organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-Benzyl-4-methyl­pentyl (R)-2-meth­­oxy-2-(1-naphth­yl)propionate

aDepartment of Material Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan, bInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-2-1 Katahira, Aoba, Sendai 980-8577, Japan, and cDepartment of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
*Correspondence e-mail: inoue@mat.usp.ac.jp

(Received 21 May 2010; accepted 2 June 2010; online 16 June 2010)

The relative configuration of the alcohol component in the title ester, C27H32O3, has been assigned as (R) from the known configuration of (R)-(−)-2-meth­oxy-2-(1-naphth­yl)propionic acid [(R)-MαNP acid]. In the crystal structure, the C atom of the methyl group of the MαNP acid lies in the extended plane of the naphthyl ring system [methyl C atom deviates from plane by 0.211 (2) Å; r.m.s. deviation of fitted atoms = 0.0187 Å] and a weak intra­molecular C—H⋯O hydrogen bond links the naphthyl ring system and the meth­oxy group. These structural properties are similar to those of most MαNP acid esters.

Related literature

For general background to the crystalline-state analysis of 2-meth­oxy-2-(1-naphth­yl)propionic acid esters, see: Kuwahara et al. (2007[Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem. 11, 1827-1840.]); Sekiguchi et al. (2008[Sekiguchi, S., Akagi, M., Naito, J., Yamamoto, Y., Taji, H., Kuwahara, S., Watanabe, M., Ozawa, Y., Toriumi, K. & Harada, N. (2008). Eur. J. Org. Chem. 13, 2313-2324.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32O3

  • Mr = 404.53

  • Monoclinic, P 21

  • a = 9.3380 (1) Å

  • b = 12.4142 (1) Å

  • c = 10.0317 (5) Å

  • β = 102.8144 (8)°

  • V = 1133.95 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 105 K

  • 0.60 × 0.60 × 0.60 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.896, Tmax = 1.000

  • 21388 measured reflections

  • 4133 independent reflections

  • 4042 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.06

  • 4133 reflections

  • 276 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1592 Friedel pairs

  • Flack parameter: 0.03 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.95 2.40 2.9887 (15) 120

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]; Kabuto et al. (2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

In a previous paper, we reported that (S)-2-methoxy-2-(1-naphthyl)propionic acid [(S)-MαNP acid] is an efficient auxiliary for enantioresolution of racemic secondary alcohols and the simultaneous determination of the absolute configuration of the resolved alcohols by the Advanced Mosher Method (Kuwahara et al., 2007). We also reported the determination of the absolute configuration of esters condensed with (S)-MαNP acid using X-ray crystallography, by comparison with the known configuration of the asymmetric quaternary carbon of the acid as an internal standard (Sekiguchi et al., 2008). We will report herein that that (R)-MαNP acid is also a useful auxiliary for the identification of remote asymmetric centers in primary alcohols.

2-Isobutyl-3-phenyl-1-propanol was enantioresolved using (R)-(-)-2-methoxy-2-(1-naphthyl)propionic acid and the absolute configuration of the alcohol component of the second fraction from the HPLC separation, the ester C27H32O3 (I) has (Fig. 1) been assigned as R from the known configuration of (R)-MαNP acid. In the structure of (I) there is a weak intramolecular hydrogen bond linking the naphthyl ring and the methoxy group (C13—H···O1) (Table 1, Fig. 1) which results in the carbon atom of the methyl group lying in the extended plane of the naphthyl ring of the MαNP acid moiety. These structural properties are similar to those of most MαNP acid esters (Kuwahara et al., 2007).

Related literature top

For general background to the crystalline-state analysis of 2-methoxy-2-(1-naphthyl)propionic acid esters, see: Kuwahara et al. (2007); Sekiguchi et al. (2008).

Experimental top

Two diastereomers were obtained from the reaction of (R)-(-)-2-methoxy-2-(1-naphthyl)propionic acid with 2-isobutyl-3-phenyl-1-propanol (Kuwahara et al., 2007) and were separated by HPLC, eluting with a mixture of ethyl acetate and hexane (50:1). After removal of most of the solvent, the residual oil was allowed to stand for 6 months, giving single crystals suitable for X-ray diffraction analysis.

Refinement top

In the refinement of the title compound, the H atom positions were calculated geometrically and refined as riding, with C—H bond lengths of 0.95–1.00 Å, and with Uiso(H) values of 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.
(R)-2-Benzyl-4-methylpentyl (R)-2-methoxy-2-(1-naphthyl)propionate top
Crystal data top
C27H32O3F(000) = 436
Mr = 404.53Dx = 1.185 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ybCell parameters from 21196 reflections
a = 9.3380 (1) Åθ = 3.6–68.3°
b = 12.4142 (1) ŵ = 0.59 mm1
c = 10.0317 (5) ÅT = 105 K
β = 102.8144 (8)°Prism, colourless
V = 1133.95 (6) Å30.60 × 0.60 × 0.60 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4133 independent reflections
Radiation source: rotating anode4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 68.2°, θmin = 4.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.896, Tmax = 1.000k = 1414
21388 measured reflectionsl = 1211
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.1169P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
4133 reflectionsΔρmin = 0.11 e Å3
276 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0049 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1592 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (13)
Crystal data top
C27H32O3V = 1133.95 (6) Å3
Mr = 404.53Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.3380 (1) ŵ = 0.59 mm1
b = 12.4142 (1) ÅT = 105 K
c = 10.0317 (5) Å0.60 × 0.60 × 0.60 mm
β = 102.8144 (8)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
4133 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4042 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 1.000Rint = 0.026
21388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.11 e Å3
4133 reflectionsAbsolute structure: Flack (1983), 1592 Friedel pairs
276 parametersAbsolute structure parameter: 0.03 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01084 (12)0.76296 (10)0.04854 (12)0.0259 (2)
O10.00374 (10)0.66650 (7)0.03129 (9)0.0328 (2)
C20.01437 (17)0.67911 (13)0.16720 (14)0.0422 (3)
H20.05600.73250.21480.063*
H2A0.00300.61000.21520.063*
H2B0.11460.70350.16540.063*
C30.12601 (13)0.83375 (11)0.00029 (13)0.0316 (3)
H30.12750.86140.09150.047*
H3A0.12320.89430.06360.047*
H3B0.21450.79070.00190.047*
C40.00305 (11)0.72333 (10)0.19225 (12)0.0246 (2)
O20.05044 (9)0.63985 (7)0.21644 (9)0.0328 (2)
O30.05702 (9)0.79770 (7)0.28601 (8)0.02774 (18)
C50.15589 (12)0.82122 (9)0.05218 (11)0.0239 (2)
C60.15720 (13)0.92718 (10)0.01434 (12)0.0278 (3)
H60.06660.96330.01850.033*
C70.28968 (14)0.98387 (10)0.02292 (12)0.0311 (3)
H70.28741.05700.00530.037*
C80.42086 (13)0.93434 (10)0.07136 (12)0.0311 (3)
H80.50970.97340.07820.037*
C90.42564 (12)0.82428 (10)0.11183 (11)0.0267 (3)
C100.56161 (13)0.77226 (11)0.16393 (12)0.0319 (3)
H100.65030.81210.17440.038*
C110.56744 (14)0.66583 (12)0.19930 (13)0.0360 (3)
H110.65950.63180.23300.043*
C120.43639 (14)0.60689 (11)0.18546 (13)0.0358 (3)
H120.44040.53270.20930.043*
C130.30273 (13)0.65541 (10)0.13778 (12)0.0295 (3)
H130.21540.61440.13010.035*
C140.29272 (12)0.76583 (10)0.09975 (11)0.0246 (2)
C150.05451 (13)0.77178 (9)0.42690 (12)0.0255 (2)
H150.12980.71680.46320.031*
H15A0.04290.74300.43230.031*
C160.08635 (12)0.87537 (10)0.50914 (12)0.0266 (2)
H160.08020.85850.60520.032*
C170.02740 (14)0.96247 (10)0.45622 (12)0.0310 (3)
H170.02710.97660.35910.037*
H17A0.00371.02970.50770.037*
C180.18533 (14)0.93703 (11)0.46642 (14)0.0355 (3)
H180.20860.86170.43330.043*
C190.29213 (18)1.01300 (13)0.37436 (19)0.0569 (5)
H190.39300.99410.37820.085*
H19A0.28031.00630.28010.085*
H19B0.27171.08730.40570.085*
C200.20296 (16)0.94390 (14)0.61282 (16)0.0480 (4)
H200.18231.01760.64670.072*
H20A0.13420.89410.67000.072*
H20B0.30380.92450.61640.072*
C210.24294 (14)0.91710 (10)0.51362 (13)0.0313 (3)
H210.25190.93340.41920.038*
H21A0.25760.98530.56610.038*
C220.36296 (13)0.83929 (10)0.57695 (12)0.0292 (3)
C230.44401 (13)0.78389 (11)0.49766 (13)0.0330 (3)
H230.42430.79590.40180.040*
C240.55244 (14)0.71188 (12)0.55646 (13)0.0369 (3)
H240.60700.67540.50080.044*
C250.58239 (14)0.69240 (11)0.69620 (14)0.0360 (3)
H250.65710.64290.73650.043*
C260.50175 (13)0.74623 (12)0.77605 (13)0.0366 (3)
H260.52080.73330.87170.044*
C270.39359 (13)0.81877 (11)0.71708 (13)0.0331 (3)
H270.33930.85520.77300.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (5)0.0274 (6)0.0248 (6)0.0014 (5)0.0062 (4)0.0059 (5)
O10.0376 (5)0.0321 (5)0.0302 (4)0.0074 (4)0.0108 (4)0.0110 (4)
C20.0490 (8)0.0486 (8)0.0309 (7)0.0055 (6)0.0133 (6)0.0142 (6)
C30.0240 (5)0.0424 (7)0.0278 (6)0.0023 (5)0.0042 (5)0.0010 (5)
C40.0183 (5)0.0259 (6)0.0297 (6)0.0001 (4)0.0056 (4)0.0041 (5)
O20.0344 (4)0.0293 (5)0.0350 (5)0.0086 (4)0.0086 (4)0.0035 (4)
O30.0350 (4)0.0253 (4)0.0245 (4)0.0067 (3)0.0099 (3)0.0035 (3)
C50.0259 (6)0.0273 (6)0.0190 (5)0.0003 (4)0.0065 (4)0.0029 (4)
C60.0309 (6)0.0279 (6)0.0246 (6)0.0035 (5)0.0062 (5)0.0003 (5)
C70.0405 (7)0.0279 (6)0.0250 (6)0.0039 (5)0.0077 (5)0.0026 (5)
C80.0337 (6)0.0373 (7)0.0237 (6)0.0115 (5)0.0090 (5)0.0016 (5)
C90.0283 (6)0.0364 (7)0.0168 (5)0.0007 (5)0.0080 (4)0.0012 (5)
C100.0244 (5)0.0497 (8)0.0228 (6)0.0002 (5)0.0080 (4)0.0022 (5)
C110.0302 (6)0.0520 (9)0.0270 (6)0.0153 (6)0.0092 (5)0.0027 (6)
C120.0407 (7)0.0352 (7)0.0346 (7)0.0129 (6)0.0149 (5)0.0034 (6)
C130.0317 (6)0.0283 (7)0.0311 (6)0.0030 (5)0.0125 (5)0.0002 (5)
C140.0268 (6)0.0284 (6)0.0201 (5)0.0017 (4)0.0082 (4)0.0013 (4)
C150.0281 (5)0.0250 (6)0.0244 (5)0.0007 (5)0.0082 (4)0.0026 (4)
C160.0303 (6)0.0271 (6)0.0234 (6)0.0007 (5)0.0079 (4)0.0003 (5)
C170.0425 (7)0.0249 (6)0.0249 (6)0.0024 (5)0.0061 (5)0.0003 (5)
C180.0333 (6)0.0297 (7)0.0388 (7)0.0038 (5)0.0023 (5)0.0079 (6)
C190.0455 (9)0.0390 (9)0.0714 (11)0.0092 (7)0.0189 (8)0.0095 (8)
C200.0368 (7)0.0573 (10)0.0536 (9)0.0032 (7)0.0178 (6)0.0117 (7)
C210.0355 (6)0.0289 (6)0.0302 (6)0.0072 (5)0.0090 (5)0.0029 (5)
C220.0274 (6)0.0320 (6)0.0276 (6)0.0092 (5)0.0051 (5)0.0030 (5)
C230.0317 (6)0.0418 (7)0.0261 (6)0.0055 (6)0.0077 (5)0.0012 (5)
C240.0309 (6)0.0457 (8)0.0355 (7)0.0030 (6)0.0102 (5)0.0037 (6)
C250.0267 (6)0.0427 (8)0.0361 (7)0.0025 (5)0.0016 (5)0.0012 (6)
C260.0314 (6)0.0501 (9)0.0252 (6)0.0082 (6)0.0001 (5)0.0026 (6)
C270.0304 (6)0.0421 (8)0.0269 (6)0.0096 (5)0.0065 (5)0.0104 (5)
Geometric parameters (Å, º) top
C1—O11.4303 (14)C15—C161.5211 (16)
C1—C51.5288 (15)C15—H150.9900
C1—C31.5379 (16)C15—H15A0.9900
C1—C41.5402 (16)C16—C171.5262 (16)
O1—C21.4192 (16)C16—C211.5426 (16)
C2—H20.9800C16—H161.0000
C2—H2A0.9800C17—C181.5337 (18)
C2—H2B0.9800C17—H170.9900
C3—H30.9800C17—H17A0.9900
C3—H3A0.9800C18—C201.516 (2)
C3—H3B0.9800C18—C191.5258 (19)
C4—O21.1984 (14)C18—H181.0000
C4—O31.3344 (14)C19—H190.9800
O3—C151.4548 (13)C19—H19A0.9800
C5—C61.3700 (17)C19—H19B0.9800
C5—C141.4361 (15)C20—H200.9800
C6—C71.4092 (17)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.3604 (18)C21—C221.5089 (18)
C7—H70.9500C21—H210.9900
C8—C91.4233 (18)C21—H21A0.9900
C8—H80.9500C22—C271.3944 (17)
C9—C101.4169 (17)C22—C231.3949 (18)
C9—C141.4196 (16)C23—C241.3811 (19)
C10—C111.3660 (19)C23—H230.9500
C10—H100.9500C24—C251.3885 (19)
C11—C121.406 (2)C24—H240.9500
C11—H110.9500C25—C261.387 (2)
C12—C131.3728 (17)C25—H250.9500
C12—H120.9500C26—C271.384 (2)
C13—C141.4204 (17)C26—H260.9500
C13—H130.9500C27—H270.9500
O1—C1—C5112.53 (9)C16—C15—H15A110.3
O1—C1—C3109.45 (9)H15—C15—H15A108.5
C5—C1—C3114.03 (10)C15—C16—C17111.91 (9)
O1—C1—C4103.79 (9)C15—C16—C21111.70 (9)
C5—C1—C4110.75 (9)C17—C16—C21110.75 (10)
C3—C1—C4105.59 (9)C15—C16—H16107.4
C2—O1—C1115.39 (10)C17—C16—H16107.4
O1—C2—H2109.5C21—C16—H16107.4
O1—C2—H2A109.5C16—C17—C18115.86 (10)
H2—C2—H2A109.5C16—C17—H17108.3
O1—C2—H2B109.5C18—C17—H17108.3
H2—C2—H2B109.5C16—C17—H17A108.3
H2A—C2—H2B109.5C18—C17—H17A108.3
C1—C3—H3109.5H17—C17—H17A107.4
C1—C3—H3A109.5C20—C18—C19110.78 (13)
H3—C3—H3A109.5C20—C18—C17111.45 (11)
C1—C3—H3B109.5C19—C18—C17109.96 (12)
H3—C3—H3B109.5C20—C18—H18108.2
H3A—C3—H3B109.5C19—C18—H18108.2
O2—C4—O3124.39 (11)C17—C18—H18108.2
O2—C4—C1125.03 (10)C18—C19—H19109.5
O3—C4—C1110.48 (9)C18—C19—H19A109.5
C4—O3—C15116.54 (9)H19—C19—H19A109.5
C6—C5—C14119.33 (10)C18—C19—H19B109.5
C6—C5—C1120.66 (10)H19—C19—H19B109.5
C14—C5—C1119.98 (10)H19A—C19—H19B109.5
C5—C6—C7121.62 (11)C18—C20—H20109.5
C5—C6—H6119.2C18—C20—H20A109.5
C7—C6—H6119.2H20—C20—H20A109.5
C8—C7—C6120.32 (11)C18—C20—H20B109.5
C8—C7—H7119.8H20—C20—H20B109.5
C6—C7—H7119.8H20A—C20—H20B109.5
C7—C8—C9120.31 (11)C22—C21—C16114.08 (10)
C7—C8—H8119.8C22—C21—H21108.7
C9—C8—H8119.8C16—C21—H21108.7
C10—C9—C14119.58 (11)C22—C21—H21A108.7
C10—C9—C8120.77 (11)C16—C21—H21A108.7
C14—C9—C8119.65 (11)H21—C21—H21A107.6
C11—C10—C9121.16 (12)C27—C22—C23117.96 (12)
C11—C10—H10119.4C27—C22—C21120.57 (11)
C9—C10—H10119.4C23—C22—C21121.45 (11)
C10—C11—C12119.61 (12)C24—C23—C22120.98 (12)
C10—C11—H11120.2C24—C23—H23119.5
C12—C11—H11120.2C22—C23—H23119.5
C13—C12—C11120.68 (13)C23—C24—C25120.55 (12)
C13—C12—H12119.7C23—C24—H24119.7
C11—C12—H12119.7C25—C24—H24119.7
C12—C13—C14121.17 (12)C26—C25—C24119.06 (13)
C12—C13—H13119.4C26—C25—H25120.5
C14—C13—H13119.4C24—C25—H25120.5
C9—C14—C13117.78 (10)C27—C26—C25120.33 (12)
C9—C14—C5118.70 (10)C27—C26—H26119.8
C13—C14—C5123.50 (10)C25—C26—H26119.8
O3—C15—C16107.26 (9)C26—C27—C22121.11 (12)
O3—C15—H15110.3C26—C27—H27119.4
C16—C15—H15110.3C22—C27—H27119.4
O3—C15—H15A110.3
C5—C1—O1—C254.27 (13)C8—C9—C14—C13178.30 (10)
C3—C1—O1—C273.61 (13)C10—C9—C14—C5177.39 (10)
C4—C1—O1—C2174.05 (10)C8—C9—C14—C52.68 (16)
O1—C1—C4—O221.54 (14)C12—C13—C14—C90.39 (16)
C5—C1—C4—O2142.53 (11)C12—C13—C14—C5178.57 (11)
C3—C1—C4—O293.57 (13)C6—C5—C14—C92.77 (16)
O1—C1—C4—O3161.89 (8)C1—C5—C14—C9175.26 (9)
C5—C1—C4—O340.90 (12)C6—C5—C14—C13178.28 (11)
C3—C1—C4—O383.00 (11)C1—C5—C14—C133.69 (17)
O2—C4—O3—C152.47 (16)C4—O3—C15—C16166.99 (9)
C1—C4—O3—C15179.06 (9)O3—C15—C16—C1759.82 (12)
O1—C1—C5—C6125.29 (11)O3—C15—C16—C2164.99 (12)
C3—C1—C5—C60.14 (15)C15—C16—C17—C1863.25 (13)
C4—C1—C5—C6119.05 (11)C21—C16—C17—C18171.41 (10)
O1—C1—C5—C1456.71 (13)C16—C17—C18—C2073.35 (14)
C3—C1—C5—C14177.87 (10)C16—C17—C18—C19163.40 (11)
C4—C1—C5—C1458.95 (13)C15—C16—C21—C2259.85 (13)
C14—C5—C6—C71.01 (17)C17—C16—C21—C22174.69 (10)
C1—C5—C6—C7177.01 (10)C16—C21—C22—C2770.82 (14)
C5—C6—C7—C80.91 (18)C16—C21—C22—C23107.61 (13)
C6—C7—C8—C90.99 (17)C27—C22—C23—C240.76 (18)
C7—C8—C9—C10179.25 (11)C21—C22—C23—C24179.22 (12)
C7—C8—C9—C140.82 (16)C22—C23—C24—C250.5 (2)
C14—C9—C10—C111.84 (17)C23—C24—C25—C260.1 (2)
C8—C9—C10—C11178.08 (11)C24—C25—C26—C270.4 (2)
C9—C10—C11—C120.77 (18)C25—C26—C27—C220.12 (19)
C10—C11—C12—C130.50 (19)C23—C22—C27—C260.44 (18)
C11—C12—C13—C140.68 (18)C21—C22—C27—C26178.92 (11)
C10—C9—C14—C131.62 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.952.402.9887 (15)120

Experimental details

Crystal data
Chemical formulaC27H32O3
Mr404.53
Crystal system, space groupMonoclinic, P21
Temperature (K)105
a, b, c (Å)9.3380 (1), 12.4142 (1), 10.0317 (5)
β (°) 102.8144 (8)
V3)1133.95 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.60 × 0.60 × 0.60
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.896, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21388, 4133, 4042
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.06
No. of reflections4133
No. of parameters276
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.11
Absolute structureFlack (1983), 1592 Friedel pairs
Absolute structure parameter0.03 (13)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.952.402.9887 (15)120
 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem. 11, 1827–1840.  CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSekiguchi, S., Akagi, M., Naito, J., Yamamoto, Y., Taji, H., Kuwahara, S., Watanabe, M., Ozawa, Y., Toriumi, K. & Harada, N. (2008). Eur. J. Org. Chem. 13, 2313–2324.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds