organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Nitro­benzyl­­idene)-4-(8-quinol­yl­oxy)butano­hydrazide

aKey Lab of Natural Medicine Research and Development in Jiangxi, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: xiaonafanll@yahoo.cn

(Received 20 May 2010; accepted 27 May 2010; online 5 June 2010)

In the title compound, C20H18N4O4, conformation along the bond sequence linking the benzene and quinoline rings, which have a mean inter­planar dihedral angle of 2.7 (5)°, is trans–(+)gauche–trans–trans–(−)gauche–trans–trans. In the crystal structure, a pair of inter­molecular N—H⋯O hydrogen bonds links the mol­ecules into centrosymmetric cyclic R22(8) dimers, which are aggregated via ππ inter­actions into parallel sheets [quinoline–benzene ring centroid separation = 3.6173 (16)–3.6511 (16) Å]. The sheets are further connected through weak C—H⋯O inter­actions, giving a supra­molecular two-dimensional network.

Related literature

For general background to Schiff bases in coordination chemistry, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For related structures, see: Zheng, Li et al. (2008[Zheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.]); Zheng, Qiu et al. (2006[Zheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913-o1914.]); Zheng, Wu, Lu et al. (2006[Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293-o4295.]); Zheng (2006[Zheng, Z.-B. (2006). Acta Cryst. E62, o5146-o5147.]); Zheng, Wu, Li et al. (2006[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2006). Acta Cryst. E62, o4882-o4883.], 2007[Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.]); Xie et al. (2008[Xie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.]); Chen & Li (2009[Chen, M.-E. & Li, J.-M. (2009). Acta Cryst. E65, o295.]); Zhang et al. (2009[Zhang, J., XiaHou, G.-L., Zhang, S.-S. & Zeng, J. (2009). Acta Cryst. E65, o1695-o1696.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O4

  • Mr = 378.38

  • Monoclinic, P 21 /c

  • a = 9.836 (3) Å

  • b = 10.633 (3) Å

  • c = 17.566 (5) Å

  • β = 92.365 (7)°

  • V = 1835.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.986

  • 9957 measured reflections

  • 3256 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.146

  • S = 1.07

  • 3256 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.03 2.876 (3) 170
C10—H10B⋯O3ii 0.97 2.45 3.311 (3) 148
C2—H2⋯O4iii 0.93 2.58 3.496 (3) 167
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry, playing an important role in the development of the chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted 4-(quinolin-8-yloxy)butanehydrazide and closely related to the title compound have been reported earlier (Zheng, Li et al., 2008; Zheng, Wu, Lu et al., 2006; Zheng, 2006; Zheng, Wu, Li et al., 2006, 2007; Xie et al., 2008; Chen & Li, 2009; Zhang et al., 2009). In this contribution, we present the synthesis and crystal structure of a new ligand C20H18N4O4 (I), which contains oxygen and nitrogen donors and a flexible aliphatic spacer.

In (I) (Fig.1) the asymmetric unit contains a crystallographically independent molecule with a trans-(+)gauche-trans-trans-(-)gauche-trans-trans conformation along the quinoline ring–benzene ring bond sequence [torsion angles (°): C8–O1–C10–C11, 179.83 (18); O1–C10–C11–C12, 65.1 (3); C10–C11–C12–C13, -178.24; C11–C12–C13–N2, 114.1 (2); C12–C13–N2–N3, -0.1 (3); C13–N2–N3–C14, -178.96 (7); N2–N3–C14–C15, -179.17 (16)]. The bond lengths and angles in (I) are in good agreement with the expected values (Allen et al., 1987) and are comparable to those in the related compounds (Zheng, Wu, Lu et al., 2006; Zheng, 2006; Zheng, Wu, Li et al., 2006, 2007; Xie et al., 2008; Chen et al., 2009; Zhang, XiaHou et al., 2009). The C14—N3 and C13—O2 bond lengths [1.269 (3) and 1.235 (2) Å, respectively] indicate the presence of a typical CN and CO. The CN—N angle of 115.79 (18)° is significantly smaller than the ideal value of 120° expected for sp2-hybridized N atoms, probably due to repulsion between the nitrogen lone pairs and the adjacent N atom (Zheng, Qiu et al., 2006). The benzene and quinoline ring systems are close to coplanar [dihedral angle, 2.7 (5)°]. In the crystal structure, intramolecular C—H···N and C—H···O interactions (Table 1, Fig. 1) produce two edge-sharing S(5) ring motifs (Bernstein et al., 1995) and a pair of intermolecular N—H···O hydrogen bonds link the molecules into centrosymmetric cyclic R22(8) dimers (Fig. 2), which are aggregated via ππ interactions into parallel sheets [quinoline–benzene ring centroid separation: 3.6173 (16)–3.6511 (16) Å], which are further connected through weak C—H···O interactions, giving a supramolecular two-dimensional network (Fig. 3).

Related literature top

For general background to Schiff bases in coordination chemistry, see: Calligaris & Randaccio (1987). For related structures, see: Zheng, Li et al. (2008); Zheng, Qiu et al. (2006); Zheng, Wu, Lu et al. (2006); Zheng (2006); Zheng, Wu, Li et al. (2006, 2007); Xie et al. (2008); Chen & Li (2009); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Reagents and solvents used were of commercially available quality. The title compound (I) was synthesized according to the method of Zheng, Li et al., 2008. 4-(Quinolin-8-yloxy)butanehydrazide (0.01 mol), p-formylnitrobenzene (0.01 mol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask and refluxed for 6 h. After cooling to room temperature, the solid product was separated by filtration. Yellow single crystals of (I) suitable for the X-ray diffraction study were obtained by slow evaporation of a tetrahydrofuran solution over a period of four days.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 30% probability level. Intramolecular C–H···N and C–H···O interactions are shown as dashed lines.
[Figure 2] Fig. 2. The cyclic hydrogen-bonded dimer with hydrogen bonds shown as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
[Figure 3] Fig. 3. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
(E)-N'-(4-Nitrobenzylidene)-4-(8-quinolyloxy)butanohydrazide top
Crystal data top
C20H18N4O4F(000) = 792
Mr = 378.38Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3279 reflections
a = 9.836 (3) Åθ = 2.2–27.9°
b = 10.633 (3) ŵ = 0.10 mm1
c = 17.566 (5) ÅT = 296 K
β = 92.365 (7)°Prism, yellow
V = 1835.6 (9) Å30.22 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3256 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 711
Tmin = 0.979, Tmax = 0.986k = 1212
9957 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.3873P]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18N4O4V = 1835.6 (9) Å3
Mr = 378.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.836 (3) ŵ = 0.10 mm1
b = 10.633 (3) ÅT = 296 K
c = 17.566 (5) Å0.22 × 0.17 × 0.15 mm
β = 92.365 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2345 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.036
9957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
3256 reflectionsΔρmin = 0.23 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75513 (15)0.53054 (15)0.16112 (8)0.0599 (4)
O21.05475 (15)0.89991 (18)0.07985 (10)0.0749 (5)
O30.0388 (2)0.8161 (3)0.16156 (15)0.1302 (10)
O40.04918 (18)0.6940 (2)0.06516 (13)0.0903 (6)
N10.50202 (18)0.48897 (16)0.10959 (10)0.0542 (5)
N20.85327 (17)0.90258 (17)0.01739 (10)0.0499 (4)
H2A0.88440.95440.01520.060*
N30.71999 (16)0.86354 (16)0.00912 (10)0.0466 (4)
N40.0993 (2)0.7717 (2)0.10668 (13)0.0710 (6)
C10.3767 (2)0.4663 (2)0.08357 (15)0.0651 (7)
H10.34790.50420.03800.078*
C20.2845 (2)0.3894 (2)0.11982 (17)0.0685 (7)
H20.19620.37930.09980.082*
C30.3263 (2)0.3297 (2)0.18475 (15)0.0642 (7)
H30.26650.27770.20970.077*
C40.4606 (2)0.34635 (18)0.21447 (11)0.0472 (5)
C50.5148 (3)0.2828 (2)0.28008 (12)0.0601 (6)
H50.46080.22710.30630.072*
C60.6447 (3)0.3036 (2)0.30424 (12)0.0605 (6)
H60.67930.26100.34710.073*
C70.7296 (2)0.3877 (2)0.26657 (11)0.0521 (5)
H70.81840.40120.28510.063*
C80.6817 (2)0.44914 (18)0.20301 (11)0.0444 (5)
C90.5446 (2)0.42934 (17)0.17467 (10)0.0410 (5)
C100.8940 (2)0.5533 (2)0.18444 (13)0.0587 (6)
H10A0.94540.47550.18420.070*
H10B0.89960.58790.23560.070*
C110.9503 (2)0.6450 (2)0.12900 (15)0.0663 (7)
H11A0.93840.61130.07790.080*
H11B1.04720.65500.14010.080*
C120.8825 (2)0.7721 (2)0.13204 (13)0.0615 (6)
H12A0.78530.76180.12250.074*
H12B0.89690.80700.18270.074*
C130.9360 (2)0.8621 (2)0.07498 (13)0.0561 (6)
C140.6530 (2)0.90707 (19)0.04826 (11)0.0451 (5)
H140.69490.96080.08180.054*
C150.5098 (2)0.87299 (17)0.06186 (10)0.0422 (5)
C160.4388 (2)0.9199 (2)0.12587 (12)0.0528 (5)
H160.48250.97300.15910.063*
C170.3046 (2)0.8885 (2)0.14041 (13)0.0581 (6)
H170.25720.92030.18310.070*
C180.2416 (2)0.8095 (2)0.09103 (12)0.0503 (5)
C190.3084 (2)0.7626 (2)0.02718 (12)0.0518 (5)
H190.26350.71040.00600.062*
C200.4429 (2)0.79389 (19)0.01275 (11)0.0475 (5)
H200.48920.76180.03020.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0511 (9)0.0703 (10)0.0573 (9)0.0236 (8)0.0086 (7)0.0125 (8)
O20.0459 (9)0.1000 (13)0.0779 (11)0.0223 (9)0.0080 (8)0.0215 (10)
O30.0686 (13)0.181 (2)0.1362 (19)0.0046 (16)0.0528 (14)0.0321 (19)
O40.0516 (10)0.1168 (17)0.1021 (15)0.0198 (11)0.0025 (10)0.0187 (13)
N10.0546 (11)0.0479 (10)0.0592 (11)0.0031 (9)0.0103 (9)0.0030 (8)
N20.0389 (9)0.0549 (10)0.0559 (10)0.0102 (8)0.0021 (8)0.0007 (8)
N30.0387 (9)0.0472 (10)0.0541 (10)0.0061 (8)0.0047 (8)0.0070 (8)
N40.0460 (11)0.0887 (16)0.0770 (14)0.0091 (12)0.0111 (11)0.0183 (13)
C10.0564 (14)0.0588 (14)0.0781 (16)0.0060 (12)0.0205 (12)0.0039 (12)
C20.0432 (12)0.0687 (16)0.0928 (19)0.0000 (12)0.0065 (13)0.0211 (14)
C30.0516 (13)0.0623 (14)0.0801 (17)0.0155 (12)0.0208 (12)0.0221 (13)
C40.0523 (12)0.0399 (11)0.0505 (11)0.0051 (10)0.0143 (9)0.0121 (9)
C50.0829 (17)0.0493 (13)0.0499 (12)0.0090 (12)0.0230 (12)0.0003 (10)
C60.0850 (18)0.0582 (13)0.0385 (11)0.0083 (13)0.0041 (11)0.0062 (10)
C70.0559 (12)0.0575 (13)0.0425 (11)0.0029 (11)0.0035 (9)0.0026 (10)
C80.0461 (11)0.0435 (10)0.0435 (11)0.0048 (9)0.0020 (9)0.0023 (9)
C90.0455 (11)0.0357 (10)0.0416 (10)0.0021 (9)0.0014 (8)0.0041 (8)
C100.0422 (12)0.0608 (13)0.0725 (15)0.0079 (11)0.0037 (11)0.0013 (11)
C110.0520 (13)0.0645 (15)0.0831 (16)0.0131 (12)0.0126 (12)0.0032 (13)
C120.0461 (12)0.0765 (16)0.0622 (14)0.0066 (12)0.0054 (10)0.0092 (12)
C130.0434 (12)0.0658 (14)0.0590 (13)0.0086 (11)0.0026 (10)0.0016 (11)
C140.0462 (11)0.0437 (11)0.0458 (11)0.0065 (9)0.0059 (9)0.0052 (9)
C150.0454 (11)0.0391 (10)0.0422 (10)0.0025 (9)0.0026 (9)0.0075 (8)
C160.0618 (13)0.0492 (12)0.0473 (11)0.0026 (11)0.0006 (10)0.0035 (9)
C170.0603 (14)0.0613 (14)0.0514 (12)0.0178 (12)0.0125 (11)0.0031 (11)
C180.0391 (10)0.0548 (12)0.0563 (12)0.0081 (10)0.0063 (9)0.0134 (10)
C190.0436 (11)0.0564 (13)0.0555 (12)0.0039 (10)0.0018 (9)0.0008 (10)
C200.0430 (11)0.0543 (12)0.0448 (11)0.0013 (10)0.0047 (9)0.0012 (9)
Geometric parameters (Å, º) top
O1—C81.363 (2)C7—C81.361 (3)
O1—C101.430 (2)C7—H70.9300
O2—C131.235 (2)C8—C91.433 (3)
O3—N41.208 (3)C10—C111.500 (3)
O4—N41.220 (3)C10—H10A0.9700
N1—C11.319 (3)C10—H10B0.9700
N1—C91.358 (2)C11—C121.508 (3)
N2—C131.343 (3)C11—H11A0.9700
N2—N31.377 (2)C11—H11B0.9700
N2—H2A0.8600C12—C131.497 (3)
N3—C141.269 (3)C12—H12A0.9700
N4—C181.471 (3)C12—H12B0.9700
C1—C21.394 (4)C14—C151.464 (3)
C1—H10.9300C14—H140.9300
C2—C31.354 (4)C15—C201.390 (3)
C2—H20.9300C15—C161.392 (3)
C3—C41.412 (3)C16—C171.375 (3)
C3—H30.9300C16—H160.9300
C4—C91.413 (3)C17—C181.374 (3)
C4—C51.421 (3)C17—H170.9300
C5—C61.348 (3)C18—C191.370 (3)
C5—H50.9300C19—C201.377 (3)
C6—C71.407 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C8—O1—C10118.32 (16)O1—C10—H10B110.2
C1—N1—C9117.24 (19)C11—C10—H10B110.2
C13—N2—N3121.83 (18)H10A—C10—H10B108.5
C13—N2—H2A119.1C10—C11—C12112.5 (2)
N3—N2—H2A119.1C10—C11—H11A109.1
C14—N3—N2115.79 (18)C12—C11—H11A109.1
O3—N4—O4123.0 (2)C10—C11—H11B109.1
O3—N4—C18118.4 (3)C12—C11—H11B109.1
O4—N4—C18118.6 (2)H11A—C11—H11B107.8
N1—C1—C2124.4 (2)C13—C12—C11112.35 (19)
N1—C1—H1117.8C13—C12—H12A109.1
C2—C1—H1117.8C11—C12—H12A109.1
C3—C2—C1118.6 (2)C13—C12—H12B109.1
C3—C2—H2120.7C11—C12—H12B109.1
C1—C2—H2120.7H12A—C12—H12B107.9
C2—C3—C4120.0 (2)O2—C13—N2119.3 (2)
C2—C3—H3120.0O2—C13—C12121.3 (2)
C4—C3—H3120.0N2—C13—C12119.38 (19)
C3—C4—C9116.9 (2)N3—C14—C15120.28 (19)
C3—C4—C5123.6 (2)N3—C14—H14119.9
C9—C4—C5119.41 (19)C15—C14—H14119.9
C6—C5—C4119.8 (2)C20—C15—C16118.90 (19)
C6—C5—H5120.1C20—C15—C14121.72 (18)
C4—C5—H5120.1C16—C15—C14119.38 (19)
C5—C6—C7121.9 (2)C17—C16—C15120.6 (2)
C5—C6—H6119.0C17—C16—H16119.7
C7—C6—H6119.0C15—C16—H16119.7
C8—C7—C6119.9 (2)C18—C17—C16119.1 (2)
C8—C7—H7120.0C18—C17—H17120.5
C6—C7—H7120.0C16—C17—H17120.5
C7—C8—O1125.06 (19)C19—C18—C17121.7 (2)
C7—C8—C9120.23 (19)C19—C18—N4118.3 (2)
O1—C8—C9114.71 (16)C17—C18—N4120.0 (2)
N1—C9—C4122.77 (18)C18—C19—C20119.2 (2)
N1—C9—C8118.49 (17)C18—C19—H19120.4
C4—C9—C8118.73 (17)C20—C19—H19120.4
O1—C10—C11107.34 (19)C19—C20—C15120.53 (19)
O1—C10—H10A110.2C19—C20—H20119.7
C11—C10—H10A110.2C15—C20—H20119.7
C13—N2—N3—C14178.96 (19)C8—O1—C10—C11179.83 (18)
C9—N1—C1—C22.4 (3)O1—C10—C11—C1265.1 (3)
N1—C1—C2—C32.5 (4)C10—C11—C12—C13178.24 (19)
C1—C2—C3—C40.2 (3)N3—N2—C13—O2180.00 (19)
C2—C3—C4—C91.7 (3)N3—N2—C13—C120.1 (3)
C2—C3—C4—C5176.9 (2)C11—C12—C13—O266.0 (3)
C3—C4—C5—C6179.5 (2)C11—C12—C13—N2114.1 (2)
C9—C4—C5—C60.9 (3)N2—N3—C14—C15179.17 (16)
C4—C5—C6—C70.4 (3)N3—C14—C15—C200.6 (3)
C5—C6—C7—C81.1 (3)N3—C14—C15—C16178.84 (18)
C6—C7—C8—O1178.65 (19)C20—C15—C16—C170.1 (3)
C6—C7—C8—C90.5 (3)C14—C15—C16—C17179.41 (18)
C10—O1—C8—C70.7 (3)C15—C16—C17—C180.3 (3)
C10—O1—C8—C9178.53 (17)C16—C17—C18—C190.9 (3)
C1—N1—C9—C40.3 (3)C16—C17—C18—N4178.20 (19)
C1—N1—C9—C8178.11 (19)O3—N4—C18—C19177.6 (2)
C3—C4—C9—N11.7 (3)O4—N4—C18—C194.7 (3)
C5—C4—C9—N1176.92 (18)O3—N4—C18—C173.2 (3)
C3—C4—C9—C8179.88 (18)O4—N4—C18—C17174.4 (2)
C5—C4—C9—C81.5 (3)C17—C18—C19—C201.1 (3)
C7—C8—C9—N1177.70 (18)N4—C18—C19—C20178.07 (18)
O1—C8—C9—N11.6 (3)C18—C19—C20—C150.6 (3)
C7—C8—C9—C40.8 (3)C16—C15—C20—C190.1 (3)
O1—C8—C9—C4179.99 (16)C14—C15—C20—C19179.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.032.876 (3)170
C12—H12A···O10.972.572.912 (3)101
C12—H12A···N30.972.332.807 (3)109
C10—H10B···O3ii0.972.453.311 (3)148
C2—H2···O4iii0.932.583.496 (3)167
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H18N4O4
Mr378.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.836 (3), 10.633 (3), 17.566 (5)
β (°) 92.365 (7)
V3)1835.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9957, 3256, 2345
Rint0.036
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.146, 1.07
No. of reflections3256
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.032.876 (3)169.9
C12—H12A···O10.972.572.912 (3)101
C12—H12A···N30.972.332.807 (3)109.3
C10—H10B···O3ii0.972.453.311 (3)148.4
C2—H2···O4iii0.932.583.496 (3)166.6
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Key Lab of Natural Medicine Research and Development in Jiangxi for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationChen, M.-E. & Li, J.-M. (2009). Acta Cryst. E65, o295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H., Meng, S.-M., Fan, Y.-Q. & Yang, G.-C. (2008). Acta Cryst. E64, o2114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., XiaHou, G.-L., Zhang, S.-S. & Zeng, J. (2009). Acta Cryst. E65, o1695–o1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B. (2006). Acta Cryst. E62, o5146–o5147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Li, J.-K., Sun, Y.-F. & Wu, R.-T. (2008). Acta Cryst. E64, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Qiu, Q.-M., Lin, Y.-Y. & Liu, K.-F. (2006). Acta Cryst. E62, o1913–o1914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Lu, J.-R. (2007). Acta Cryst. E63, o3284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2006). Acta Cryst. E62, o4882–o4883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293–o4295.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds