
C7—C4—C5—C6176.4 (4)N2—C16—C17—N157.7 (4)
C2—C1—C6—C50.1 (8)C16—C17—N1—C1455.1 (4)
C4—C5—C6—C10.9 (7)C16—C17—N1—C7176.3 (3)
C5—C4—C7—C890.9 (4)C15—C14—N1—C1755.1 (3)
C3—C4—C7—C886.2 (4)C15—C14—N1—C7177.9 (2)
C5—C4—C7—N1140.7 (3)C8—C7—N1—C1751.4 (3)
C3—C4—C7—N142.2 (5)C4—C7—N1—C17179.6 (3)
N1—C7—C8—C9117.2 (4)C8—C7—N1—C14172.2 (3)
C4—C7—C8—C9114.5 (4)C4—C7—N1—C1459.7 (3)
N1—C7—C8—C1367.0 (4)C17—C16—N2—C1557.0 (4)
C4—C7—C8—C1361.3 (4)C17—C16—N2—C18177.9 (3)
C13—C8—C9—C101.4 (6)C14—C15—N2—C1657.4 (3)
C7—C8—C9—C10174.5 (3)C14—C15—N2—C18176.6 (3)
C8—C9—C10—C110.5 (7)C19—C18—N2—C1666.6 (4)
C9—C10—C11—C120.3 (7)C19—C18—N2—C15169.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.96 (4)2.09 (4)3.028 (3)165 (3)
N2—H2B···Cl10.85 (4)2.16 (4)3.006 (3)174 (3)

Experimental details

Crystal data
Chemical formulaC19H26N22+·2Cl
Mr353.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.069 (3), 7.2950 (15), 18.565 (4)
β (°) 106.35 (3)
V3)1958.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.907, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
3684, 3542, 2101
Rint0.028
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.157, 1.03
No. of reflections3542
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl20.96 (4)2.09 (4)3.028 (3)165 (3)
N2—H2B···Cl10.85 (4)2.16 (4)3.006 (3)174 (3)
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. (2003). Science, 301, 1099–1102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIlangovan, A., Kumar, R. G., Liang, H., Balasubramani, K. & Muthiah, P. T. (2007). Acta Cryst. E63, o4087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361–1369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoran, A. P. & Upton, M. E. (1986). J. Appl. Bacteriol. 60, 103–110.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRaves, M. L., Kanters, J. A. & Tollenaere, J. P. (1992). Acta Cryst. C48, 1712–1713.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds