metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m729-m730

Bis{2-[(diiso­propyl­phosphan­yl)amino]­pyridine-κ2N1,P}copper(I) hexa­fluorido­phosphate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 1 May 2010; accepted 28 May 2010; online 5 June 2010)

The crystal structure of the title compound, [Cu(C11H19N2P)2]PF6, is composed of discrete [Cu(PN-iPr)2]+ cations [PN-iPr is 2-(diisopropyl­phosphanyl­amino)­pyridine] and PF6 anions. The Cu(I) atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetra­hedral coordination by two P atoms [Cu—P = 2.2277 (4) and 2.2257 (4) Å] and two pyridine N atoms [Cu—N = 2.0763 (11) and 2.0845 (12) Å]. Bond angles about Cu vary from 85.11 (3) (P—Cu—N) to 130.37 (2)° (P—Cu—P). In the crystal, N—H⋯F hydrogen bonds link the Cu complexes and the PF6 anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H⋯F inter­actions contribute to the coherence of the structure.

Related literature

For the synthesis and crystal structures of PN-complexes [PN are 2-(phosphanyl­amino)­pyridines], see: Aucott et al. (2000[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 2559-2575.]); Benito-Garagorri, Mereiter & Kirchner (2007[Benito-Garagorri, D., Mereiter, K. & Kirchner, K. (2007). Collect. Czech. Chem. Commun. 72, 527-540.]); Standfest-Hauser et al. (2009[Standfest-Hauser, C. M., Dazinger, G., Wiedermann, J., Mereiter, K. & Kirchner, K. (2009). Eur. J. Inorg. Chem. pp. 4085-4093.]). For applications of PN-complexes in catalysis, see: Aguirre et al. (2007[Aguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, E., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419-5426]); Benito-Garagorri, Wieder­mann et al. (2007[Benito-Garagorri, D., Wiedermann, J., Pollak, M., Mereiter, K. & Kirchner, K. (2007). Organometallics, 26, 217-222.]). For the chemistry and crystal structures of related PNP-complexes [PNP = 2,6-bis­(phos­phanyl­amino)­pyridine], see: Benito-Garagorri et al. (2006[Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900-1913.]). For crystal structures of other related Cu(I) complexes, see: Hursthouse et al. (2003[Hursthouse, M. B., Coles, S. J. & Smith, M. B. (2003). Private communication (refcode: MEJZAD). CCDC, Union Road, Cambridge, England.]); Healy (2008[Healy, P. C. (2008). Acta Cryst. E64, m607.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H19N2P)2]PF6

  • Mr = 629.01

  • Monoclinic, P n

  • a = 11.0357 (13) Å

  • b = 9.2129 (11) Å

  • c = 14.4282 (17) Å

  • β = 96.723 (1)°

  • V = 1456.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 100 K

  • 0.45 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.65, Tmax = 0.75

  • 21170 measured reflections

  • 8422 independent reflections

  • 8187 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.02

  • 8422 reflections

  • 334 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4180 Friedel pairs, merohedral twin with twin proportions refined

  • Flack parameter: 0.410 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯F1i 0.88 2.24 3.1038 (15) 167
N4—H4N⋯F3ii 0.88 2.26 3.1185 (16) 167
C2—H2⋯F4i 0.95 2.41 3.306 (2) 158
C20—H20⋯F4 1.00 2.53 3.502 (2) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Heterobidentate pyridylphosphane ligands (PN-ligands) in which 2-pyridyl and phosphane moieties are linked by an amino group as spacer are of interest in organometallic chemistry because they contain both hard (nitrogen) and soft (phosphorus) donor atoms at P—N distances of about 3 Å, very suitable for the chelation of transition metals. Moreover, they are readily accessible in a modular fashion via the ease of phosphane-nitrogen bond-forming reactions (e.g. Benito-Garagorri et al., 2006). Some transition metal complexes of these ligands, mainly with diphenylphosphane moieties, are catalytically active and have been applied for carbonylation of olefins and other transformations (Aguirre et al., 2007; Benito-Garagorri, Wiedermann et al., 2007). In continuation of earlier work on Ni(II), Pd(II), and Mo(0/II)-complexes of such ligands (Benito-Garagorri, Mereiter & Kirchner, 2007; Standfest-Hauser et al., 2009) we recently focused on Cu(I) complexes and report here the synthesis and crystal structure of the title compound [Cu(PN-iPr)2]PF6. A view of the asymmetric unit is shown in Fig. 1. Copper is bis-chelated by two independent PN-iPr ligands and adopts a strongly distorted tetrahedral coordination by two P and two N atoms with well-balanced bond distances of Cu1—P1 = 2.2277 (4) Å, Cu1—P2 = 2.2257 (4) Å, Cu1—N1 = 2.0763 (11) Å, and Cu1—N3 = 2.0845 (12) Å. Bond angles about Cu vary from ca. 85° for the two bite angles P1—Cu1—N1 and P2—Cu1—N3 to 130.37 (2)° for P1—Cu1—P2. The twist angle between the planes P1—Cu1—P2 and N1—Cu—N3 is 60.50 (3)° and thus about 30° off from 90°, the value for an ideal undistorted coordination tetrahedron. The complex approaches a molecular non-crystallographic C2 symmetry, which makes both PN-iPr ligands pseudo-equivalent; this includes also the isopropyl groups and their orientations (Fig. 1). A Cu(I)(PN)2 complex closely related in ligand characteristics to that of the title compound was reported for bis(6-chloro-2-(diphenylphosphinoamino)benzothiazole)copper(I) hexafluoridophosphate (Hursthouse et al., 2003); it has Cu—P 2.26 Å, Cu—N 2.06 Å, and a twist angle P—Cu—P vs. N—Cu—N of 63.2°. Cu(I) complexes with separate non-chelating two P- and two N-ligands have generally more regular CuP2N2 tetrahedra with twist angles P—Cu—P vs. N—Cu—N near 90°, e.g. bis(pyridine)-bis(triphenylphosphane)copper(I) tetrafluoridoborate (Healy, 2008).

A characteristic feature of PN-iPr ligands and their homologues is the acidity of the N—H bond (here N2—H2N and N4—H4N), which is a good hydrogen bond donor. In the title compound each NH group is hydrogen bonded to the F-atom of an adjacent PF6 octahedron at N···F distances of ca. 3.1 Å (Table 1). These hydrogen bonds link the cation and anion complexes into infinite chains, which extend parallel to [110] at z 0.15 and parallel to [110] at z 0.65 resulting in a cross-bedded arangement (Fig. 2). Several weaker C—H···F interactions contribute to the coherence of the structure. The most significant two of them with H···F < 2.6 Å are included in Table 1, seven more have H···F distances in the range 2.60 to 2.70 Å.

Related literature top

For the synthesis and crystal structures of PN-complexes [PN are 2-(phosphanylamino)pyridines], see: Aucott et al. (2000); Benito-Garagorri, Mereiter & Kirchner (2007); Standfest-Hauser et al. (2009). For applications of PN-complexes in catalysis, see: Aguirre et al. (2007); Benito-Garagorri, Wiedermann et al. (2007). For the chemistry and crystal structures of related PNP-complexes [PNP = 2,6-bis(phosphanylamino)pyridine], see: Benito-Garagorri et al. (2006). For crystal structures of other related Cu(I) complexes, see: Hursthouse et al. (2003); Healy (2008).

Experimental top

To a solution of [Cu(CH3CN)4]PF6 (100 mg, 0.27 mmol) in THF (10 ml) 2-(diisopropylphosphanylamino)pyridine (PN-iPr; 112.8 mg, 0.54 mmol; for synthesis, see: Benito-Garagorri, Mereiter & Kirchner, 2007) was added and the solution was stirred for 12 h. After removal of the solvent a white powder was obtained which was washed with Et2O and dried under vacuum. Yield: 100 mg (89%). 1H-NMR (δ, acetone, 20 °C): 7.83 (s, 1H, py), 7.69 (s, 1H, py), 7.23 (s, 1H, py), 7.06 (s, 1H, py), 6.78 (s, 1H, NH), 2.90 (s, 2H, CH), 1.22 (s, 12H, CH3). 31P{1H} NMR (δ, acetone, 20 °C): 50.53. Colourless crystals for X-ray diffraction were obtained by evaporation crystallization from acetone.

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. The title compound is racemic but crystallizes in a non-centrosymmetric polar lattice, space group Pn. The Flack test indicated that the investigated crystal is a merohedral (polar) twin. In the final refinement this was taken into account by the use of the instructions TWIN and BASF of program SHELXL97 (Sheldrick, 2008). According to this refinement the amounts of the two twin components are 0.590 (4) and 0.410 (4).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The red broken line shows one of the C—H···F interactions listed in Table 1.
[Figure 2] Fig. 2. Packing diagram of (I) showing two N—H···F hydrogen bonded chains of [Cu(PN-iPr)2]+ cations and PF6- anions. Upper chain extends parallel to [110], lower chain parallel to [110], C-bonded H atoms omitted for clarity.
Bis{2-[(diisopropylphosphanyl)amino]pyridine-κ2N1,P}copper(I) hexafluoridophosphate top
Crystal data top
[Cu(C11H19N2P)2]PF6F(000) = 652
Mr = 629.01Dx = 1.434 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 9966 reflections
a = 11.0357 (13) Åθ = 2.5–30.0°
b = 9.2129 (11) ŵ = 0.97 mm1
c = 14.4282 (17) ÅT = 100 K
β = 96.723 (1)°Block, colourless
V = 1456.8 (3) Å30.45 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
8422 independent reflections
Radiation source: fine-focus sealed tube8187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.65, Tmax = 0.75k = 1212
21170 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.1922P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8422 reflectionsΔρmax = 0.35 e Å3
334 parametersΔρmin = 0.26 e Å3
2 restraintsAbsolute structure: Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.410 (4)
Crystal data top
[Cu(C11H19N2P)2]PF6V = 1456.8 (3) Å3
Mr = 629.01Z = 2
Monoclinic, PnMo Kα radiation
a = 11.0357 (13) ŵ = 0.97 mm1
b = 9.2129 (11) ÅT = 100 K
c = 14.4282 (17) Å0.45 × 0.22 × 0.20 mm
β = 96.723 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8187 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.75Rint = 0.021
21170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.35 e Å3
S = 1.02Δρmin = 0.26 e Å3
8422 reflectionsAbsolute structure: Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined
334 parametersAbsolute structure parameter: 0.410 (4)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.545130 (11)0.141471 (15)0.626623 (10)0.01477 (4)
P10.38719 (3)0.26283 (4)0.55383 (2)0.01685 (6)
P20.72626 (3)0.09024 (3)0.58123 (2)0.01465 (6)
N10.50957 (10)0.25486 (12)0.74483 (8)0.0155 (2)
N20.34515 (12)0.35253 (13)0.64884 (8)0.0209 (2)
H2N0.28300.41290.64110.025*
N30.54844 (10)0.07232 (12)0.67416 (8)0.0168 (2)
N40.74461 (10)0.07879 (12)0.62954 (8)0.0180 (2)
H4N0.81450.12410.62810.022*
C10.40583 (12)0.33308 (14)0.73755 (9)0.0164 (2)
C20.36015 (13)0.39407 (15)0.81595 (10)0.0198 (2)
H20.28520.44590.80950.024*
C30.42655 (14)0.37681 (15)0.90213 (10)0.0215 (3)
H30.39780.41730.95600.026*
C40.53606 (13)0.29988 (15)0.91019 (9)0.0207 (3)
H40.58420.28930.96880.025*
C50.57229 (12)0.23970 (14)0.83056 (9)0.0178 (2)
H50.64550.18440.83620.021*
C60.24294 (13)0.18007 (18)0.50231 (11)0.0249 (3)
H60.18140.25840.48600.030*
C70.26381 (16)0.0977 (2)0.41411 (12)0.0325 (3)
H7A0.31870.01570.43040.049*
H7B0.30050.16290.37150.049*
H7C0.18560.06160.38360.049*
C80.19540 (16)0.0774 (3)0.57232 (13)0.0435 (5)
H8A0.25680.00270.59060.065*
H8B0.12010.03110.54390.065*
H8C0.17860.13210.62760.065*
C90.41591 (14)0.40856 (16)0.47148 (10)0.0228 (3)
H90.42340.36090.41010.027*
C100.53711 (19)0.4818 (2)0.50186 (15)0.0423 (4)
H10A0.55600.55000.45350.063*
H10B0.60150.40820.51140.063*
H10C0.53220.53440.56030.063*
C110.3130 (2)0.5190 (3)0.45456 (15)0.0473 (5)
H11A0.30890.57640.51130.071*
H11B0.23540.46820.43830.071*
H11C0.32850.58350.40320.071*
C120.65306 (12)0.14630 (13)0.67082 (9)0.0161 (2)
C130.67045 (13)0.28684 (15)0.70895 (11)0.0218 (3)
H130.74470.33760.70550.026*
C140.57773 (14)0.34880 (15)0.75124 (12)0.0269 (3)
H140.58740.44320.77750.032*
C150.46883 (14)0.27208 (17)0.75539 (12)0.0280 (3)
H150.40390.31280.78460.034*
C160.45880 (13)0.13615 (15)0.71590 (11)0.0220 (3)
H160.38480.08430.71810.026*
C170.87311 (12)0.17551 (15)0.62197 (10)0.0195 (2)
H170.94000.10740.60990.023*
C180.88851 (16)0.31683 (17)0.56853 (12)0.0278 (3)
H18A0.82170.38340.57780.042*
H18B0.88710.29550.50190.042*
H18C0.96660.36200.59180.042*
C190.88143 (15)0.20342 (19)0.72714 (10)0.0278 (3)
H19A0.96290.24010.74970.042*
H19B0.86670.11260.75940.042*
H19C0.82000.27540.73960.042*
C200.73108 (13)0.05665 (15)0.45568 (9)0.0205 (2)
H200.71850.15170.42240.025*
C210.62513 (16)0.0434 (2)0.41957 (11)0.0319 (3)
H21A0.62250.05430.35180.048*
H21B0.54820.00120.43440.048*
H21C0.63690.13870.44940.048*
C220.85233 (15)0.00667 (18)0.43271 (11)0.0284 (3)
H22A0.87410.09070.47290.043*
H22B0.91630.06720.44340.043*
H22C0.84410.03710.36720.043*
P30.55962 (3)0.31567 (4)0.21299 (3)0.01976 (7)
F10.62918 (10)0.43352 (14)0.15595 (8)0.0398 (3)
F20.48767 (9)0.20025 (11)0.26926 (7)0.0333 (2)
F30.46624 (12)0.28652 (18)0.12151 (7)0.0542 (4)
F40.65102 (12)0.34760 (14)0.30470 (9)0.0516 (4)
F50.64776 (15)0.19392 (16)0.18453 (16)0.0785 (6)
F60.47085 (12)0.43906 (12)0.24247 (9)0.0434 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01443 (6)0.01369 (7)0.01602 (7)0.00390 (6)0.00110 (5)0.00054 (6)
P10.01635 (13)0.01949 (15)0.01425 (13)0.00588 (12)0.00017 (11)0.00045 (12)
P20.01461 (13)0.01342 (14)0.01588 (14)0.00242 (11)0.00163 (10)0.00086 (11)
N10.0170 (5)0.0150 (5)0.0149 (5)0.0012 (4)0.0026 (4)0.0010 (4)
N20.0227 (5)0.0232 (6)0.0166 (5)0.0126 (4)0.0011 (4)0.0002 (4)
N30.0160 (5)0.0143 (5)0.0201 (5)0.0010 (4)0.0017 (4)0.0007 (4)
N40.0152 (5)0.0154 (5)0.0236 (5)0.0045 (4)0.0031 (4)0.0051 (4)
C10.0191 (6)0.0135 (5)0.0166 (6)0.0022 (4)0.0026 (4)0.0003 (4)
C20.0250 (6)0.0142 (6)0.0215 (6)0.0028 (5)0.0086 (5)0.0007 (5)
C30.0300 (7)0.0174 (6)0.0184 (6)0.0044 (5)0.0088 (5)0.0032 (5)
C40.0262 (6)0.0211 (6)0.0148 (5)0.0068 (5)0.0019 (5)0.0010 (5)
C50.0181 (5)0.0168 (6)0.0181 (6)0.0018 (4)0.0009 (4)0.0024 (4)
C60.0180 (6)0.0313 (7)0.0239 (7)0.0052 (5)0.0038 (5)0.0009 (6)
C70.0363 (8)0.0344 (8)0.0256 (7)0.0071 (7)0.0008 (6)0.0060 (6)
C80.0217 (7)0.0752 (15)0.0336 (9)0.0164 (8)0.0036 (6)0.0046 (9)
C90.0270 (7)0.0248 (7)0.0162 (6)0.0058 (5)0.0010 (5)0.0019 (5)
C100.0443 (10)0.0269 (8)0.0513 (11)0.0091 (7)0.0123 (8)0.0144 (8)
C110.0472 (11)0.0484 (12)0.0475 (11)0.0239 (9)0.0106 (9)0.0275 (9)
C120.0150 (5)0.0146 (5)0.0182 (6)0.0005 (4)0.0000 (4)0.0010 (4)
C130.0204 (6)0.0139 (6)0.0304 (7)0.0019 (5)0.0007 (5)0.0021 (5)
C140.0256 (7)0.0151 (6)0.0399 (9)0.0017 (5)0.0038 (6)0.0056 (6)
C150.0242 (7)0.0209 (7)0.0406 (8)0.0029 (5)0.0105 (6)0.0057 (6)
C160.0175 (6)0.0200 (6)0.0290 (7)0.0006 (5)0.0056 (5)0.0007 (5)
C170.0178 (6)0.0192 (6)0.0216 (6)0.0013 (5)0.0020 (5)0.0007 (5)
C180.0316 (7)0.0235 (7)0.0287 (7)0.0067 (6)0.0056 (6)0.0017 (6)
C190.0268 (7)0.0336 (8)0.0217 (7)0.0065 (6)0.0034 (5)0.0007 (6)
C200.0250 (6)0.0197 (6)0.0169 (6)0.0061 (5)0.0024 (5)0.0005 (5)
C210.0324 (8)0.0368 (9)0.0251 (7)0.0005 (7)0.0024 (6)0.0088 (6)
C220.0309 (7)0.0307 (8)0.0253 (6)0.0071 (6)0.0104 (6)0.0018 (6)
P30.01635 (14)0.02039 (15)0.02286 (16)0.00373 (12)0.00365 (12)0.00201 (13)
F10.0306 (5)0.0534 (7)0.0353 (5)0.0215 (5)0.0030 (4)0.0106 (5)
F20.0329 (5)0.0303 (5)0.0366 (5)0.0113 (4)0.0039 (4)0.0085 (4)
F30.0530 (7)0.0899 (10)0.0193 (4)0.0476 (7)0.0026 (4)0.0051 (5)
F40.0451 (7)0.0571 (8)0.0453 (7)0.0261 (6)0.0252 (5)0.0224 (6)
F50.0594 (9)0.0427 (8)0.1435 (17)0.0108 (7)0.0543 (10)0.0213 (9)
F60.0505 (6)0.0329 (6)0.0500 (6)0.0158 (5)0.0188 (5)0.0059 (5)
Geometric parameters (Å, º) top
Cu1—N12.0763 (11)C10—H10A0.9800
Cu1—N32.0845 (12)C10—H10B0.9800
Cu1—P22.2257 (4)C10—H10C0.9800
Cu1—P12.2277 (4)C11—H11A0.9800
P1—N21.7107 (12)C11—H11B0.9800
P1—C61.8415 (16)C11—H11C0.9800
P1—C91.8446 (15)C12—C131.4112 (18)
P2—N41.7084 (12)C13—C141.375 (2)
P2—C171.8347 (14)C13—H130.9500
P2—C201.8446 (14)C14—C151.401 (2)
N1—C11.3464 (16)C14—H140.9500
N1—C51.3521 (16)C15—C161.375 (2)
N2—C11.3850 (17)C15—H150.9500
N2—H2N0.8800C16—H160.9500
N3—C121.3464 (16)C17—C191.531 (2)
N3—C161.3516 (18)C17—C181.533 (2)
N4—C121.3795 (17)C17—H171.0000
N4—H4N0.8800C18—H18A0.9800
C1—C21.4080 (18)C18—H18B0.9800
C2—C31.377 (2)C18—H18C0.9800
C2—H20.9500C19—H19A0.9800
C3—C41.394 (2)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.3766 (19)C20—C221.531 (2)
C4—H40.9500C20—C211.531 (2)
C5—H50.9500C20—H201.0000
C6—C81.522 (3)C21—H21A0.9800
C6—C71.522 (2)C21—H21B0.9800
C6—H61.0000C21—H21C0.9800
C7—H7A0.9800C22—H22A0.9800
C7—H7B0.9800C22—H22B0.9800
C7—H7C0.9800C22—H22C0.9800
C8—H8A0.9800P3—F51.5704 (13)
C8—H8B0.9800P3—F61.5907 (11)
C8—H8C0.9800P3—F41.5944 (12)
C9—C101.516 (2)P3—F31.5993 (11)
C9—C111.523 (2)P3—F21.6036 (10)
C9—H91.0000P3—F11.6103 (11)
N1—Cu1—N3101.70 (4)H10B—C10—H10C109.5
N1—Cu1—P2127.66 (3)C9—C11—H11A109.5
N3—Cu1—P285.11 (3)C9—C11—H11B109.5
N1—Cu1—P185.53 (3)H11A—C11—H11B109.5
N3—Cu1—P1127.73 (3)C9—C11—H11C109.5
P2—Cu1—P1130.374 (15)H11A—C11—H11C109.5
N2—P1—C6102.75 (7)H11B—C11—H11C109.5
N2—P1—C9104.34 (7)N3—C12—N4117.49 (12)
C6—P1—C9104.30 (7)N3—C12—C13121.91 (12)
N2—P1—Cu197.78 (4)N4—C12—C13120.59 (12)
C6—P1—Cu1125.04 (5)C14—C13—C12118.66 (13)
C9—P1—Cu1119.02 (5)C14—C13—H13120.7
N4—P2—C17101.62 (6)C12—C13—H13120.7
N4—P2—C20103.42 (6)C13—C14—C15119.73 (13)
C17—P2—C20105.10 (6)C13—C14—H14120.1
N4—P2—Cu198.10 (4)C15—C14—H14120.1
C17—P2—Cu1127.23 (5)C16—C15—C14118.00 (13)
C20—P2—Cu1117.04 (5)C16—C15—H15121.0
C1—N1—C5117.79 (11)C14—C15—H15121.0
C1—N1—Cu1116.49 (9)N3—C16—C15123.59 (13)
C5—N1—Cu1125.01 (9)N3—C16—H16118.2
C1—N2—P1122.07 (9)C15—C16—H16118.2
C1—N2—H2N119.0C19—C17—C18111.02 (13)
P1—N2—H2N119.0C19—C17—P2109.74 (10)
C12—N3—C16118.11 (12)C18—C17—P2110.39 (10)
C12—N3—Cu1116.65 (9)C19—C17—H17108.5
C16—N3—Cu1124.90 (9)C18—C17—H17108.5
C12—N4—P2121.95 (9)P2—C17—H17108.5
C12—N4—H4N119.0C17—C18—H18A109.5
P2—N4—H4N119.0C17—C18—H18B109.5
N1—C1—N2117.13 (12)H18A—C18—H18B109.5
N1—C1—C2122.14 (12)C17—C18—H18C109.5
N2—C1—C2120.73 (12)H18A—C18—H18C109.5
C3—C2—C1118.48 (13)H18B—C18—H18C109.5
C3—C2—H2120.8C17—C19—H19A109.5
C1—C2—H2120.8C17—C19—H19B109.5
C2—C3—C4119.91 (12)H19A—C19—H19B109.5
C2—C3—H3120.0C17—C19—H19C109.5
C4—C3—H3120.0H19A—C19—H19C109.5
C5—C4—C3117.96 (13)H19B—C19—H19C109.5
C5—C4—H4121.0C22—C20—C21110.42 (13)
C3—C4—H4121.0C22—C20—P2113.76 (10)
N1—C5—C4123.66 (13)C21—C20—P2109.05 (10)
N1—C5—H5118.2C22—C20—H20107.8
C4—C5—H5118.2C21—C20—H20107.8
C8—C6—C7110.05 (15)P2—C20—H20107.8
C8—C6—P1109.78 (11)C20—C21—H21A109.5
C7—C6—P1109.61 (11)C20—C21—H21B109.5
C8—C6—H6109.1H21A—C21—H21B109.5
C7—C6—H6109.1C20—C21—H21C109.5
P1—C6—H6109.1H21A—C21—H21C109.5
C6—C7—H7A109.5H21B—C21—H21C109.5
C6—C7—H7B109.5C20—C22—H22A109.5
H7A—C7—H7B109.5C20—C22—H22B109.5
C6—C7—H7C109.5H22A—C22—H22B109.5
H7A—C7—H7C109.5C20—C22—H22C109.5
H7B—C7—H7C109.5H22A—C22—H22C109.5
C6—C8—H8A109.5H22B—C22—H22C109.5
C6—C8—H8B109.5F5—P3—F6179.62 (11)
H8A—C8—H8B109.5F5—P3—F489.87 (10)
C6—C8—H8C109.5F6—P3—F489.76 (8)
H8A—C8—H8C109.5F5—P3—F391.33 (10)
H8B—C8—H8C109.5F6—P3—F389.04 (8)
C10—C9—C11111.42 (16)F4—P3—F3178.79 (9)
C10—C9—P1110.47 (11)F5—P3—F290.99 (8)
C11—C9—P1114.10 (12)F6—P3—F288.94 (6)
C10—C9—H9106.8F4—P3—F290.28 (6)
C11—C9—H9106.8F3—P3—F289.83 (6)
P1—C9—H9106.8F5—P3—F190.06 (8)
C9—C10—H10A109.5F6—P3—F190.01 (7)
C9—C10—H10B109.5F4—P3—F190.38 (6)
H10A—C10—H10B109.5F3—P3—F189.49 (6)
C9—C10—H10C109.5F2—P3—F1178.76 (6)
H10A—C10—H10C109.5
N1—Cu1—P1—N23.58 (6)N2—C1—C2—C3177.28 (13)
N3—Cu1—P1—N297.77 (6)C1—C2—C3—C40.2 (2)
P2—Cu1—P1—N2141.14 (5)C2—C3—C4—C51.8 (2)
N1—Cu1—P1—C6115.16 (7)C1—N1—C5—C40.2 (2)
N3—Cu1—P1—C613.82 (8)Cu1—N1—C5—C4170.10 (10)
P2—Cu1—P1—C6107.27 (6)C3—C4—C5—N12.1 (2)
N1—Cu1—P1—C9107.62 (6)N2—P1—C6—C860.40 (14)
N3—Cu1—P1—C9151.03 (7)C9—P1—C6—C8169.05 (13)
P2—Cu1—P1—C929.94 (6)Cu1—P1—C6—C848.75 (14)
N1—Cu1—P2—N494.55 (6)N2—P1—C6—C7178.60 (11)
N3—Cu1—P2—N46.47 (5)C9—P1—C6—C769.95 (13)
P1—Cu1—P2—N4143.64 (4)Cu1—P1—C6—C772.24 (13)
N1—Cu1—P2—C1716.78 (7)N2—P1—C9—C1075.95 (13)
N3—Cu1—P2—C17117.80 (7)C6—P1—C9—C10176.57 (13)
P1—Cu1—P2—C17105.03 (6)Cu1—P1—C9—C1031.59 (14)
N1—Cu1—P2—C20155.83 (6)N2—P1—C9—C1150.50 (15)
N3—Cu1—P2—C20103.16 (6)C6—P1—C9—C1156.98 (15)
P1—Cu1—P2—C2034.02 (6)Cu1—P1—C9—C11158.05 (13)
N3—Cu1—N1—C1118.85 (9)C16—N3—C12—N4178.83 (12)
P2—Cu1—N1—C1148.29 (8)Cu1—N3—C12—N45.15 (16)
P1—Cu1—N1—C18.79 (9)C16—N3—C12—C130.3 (2)
N3—Cu1—N1—C551.21 (11)Cu1—N3—C12—C13173.97 (10)
P2—Cu1—N1—C541.64 (12)P2—N4—C12—N31.76 (17)
P1—Cu1—N1—C5178.85 (11)P2—N4—C12—C13179.10 (11)
C6—P1—N2—C1127.56 (12)N3—C12—C13—C140.5 (2)
C9—P1—N2—C1123.82 (12)N4—C12—C13—C14178.60 (14)
Cu1—P1—N2—C11.12 (12)C12—C13—C14—C150.1 (2)
N1—Cu1—N3—C12120.07 (10)C13—C14—C15—C160.4 (2)
P2—Cu1—N3—C127.42 (9)C12—N3—C16—C150.3 (2)
P1—Cu1—N3—C12146.52 (8)Cu1—N3—C16—C15172.84 (12)
N1—Cu1—N3—C1653.13 (12)C14—C15—C16—N30.6 (3)
P2—Cu1—N3—C16179.38 (11)N4—P2—C17—C1970.36 (11)
P1—Cu1—N3—C1640.29 (13)C20—P2—C17—C19177.88 (10)
C17—P2—N4—C12137.45 (11)Cu1—P2—C17—C1939.33 (12)
C20—P2—N4—C12113.74 (11)N4—P2—C17—C18166.96 (10)
Cu1—P2—N4—C126.67 (11)C20—P2—C17—C1859.45 (12)
C5—N1—C1—N2177.49 (12)Cu1—P2—C17—C1883.34 (11)
Cu1—N1—C1—N211.70 (15)N4—P2—C20—C2262.05 (12)
C5—N1—C1—C22.08 (19)C17—P2—C20—C2244.15 (12)
Cu1—N1—C1—C2168.72 (10)Cu1—P2—C20—C22168.57 (9)
P1—N2—C1—N18.39 (18)N4—P2—C20—C2161.68 (11)
P1—N2—C1—C2172.03 (11)C17—P2—C20—C21167.88 (10)
N1—C1—C2—C32.3 (2)Cu1—P2—C20—C2144.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···F1i0.882.243.1038 (15)167
N4—H4N···F3ii0.882.263.1185 (16)167
C2—H2···F4i0.952.413.306 (2)158
C20—H20···F41.002.533.502 (2)164
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H19N2P)2]PF6
Mr629.01
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)11.0357 (13), 9.2129 (11), 14.4282 (17)
β (°) 96.723 (1)
V3)1456.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.45 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.65, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
21170, 8422, 8187
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.02
No. of reflections8422
No. of parameters334
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.26
Absolute structureFlack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined
Absolute structure parameter0.410 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···F1i0.882.243.1038 (15)167.3
N4—H4N···F3ii0.882.263.1185 (16)166.7
C2—H2···F4i0.952.413.306 (2)157.8
C20—H20···F41.002.533.502 (2)163.7
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2.
 

References

First citationAguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, E., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419–5426  CrossRef Google Scholar
First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 2559–2575.  Web of Science CSD CrossRef Google Scholar
First citationBenito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900–1913.  Web of Science CrossRef CAS Google Scholar
First citationBenito-Garagorri, D., Mereiter, K. & Kirchner, K. (2007). Collect. Czech. Chem. Commun. 72, 527–540.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenito-Garagorri, D., Wiedermann, J., Pollak, M., Mereiter, K. & Kirchner, K. (2007). Organometallics, 26, 217–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHealy, P. C. (2008). Acta Cryst. E64, m607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHursthouse, M. B., Coles, S. J. & Smith, M. B. (2003). Private communication (refcode: MEJZAD). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStandfest-Hauser, C. M., Dazinger, G., Wiedermann, J., Mereiter, K. & Kirchner, K. (2009). Eur. J. Inorg. Chem. pp. 4085–4093.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m729-m730
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds