metal-organic compounds
Bis{2-[(diisopropylphosphanyl)amino]pyridine-κ2N1,P}copper(I) hexafluoridophosphate
aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at
The 11H19N2P)2]PF6, is composed of discrete [Cu(PN-iPr)2]+ cations [PN-iPr is 2-(diisopropylphosphanylamino)pyridine] and PF6− anions. The Cu(I) atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetrahedral coordination by two P atoms [Cu—P = 2.2277 (4) and 2.2257 (4) Å] and two pyridine N atoms [Cu—N = 2.0763 (11) and 2.0845 (12) Å]. Bond angles about Cu vary from 85.11 (3) (P—Cu—N) to 130.37 (2)° (P—Cu—P). In the crystal, N—H⋯F hydrogen bonds link the Cu complexes and the PF6− anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H⋯F interactions contribute to the coherence of the structure.
of the title compound, [Cu(CRelated literature
For the synthesis and crystal structures of PN-complexes [PN are 2-(phosphanylamino)pyridines], see: Aucott et al. (2000); Benito-Garagorri, Mereiter & Kirchner (2007); Standfest-Hauser et al. (2009). For applications of PN-complexes in catalysis, see: Aguirre et al. (2007); Benito-Garagorri, Wiedermann et al. (2007). For the chemistry and crystal structures of related PNP-complexes [PNP = 2,6-bis(phosphanylamino)pyridine], see: Benito-Garagorri et al. (2006). For crystal structures of other related Cu(I) complexes, see: Hursthouse et al. (2003); Healy (2008).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810020283/zs2038sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810020283/zs2038Isup2.hkl
To a solution of [Cu(CH3CN)4]PF6 (100 mg, 0.27 mmol) in THF (10 ml) 2-(diisopropylphosphanylamino)pyridine (PN-iPr; 112.8 mg, 0.54 mmol; for synthesis, see: Benito-Garagorri, Mereiter & Kirchner, 2007) was added and the solution was stirred for 12 h. After removal of the solvent a white powder was obtained which was washed with Et2O and dried under vacuum. Yield: 100 mg (89%). 1H-NMR (δ, acetone, 20 °C): 7.83 (s, 1H, py), 7.69 (s, 1H, py), 7.23 (s, 1H, py), 7.06 (s, 1H, py), 6.78 (s, 1H, NH), 2.90 (s, 2H, CH), 1.22 (s, 12H, CH3). 31P{1H} NMR (δ, acetone, 20 °C): 50.53. Colourless crystals for X-ray diffraction were obtained by evaporation crystallization from acetone.
All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. The title compound is racemic but crystallizes in a non-centrosymmetric
Pn. The Flack test indicated that the investigated crystal is a (polar) twin. In the final this was taken into account by the use of the instructions TWIN and BASF of program SHELXL97 (Sheldrick, 2008). According to this the amounts of the two twin components are 0.590 (4) and 0.410 (4).Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C11H19N2P)2]PF6 | F(000) = 652 |
Mr = 629.01 | Dx = 1.434 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 9966 reflections |
a = 11.0357 (13) Å | θ = 2.5–30.0° |
b = 9.2129 (11) Å | µ = 0.97 mm−1 |
c = 14.4282 (17) Å | T = 100 K |
β = 96.723 (1)° | Block, colourless |
V = 1456.8 (3) Å3 | 0.45 × 0.22 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 8422 independent reflections |
Radiation source: fine-focus sealed tube | 8187 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→15 |
Tmin = 0.65, Tmax = 0.75 | k = −12→12 |
21170 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.1922P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
8422 reflections | Δρmax = 0.35 e Å−3 |
334 parameters | Δρmin = −0.26 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.410 (4) |
[Cu(C11H19N2P)2]PF6 | V = 1456.8 (3) Å3 |
Mr = 629.01 | Z = 2 |
Monoclinic, Pn | Mo Kα radiation |
a = 11.0357 (13) Å | µ = 0.97 mm−1 |
b = 9.2129 (11) Å | T = 100 K |
c = 14.4282 (17) Å | 0.45 × 0.22 × 0.20 mm |
β = 96.723 (1)° |
Bruker APEXII CCD diffractometer | 8422 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 8187 reflections with I > 2σ(I) |
Tmin = 0.65, Tmax = 0.75 | Rint = 0.021 |
21170 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.054 | Δρmax = 0.35 e Å−3 |
S = 1.02 | Δρmin = −0.26 e Å−3 |
8422 reflections | Absolute structure: Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined |
334 parameters | Absolute structure parameter: 0.410 (4) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.545130 (11) | 0.141471 (15) | 0.626623 (10) | 0.01477 (4) | |
P1 | 0.38719 (3) | 0.26283 (4) | 0.55383 (2) | 0.01685 (6) | |
P2 | 0.72626 (3) | 0.09024 (3) | 0.58123 (2) | 0.01465 (6) | |
N1 | 0.50957 (10) | 0.25486 (12) | 0.74483 (8) | 0.0155 (2) | |
N2 | 0.34515 (12) | 0.35253 (13) | 0.64884 (8) | 0.0209 (2) | |
H2N | 0.2830 | 0.4129 | 0.6411 | 0.025* | |
N3 | 0.54844 (10) | −0.07232 (12) | 0.67416 (8) | 0.0168 (2) | |
N4 | 0.74461 (10) | −0.07879 (12) | 0.62954 (8) | 0.0180 (2) | |
H4N | 0.8145 | −0.1241 | 0.6281 | 0.022* | |
C1 | 0.40583 (12) | 0.33308 (14) | 0.73755 (9) | 0.0164 (2) | |
C2 | 0.36015 (13) | 0.39407 (15) | 0.81595 (10) | 0.0198 (2) | |
H2 | 0.2852 | 0.4459 | 0.8095 | 0.024* | |
C3 | 0.42655 (14) | 0.37681 (15) | 0.90213 (10) | 0.0215 (3) | |
H3 | 0.3978 | 0.4173 | 0.9560 | 0.026* | |
C4 | 0.53606 (13) | 0.29988 (15) | 0.91019 (9) | 0.0207 (3) | |
H4 | 0.5842 | 0.2893 | 0.9688 | 0.025* | |
C5 | 0.57229 (12) | 0.23970 (14) | 0.83056 (9) | 0.0178 (2) | |
H5 | 0.6455 | 0.1844 | 0.8362 | 0.021* | |
C6 | 0.24294 (13) | 0.18007 (18) | 0.50231 (11) | 0.0249 (3) | |
H6 | 0.1814 | 0.2584 | 0.4860 | 0.030* | |
C7 | 0.26381 (16) | 0.0977 (2) | 0.41411 (12) | 0.0325 (3) | |
H7A | 0.3187 | 0.0157 | 0.4304 | 0.049* | |
H7B | 0.3005 | 0.1629 | 0.3715 | 0.049* | |
H7C | 0.1856 | 0.0616 | 0.3836 | 0.049* | |
C8 | 0.19540 (16) | 0.0774 (3) | 0.57232 (13) | 0.0435 (5) | |
H8A | 0.2568 | 0.0027 | 0.5906 | 0.065* | |
H8B | 0.1201 | 0.0311 | 0.5439 | 0.065* | |
H8C | 0.1786 | 0.1321 | 0.6276 | 0.065* | |
C9 | 0.41591 (14) | 0.40856 (16) | 0.47148 (10) | 0.0228 (3) | |
H9 | 0.4234 | 0.3609 | 0.4101 | 0.027* | |
C10 | 0.53711 (19) | 0.4818 (2) | 0.50186 (15) | 0.0423 (4) | |
H10A | 0.5560 | 0.5500 | 0.4535 | 0.063* | |
H10B | 0.6015 | 0.4082 | 0.5114 | 0.063* | |
H10C | 0.5322 | 0.5344 | 0.5603 | 0.063* | |
C11 | 0.3130 (2) | 0.5190 (3) | 0.45456 (15) | 0.0473 (5) | |
H11A | 0.3089 | 0.5764 | 0.5113 | 0.071* | |
H11B | 0.2354 | 0.4682 | 0.4383 | 0.071* | |
H11C | 0.3285 | 0.5835 | 0.4032 | 0.071* | |
C12 | 0.65306 (12) | −0.14630 (13) | 0.67082 (9) | 0.0161 (2) | |
C13 | 0.67045 (13) | −0.28684 (15) | 0.70895 (11) | 0.0218 (3) | |
H13 | 0.7447 | −0.3376 | 0.7055 | 0.026* | |
C14 | 0.57773 (14) | −0.34880 (15) | 0.75124 (12) | 0.0269 (3) | |
H14 | 0.5874 | −0.4432 | 0.7775 | 0.032* | |
C15 | 0.46883 (14) | −0.27208 (17) | 0.75539 (12) | 0.0280 (3) | |
H15 | 0.4039 | −0.3128 | 0.7846 | 0.034* | |
C16 | 0.45880 (13) | −0.13615 (15) | 0.71590 (11) | 0.0220 (3) | |
H16 | 0.3848 | −0.0843 | 0.7181 | 0.026* | |
C17 | 0.87311 (12) | 0.17551 (15) | 0.62197 (10) | 0.0195 (2) | |
H17 | 0.9400 | 0.1074 | 0.6099 | 0.023* | |
C18 | 0.88851 (16) | 0.31683 (17) | 0.56853 (12) | 0.0278 (3) | |
H18A | 0.8217 | 0.3834 | 0.5778 | 0.042* | |
H18B | 0.8871 | 0.2955 | 0.5019 | 0.042* | |
H18C | 0.9666 | 0.3620 | 0.5918 | 0.042* | |
C19 | 0.88143 (15) | 0.20342 (19) | 0.72714 (10) | 0.0278 (3) | |
H19A | 0.9629 | 0.2401 | 0.7497 | 0.042* | |
H19B | 0.8667 | 0.1126 | 0.7594 | 0.042* | |
H19C | 0.8200 | 0.2754 | 0.7396 | 0.042* | |
C20 | 0.73108 (13) | 0.05665 (15) | 0.45568 (9) | 0.0205 (2) | |
H20 | 0.7185 | 0.1517 | 0.4224 | 0.025* | |
C21 | 0.62513 (16) | −0.0434 (2) | 0.41957 (11) | 0.0319 (3) | |
H21A | 0.6225 | −0.0543 | 0.3518 | 0.048* | |
H21B | 0.5482 | −0.0012 | 0.4344 | 0.048* | |
H21C | 0.6369 | −0.1387 | 0.4494 | 0.048* | |
C22 | 0.85233 (15) | −0.00667 (18) | 0.43271 (11) | 0.0284 (3) | |
H22A | 0.8741 | −0.0907 | 0.4729 | 0.043* | |
H22B | 0.9163 | 0.0672 | 0.4434 | 0.043* | |
H22C | 0.8441 | −0.0371 | 0.3672 | 0.043* | |
P3 | 0.55962 (3) | 0.31567 (4) | 0.21299 (3) | 0.01976 (7) | |
F1 | 0.62918 (10) | 0.43352 (14) | 0.15595 (8) | 0.0398 (3) | |
F2 | 0.48767 (9) | 0.20025 (11) | 0.26926 (7) | 0.0333 (2) | |
F3 | 0.46624 (12) | 0.28652 (18) | 0.12151 (7) | 0.0542 (4) | |
F4 | 0.65102 (12) | 0.34760 (14) | 0.30470 (9) | 0.0516 (4) | |
F5 | 0.64776 (15) | 0.19392 (16) | 0.18453 (16) | 0.0785 (6) | |
F6 | 0.47085 (12) | 0.43906 (12) | 0.24247 (9) | 0.0434 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01443 (6) | 0.01369 (7) | 0.01602 (7) | 0.00390 (6) | 0.00110 (5) | −0.00054 (6) |
P1 | 0.01635 (13) | 0.01949 (15) | 0.01425 (13) | 0.00588 (12) | −0.00017 (11) | −0.00045 (12) |
P2 | 0.01461 (13) | 0.01342 (14) | 0.01588 (14) | 0.00242 (11) | 0.00163 (10) | 0.00086 (11) |
N1 | 0.0170 (5) | 0.0150 (5) | 0.0149 (5) | 0.0012 (4) | 0.0026 (4) | 0.0010 (4) |
N2 | 0.0227 (5) | 0.0232 (6) | 0.0166 (5) | 0.0126 (4) | 0.0011 (4) | 0.0002 (4) |
N3 | 0.0160 (5) | 0.0143 (5) | 0.0201 (5) | 0.0010 (4) | 0.0017 (4) | −0.0007 (4) |
N4 | 0.0152 (5) | 0.0154 (5) | 0.0236 (5) | 0.0045 (4) | 0.0031 (4) | 0.0051 (4) |
C1 | 0.0191 (6) | 0.0135 (5) | 0.0166 (6) | 0.0022 (4) | 0.0026 (4) | 0.0003 (4) |
C2 | 0.0250 (6) | 0.0142 (6) | 0.0215 (6) | 0.0028 (5) | 0.0086 (5) | −0.0007 (5) |
C3 | 0.0300 (7) | 0.0174 (6) | 0.0184 (6) | −0.0044 (5) | 0.0088 (5) | −0.0032 (5) |
C4 | 0.0262 (6) | 0.0211 (6) | 0.0148 (5) | −0.0068 (5) | 0.0019 (5) | 0.0010 (5) |
C5 | 0.0181 (5) | 0.0168 (6) | 0.0181 (6) | −0.0018 (4) | 0.0009 (4) | 0.0024 (4) |
C6 | 0.0180 (6) | 0.0313 (7) | 0.0239 (7) | 0.0052 (5) | −0.0038 (5) | −0.0009 (6) |
C7 | 0.0363 (8) | 0.0344 (8) | 0.0256 (7) | −0.0071 (7) | −0.0008 (6) | −0.0060 (6) |
C8 | 0.0217 (7) | 0.0752 (15) | 0.0336 (9) | −0.0164 (8) | 0.0036 (6) | 0.0046 (9) |
C9 | 0.0270 (7) | 0.0248 (7) | 0.0162 (6) | 0.0058 (5) | 0.0010 (5) | 0.0019 (5) |
C10 | 0.0443 (10) | 0.0269 (8) | 0.0513 (11) | −0.0091 (7) | −0.0123 (8) | 0.0144 (8) |
C11 | 0.0472 (11) | 0.0484 (12) | 0.0475 (11) | 0.0239 (9) | 0.0106 (9) | 0.0275 (9) |
C12 | 0.0150 (5) | 0.0146 (5) | 0.0182 (6) | 0.0005 (4) | 0.0000 (4) | −0.0010 (4) |
C13 | 0.0204 (6) | 0.0139 (6) | 0.0304 (7) | 0.0019 (5) | 0.0007 (5) | 0.0021 (5) |
C14 | 0.0256 (7) | 0.0151 (6) | 0.0399 (9) | −0.0017 (5) | 0.0038 (6) | 0.0056 (6) |
C15 | 0.0242 (7) | 0.0209 (7) | 0.0406 (8) | −0.0029 (5) | 0.0105 (6) | 0.0057 (6) |
C16 | 0.0175 (6) | 0.0200 (6) | 0.0290 (7) | 0.0006 (5) | 0.0056 (5) | 0.0007 (5) |
C17 | 0.0178 (6) | 0.0192 (6) | 0.0216 (6) | −0.0013 (5) | 0.0020 (5) | 0.0007 (5) |
C18 | 0.0316 (7) | 0.0235 (7) | 0.0287 (7) | −0.0067 (6) | 0.0056 (6) | 0.0017 (6) |
C19 | 0.0268 (7) | 0.0336 (8) | 0.0217 (7) | −0.0065 (6) | −0.0034 (5) | −0.0007 (6) |
C20 | 0.0250 (6) | 0.0197 (6) | 0.0169 (6) | 0.0061 (5) | 0.0024 (5) | 0.0005 (5) |
C21 | 0.0324 (8) | 0.0368 (9) | 0.0251 (7) | 0.0005 (7) | −0.0024 (6) | −0.0088 (6) |
C22 | 0.0309 (7) | 0.0307 (8) | 0.0253 (6) | 0.0071 (6) | 0.0104 (6) | −0.0018 (6) |
P3 | 0.01635 (14) | 0.02039 (15) | 0.02286 (16) | −0.00373 (12) | 0.00365 (12) | −0.00201 (13) |
F1 | 0.0306 (5) | 0.0534 (7) | 0.0353 (5) | −0.0215 (5) | 0.0030 (4) | 0.0106 (5) |
F2 | 0.0329 (5) | 0.0303 (5) | 0.0366 (5) | −0.0113 (4) | 0.0039 (4) | 0.0085 (4) |
F3 | 0.0530 (7) | 0.0899 (10) | 0.0193 (4) | −0.0476 (7) | 0.0026 (4) | −0.0051 (5) |
F4 | 0.0451 (7) | 0.0571 (8) | 0.0453 (7) | −0.0261 (6) | −0.0252 (5) | 0.0224 (6) |
F5 | 0.0594 (9) | 0.0427 (8) | 0.1435 (17) | 0.0108 (7) | 0.0543 (10) | −0.0213 (9) |
F6 | 0.0505 (6) | 0.0329 (6) | 0.0500 (6) | 0.0158 (5) | 0.0188 (5) | 0.0059 (5) |
Cu1—N1 | 2.0763 (11) | C10—H10A | 0.9800 |
Cu1—N3 | 2.0845 (12) | C10—H10B | 0.9800 |
Cu1—P2 | 2.2257 (4) | C10—H10C | 0.9800 |
Cu1—P1 | 2.2277 (4) | C11—H11A | 0.9800 |
P1—N2 | 1.7107 (12) | C11—H11B | 0.9800 |
P1—C6 | 1.8415 (16) | C11—H11C | 0.9800 |
P1—C9 | 1.8446 (15) | C12—C13 | 1.4112 (18) |
P2—N4 | 1.7084 (12) | C13—C14 | 1.375 (2) |
P2—C17 | 1.8347 (14) | C13—H13 | 0.9500 |
P2—C20 | 1.8446 (14) | C14—C15 | 1.401 (2) |
N1—C1 | 1.3464 (16) | C14—H14 | 0.9500 |
N1—C5 | 1.3521 (16) | C15—C16 | 1.375 (2) |
N2—C1 | 1.3850 (17) | C15—H15 | 0.9500 |
N2—H2N | 0.8800 | C16—H16 | 0.9500 |
N3—C12 | 1.3464 (16) | C17—C19 | 1.531 (2) |
N3—C16 | 1.3516 (18) | C17—C18 | 1.533 (2) |
N4—C12 | 1.3795 (17) | C17—H17 | 1.0000 |
N4—H4N | 0.8800 | C18—H18A | 0.9800 |
C1—C2 | 1.4080 (18) | C18—H18B | 0.9800 |
C2—C3 | 1.377 (2) | C18—H18C | 0.9800 |
C2—H2 | 0.9500 | C19—H19A | 0.9800 |
C3—C4 | 1.394 (2) | C19—H19B | 0.9800 |
C3—H3 | 0.9500 | C19—H19C | 0.9800 |
C4—C5 | 1.3766 (19) | C20—C22 | 1.531 (2) |
C4—H4 | 0.9500 | C20—C21 | 1.531 (2) |
C5—H5 | 0.9500 | C20—H20 | 1.0000 |
C6—C8 | 1.522 (3) | C21—H21A | 0.9800 |
C6—C7 | 1.522 (2) | C21—H21B | 0.9800 |
C6—H6 | 1.0000 | C21—H21C | 0.9800 |
C7—H7A | 0.9800 | C22—H22A | 0.9800 |
C7—H7B | 0.9800 | C22—H22B | 0.9800 |
C7—H7C | 0.9800 | C22—H22C | 0.9800 |
C8—H8A | 0.9800 | P3—F5 | 1.5704 (13) |
C8—H8B | 0.9800 | P3—F6 | 1.5907 (11) |
C8—H8C | 0.9800 | P3—F4 | 1.5944 (12) |
C9—C10 | 1.516 (2) | P3—F3 | 1.5993 (11) |
C9—C11 | 1.523 (2) | P3—F2 | 1.6036 (10) |
C9—H9 | 1.0000 | P3—F1 | 1.6103 (11) |
N1—Cu1—N3 | 101.70 (4) | H10B—C10—H10C | 109.5 |
N1—Cu1—P2 | 127.66 (3) | C9—C11—H11A | 109.5 |
N3—Cu1—P2 | 85.11 (3) | C9—C11—H11B | 109.5 |
N1—Cu1—P1 | 85.53 (3) | H11A—C11—H11B | 109.5 |
N3—Cu1—P1 | 127.73 (3) | C9—C11—H11C | 109.5 |
P2—Cu1—P1 | 130.374 (15) | H11A—C11—H11C | 109.5 |
N2—P1—C6 | 102.75 (7) | H11B—C11—H11C | 109.5 |
N2—P1—C9 | 104.34 (7) | N3—C12—N4 | 117.49 (12) |
C6—P1—C9 | 104.30 (7) | N3—C12—C13 | 121.91 (12) |
N2—P1—Cu1 | 97.78 (4) | N4—C12—C13 | 120.59 (12) |
C6—P1—Cu1 | 125.04 (5) | C14—C13—C12 | 118.66 (13) |
C9—P1—Cu1 | 119.02 (5) | C14—C13—H13 | 120.7 |
N4—P2—C17 | 101.62 (6) | C12—C13—H13 | 120.7 |
N4—P2—C20 | 103.42 (6) | C13—C14—C15 | 119.73 (13) |
C17—P2—C20 | 105.10 (6) | C13—C14—H14 | 120.1 |
N4—P2—Cu1 | 98.10 (4) | C15—C14—H14 | 120.1 |
C17—P2—Cu1 | 127.23 (5) | C16—C15—C14 | 118.00 (13) |
C20—P2—Cu1 | 117.04 (5) | C16—C15—H15 | 121.0 |
C1—N1—C5 | 117.79 (11) | C14—C15—H15 | 121.0 |
C1—N1—Cu1 | 116.49 (9) | N3—C16—C15 | 123.59 (13) |
C5—N1—Cu1 | 125.01 (9) | N3—C16—H16 | 118.2 |
C1—N2—P1 | 122.07 (9) | C15—C16—H16 | 118.2 |
C1—N2—H2N | 119.0 | C19—C17—C18 | 111.02 (13) |
P1—N2—H2N | 119.0 | C19—C17—P2 | 109.74 (10) |
C12—N3—C16 | 118.11 (12) | C18—C17—P2 | 110.39 (10) |
C12—N3—Cu1 | 116.65 (9) | C19—C17—H17 | 108.5 |
C16—N3—Cu1 | 124.90 (9) | C18—C17—H17 | 108.5 |
C12—N4—P2 | 121.95 (9) | P2—C17—H17 | 108.5 |
C12—N4—H4N | 119.0 | C17—C18—H18A | 109.5 |
P2—N4—H4N | 119.0 | C17—C18—H18B | 109.5 |
N1—C1—N2 | 117.13 (12) | H18A—C18—H18B | 109.5 |
N1—C1—C2 | 122.14 (12) | C17—C18—H18C | 109.5 |
N2—C1—C2 | 120.73 (12) | H18A—C18—H18C | 109.5 |
C3—C2—C1 | 118.48 (13) | H18B—C18—H18C | 109.5 |
C3—C2—H2 | 120.8 | C17—C19—H19A | 109.5 |
C1—C2—H2 | 120.8 | C17—C19—H19B | 109.5 |
C2—C3—C4 | 119.91 (12) | H19A—C19—H19B | 109.5 |
C2—C3—H3 | 120.0 | C17—C19—H19C | 109.5 |
C4—C3—H3 | 120.0 | H19A—C19—H19C | 109.5 |
C5—C4—C3 | 117.96 (13) | H19B—C19—H19C | 109.5 |
C5—C4—H4 | 121.0 | C22—C20—C21 | 110.42 (13) |
C3—C4—H4 | 121.0 | C22—C20—P2 | 113.76 (10) |
N1—C5—C4 | 123.66 (13) | C21—C20—P2 | 109.05 (10) |
N1—C5—H5 | 118.2 | C22—C20—H20 | 107.8 |
C4—C5—H5 | 118.2 | C21—C20—H20 | 107.8 |
C8—C6—C7 | 110.05 (15) | P2—C20—H20 | 107.8 |
C8—C6—P1 | 109.78 (11) | C20—C21—H21A | 109.5 |
C7—C6—P1 | 109.61 (11) | C20—C21—H21B | 109.5 |
C8—C6—H6 | 109.1 | H21A—C21—H21B | 109.5 |
C7—C6—H6 | 109.1 | C20—C21—H21C | 109.5 |
P1—C6—H6 | 109.1 | H21A—C21—H21C | 109.5 |
C6—C7—H7A | 109.5 | H21B—C21—H21C | 109.5 |
C6—C7—H7B | 109.5 | C20—C22—H22A | 109.5 |
H7A—C7—H7B | 109.5 | C20—C22—H22B | 109.5 |
C6—C7—H7C | 109.5 | H22A—C22—H22B | 109.5 |
H7A—C7—H7C | 109.5 | C20—C22—H22C | 109.5 |
H7B—C7—H7C | 109.5 | H22A—C22—H22C | 109.5 |
C6—C8—H8A | 109.5 | H22B—C22—H22C | 109.5 |
C6—C8—H8B | 109.5 | F5—P3—F6 | 179.62 (11) |
H8A—C8—H8B | 109.5 | F5—P3—F4 | 89.87 (10) |
C6—C8—H8C | 109.5 | F6—P3—F4 | 89.76 (8) |
H8A—C8—H8C | 109.5 | F5—P3—F3 | 91.33 (10) |
H8B—C8—H8C | 109.5 | F6—P3—F3 | 89.04 (8) |
C10—C9—C11 | 111.42 (16) | F4—P3—F3 | 178.79 (9) |
C10—C9—P1 | 110.47 (11) | F5—P3—F2 | 90.99 (8) |
C11—C9—P1 | 114.10 (12) | F6—P3—F2 | 88.94 (6) |
C10—C9—H9 | 106.8 | F4—P3—F2 | 90.28 (6) |
C11—C9—H9 | 106.8 | F3—P3—F2 | 89.83 (6) |
P1—C9—H9 | 106.8 | F5—P3—F1 | 90.06 (8) |
C9—C10—H10A | 109.5 | F6—P3—F1 | 90.01 (7) |
C9—C10—H10B | 109.5 | F4—P3—F1 | 90.38 (6) |
H10A—C10—H10B | 109.5 | F3—P3—F1 | 89.49 (6) |
C9—C10—H10C | 109.5 | F2—P3—F1 | 178.76 (6) |
H10A—C10—H10C | 109.5 | ||
N1—Cu1—P1—N2 | −3.58 (6) | N2—C1—C2—C3 | −177.28 (13) |
N3—Cu1—P1—N2 | 97.77 (6) | C1—C2—C3—C4 | −0.2 (2) |
P2—Cu1—P1—N2 | −141.14 (5) | C2—C3—C4—C5 | −1.8 (2) |
N1—Cu1—P1—C6 | −115.16 (7) | C1—N1—C5—C4 | −0.2 (2) |
N3—Cu1—P1—C6 | −13.82 (8) | Cu1—N1—C5—C4 | −170.10 (10) |
P2—Cu1—P1—C6 | 107.27 (6) | C3—C4—C5—N1 | 2.1 (2) |
N1—Cu1—P1—C9 | 107.62 (6) | N2—P1—C6—C8 | −60.40 (14) |
N3—Cu1—P1—C9 | −151.03 (7) | C9—P1—C6—C8 | −169.05 (13) |
P2—Cu1—P1—C9 | −29.94 (6) | Cu1—P1—C6—C8 | 48.75 (14) |
N1—Cu1—P2—N4 | 94.55 (6) | N2—P1—C6—C7 | 178.60 (11) |
N3—Cu1—P2—N4 | −6.47 (5) | C9—P1—C6—C7 | 69.95 (13) |
P1—Cu1—P2—N4 | −143.64 (4) | Cu1—P1—C6—C7 | −72.24 (13) |
N1—Cu1—P2—C17 | −16.78 (7) | N2—P1—C9—C10 | 75.95 (13) |
N3—Cu1—P2—C17 | −117.80 (7) | C6—P1—C9—C10 | −176.57 (13) |
P1—Cu1—P2—C17 | 105.03 (6) | Cu1—P1—C9—C10 | −31.59 (14) |
N1—Cu1—P2—C20 | −155.83 (6) | N2—P1—C9—C11 | −50.50 (15) |
N3—Cu1—P2—C20 | 103.16 (6) | C6—P1—C9—C11 | 56.98 (15) |
P1—Cu1—P2—C20 | −34.02 (6) | Cu1—P1—C9—C11 | −158.05 (13) |
N3—Cu1—N1—C1 | −118.85 (9) | C16—N3—C12—N4 | −178.83 (12) |
P2—Cu1—N1—C1 | 148.29 (8) | Cu1—N3—C12—N4 | −5.15 (16) |
P1—Cu1—N1—C1 | 8.79 (9) | C16—N3—C12—C13 | 0.3 (2) |
N3—Cu1—N1—C5 | 51.21 (11) | Cu1—N3—C12—C13 | 173.97 (10) |
P2—Cu1—N1—C5 | −41.64 (12) | P2—N4—C12—N3 | −1.76 (17) |
P1—Cu1—N1—C5 | 178.85 (11) | P2—N4—C12—C13 | 179.10 (11) |
C6—P1—N2—C1 | 127.56 (12) | N3—C12—C13—C14 | −0.5 (2) |
C9—P1—N2—C1 | −123.82 (12) | N4—C12—C13—C14 | 178.60 (14) |
Cu1—P1—N2—C1 | −1.12 (12) | C12—C13—C14—C15 | 0.1 (2) |
N1—Cu1—N3—C12 | −120.07 (10) | C13—C14—C15—C16 | 0.4 (2) |
P2—Cu1—N3—C12 | 7.42 (9) | C12—N3—C16—C15 | 0.3 (2) |
P1—Cu1—N3—C12 | 146.52 (8) | Cu1—N3—C16—C15 | −172.84 (12) |
N1—Cu1—N3—C16 | 53.13 (12) | C14—C15—C16—N3 | −0.6 (3) |
P2—Cu1—N3—C16 | −179.38 (11) | N4—P2—C17—C19 | −70.36 (11) |
P1—Cu1—N3—C16 | −40.29 (13) | C20—P2—C17—C19 | −177.88 (10) |
C17—P2—N4—C12 | 137.45 (11) | Cu1—P2—C17—C19 | 39.33 (12) |
C20—P2—N4—C12 | −113.74 (11) | N4—P2—C17—C18 | 166.96 (10) |
Cu1—P2—N4—C12 | 6.67 (11) | C20—P2—C17—C18 | 59.45 (12) |
C5—N1—C1—N2 | 177.49 (12) | Cu1—P2—C17—C18 | −83.34 (11) |
Cu1—N1—C1—N2 | −11.70 (15) | N4—P2—C20—C22 | −62.05 (12) |
C5—N1—C1—C2 | −2.08 (19) | C17—P2—C20—C22 | 44.15 (12) |
Cu1—N1—C1—C2 | 168.72 (10) | Cu1—P2—C20—C22 | −168.57 (9) |
P1—N2—C1—N1 | 8.39 (18) | N4—P2—C20—C21 | 61.68 (11) |
P1—N2—C1—C2 | −172.03 (11) | C17—P2—C20—C21 | 167.88 (10) |
N1—C1—C2—C3 | 2.3 (2) | Cu1—P2—C20—C21 | −44.84 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···F1i | 0.88 | 2.24 | 3.1038 (15) | 167 |
N4—H4N···F3ii | 0.88 | 2.26 | 3.1185 (16) | 167 |
C2—H2···F4i | 0.95 | 2.41 | 3.306 (2) | 158 |
C20—H20···F4 | 1.00 | 2.53 | 3.502 (2) | 164 |
Symmetry codes: (i) x−1/2, −y+1, z+1/2; (ii) x+1/2, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H19N2P)2]PF6 |
Mr | 629.01 |
Crystal system, space group | Monoclinic, Pn |
Temperature (K) | 100 |
a, b, c (Å) | 11.0357 (13), 9.2129 (11), 14.4282 (17) |
β (°) | 96.723 (1) |
V (Å3) | 1456.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.97 |
Crystal size (mm) | 0.45 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.65, 0.75 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21170, 8422, 8187 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.054, 1.02 |
No. of reflections | 8422 |
No. of parameters | 334 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.26 |
Absolute structure | Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined |
Absolute structure parameter | 0.410 (4) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···F1i | 0.88 | 2.24 | 3.1038 (15) | 167.3 |
N4—H4N···F3ii | 0.88 | 2.26 | 3.1185 (16) | 166.7 |
C2—H2···F4i | 0.95 | 2.41 | 3.306 (2) | 157.8 |
C20—H20···F4 | 1.00 | 2.53 | 3.502 (2) | 163.7 |
Symmetry codes: (i) x−1/2, −y+1, z+1/2; (ii) x+1/2, −y, z+1/2. |
References
Aguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, E., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419–5426 CrossRef Google Scholar
Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 2559–2575. Web of Science CSD CrossRef Google Scholar
Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900–1913. Web of Science CrossRef CAS Google Scholar
Benito-Garagorri, D., Mereiter, K. & Kirchner, K. (2007). Collect. Czech. Chem. Commun. 72, 527–540. Web of Science CSD CrossRef CAS Google Scholar
Benito-Garagorri, D., Wiedermann, J., Pollak, M., Mereiter, K. & Kirchner, K. (2007). Organometallics, 26, 217–222. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Healy, P. C. (2008). Acta Cryst. E64, m607. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hursthouse, M. B., Coles, S. J. & Smith, M. B. (2003). Private communication (refcode: MEJZAD). CCDC, Union Road, Cambridge, England. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Standfest-Hauser, C. M., Dazinger, G., Wiedermann, J., Mereiter, K. & Kirchner, K. (2009). Eur. J. Inorg. Chem. pp. 4085–4093. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterobidentate pyridylphosphane ligands (PN-ligands) in which 2-pyridyl and phosphane moieties are linked by an amino group as spacer are of interest in organometallic chemistry because they contain both hard (nitrogen) and soft (phosphorus) donor atoms at P—N distances of about 3 Å, very suitable for the chelation of transition metals. Moreover, they are readily accessible in a modular fashion via the ease of phosphane-nitrogen bond-forming reactions (e.g. Benito-Garagorri et al., 2006). Some transition metal complexes of these ligands, mainly with diphenylphosphane moieties, are catalytically active and have been applied for carbonylation of olefins and other transformations (Aguirre et al., 2007; Benito-Garagorri, Wiedermann et al., 2007). In continuation of earlier work on Ni(II), Pd(II), and Mo(0/II)-complexes of such ligands (Benito-Garagorri, Mereiter & Kirchner, 2007; Standfest-Hauser et al., 2009) we recently focused on Cu(I) complexes and report here the synthesis and crystal structure of the title compound [Cu(PN-iPr)2]PF6. A view of the asymmetric unit is shown in Fig. 1. Copper is bis-chelated by two independent PN-iPr ligands and adopts a strongly distorted tetrahedral coordination by two P and two N atoms with well-balanced bond distances of Cu1—P1 = 2.2277 (4) Å, Cu1—P2 = 2.2257 (4) Å, Cu1—N1 = 2.0763 (11) Å, and Cu1—N3 = 2.0845 (12) Å. Bond angles about Cu vary from ca. 85° for the two bite angles P1—Cu1—N1 and P2—Cu1—N3 to 130.37 (2)° for P1—Cu1—P2. The twist angle between the planes P1—Cu1—P2 and N1—Cu—N3 is 60.50 (3)° and thus about 30° off from 90°, the value for an ideal undistorted coordination tetrahedron. The complex approaches a molecular non-crystallographic C2 symmetry, which makes both PN-iPr ligands pseudo-equivalent; this includes also the isopropyl groups and their orientations (Fig. 1). A Cu(I)(PN)2 complex closely related in ligand characteristics to that of the title compound was reported for bis(6-chloro-2-(diphenylphosphinoamino)benzothiazole)copper(I) hexafluoridophosphate (Hursthouse et al., 2003); it has Cu—P ≈ 2.26 Å, Cu—N ≈ 2.06 Å, and a twist angle P—Cu—P vs. N—Cu—N of 63.2°. Cu(I) complexes with separate non-chelating two P- and two N-ligands have generally more regular CuP2N2 tetrahedra with twist angles P—Cu—P vs. N—Cu—N near 90°, e.g. bis(pyridine)-bis(triphenylphosphane)copper(I) tetrafluoridoborate (Healy, 2008).
A characteristic feature of PN-iPr ligands and their homologues is the acidity of the N—H bond (here N2—H2N and N4—H4N), which is a good hydrogen bond donor. In the title compound each NH group is hydrogen bonded to the F-atom of an adjacent PF6 octahedron at N···F distances of ca. 3.1 Å (Table 1). These hydrogen bonds link the cation and anion complexes into infinite chains, which extend parallel to [110] at z ≈ 0.15 and parallel to [110] at z ≈ 0.65 resulting in a cross-bedded arangement (Fig. 2). Several weaker C—H···F interactions contribute to the coherence of the structure. The most significant two of them with H···F < 2.6 Å are included in Table 1, seven more have H···F distances in the range 2.60 to 2.70 Å.