organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(piperidin-1-ylcarbon­yl)benzoate

aLaboratório de Fitoquímica e Química Medicinal, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil, and bLaboratório de Cristalografia, Instituto de Ciências Exatas, Universidade Federal de Alfenas- Unifal-MG, Alfenas, MG 37130-000, Brazil
*Correspondence e-mail: doriguetto@unifal-mg.edu.br

(Received 27 May 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, C14H17NO3, the piperidine ring has a chair conformation and an intra­molecular C—H⋯O inter­action stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯O inter­actions occur.

Related literature

For Pd(0)-catalysed carbonyl­ation of aryl halides, see: Jia & Morris (1991[Jia, G. & Morris, R. H. (1991). J. Am. Chem. Soc. 113, 875-883.]); Stille & Wong (1975[Stille, J. K. & Wong, P. K. (1975). J. Org. Chem. 40, 532-534.]); Magerlein, et al. (2001[Magerlein, W., Indolese, A. F. & Beller, M. (2001). Angew. Chem. Int. Ed. 40, 2856-2859.]); Zhao et al. (2008[Zhao, Y., Jin, L., Li, P. & Lei, A. (2008). J. Am. Chem. Soc. 130, 9429-9433.]). For procedural modifications for carbonyl­ation reactions, see: Lagerlund & Larhed (2006[Lagerlund, O. & Larhed, M. (2006). J. Comb. Chem. 8, 4-6.]). For the preparation of other piperidine derivatives, see Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., de Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067-3073.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO3

  • Mr = 247.29

  • Triclinic, [P \overline 1]

  • a = 5.879 (5) Å

  • b = 9.693 (5) Å

  • c = 12.190 (5) Å

  • α = 69.684 (5)°

  • β = 82.535 (5)°

  • γ = 77.502 (5)°

  • V = 634.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.05 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer

  • 4958 measured reflections

  • 2958 independent reflections

  • 2036 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.01

  • 2958 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1 0.97 2.33 2.750 (3) 105
C14—H14B⋯O2i 0.96 2.56 3.436 (4) 153
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are many methods documented for the synthesis of a wide range of aromatic carboxylic acid derivatives, including benzamides. These compounds can be prepared using palladium(0)-catalyzed carbonylation of aryl halides with various nucleophiles (Zhao et al., 2008; Margerlein et al., 2001; Stille & Wong, 1975). The aminocarbonylation reaction of aryl halides achieved using the commercially available preligand [(tBu)3PH]BF4 as the key component in combination with Herrmann's palladacycle as the Pd source (Jia & Morris, 1991). In other studies procedures employing Mo(CO)6 as a carbon monoxide releasing reagent, together with the use of controlled microwave irradiation as the energy source have been used to overcome the problems of introducing a gaseous reactant in small-scale high-speed protocols (Lagerlund & Larhed, 2006). In addition to other methods for obtaining derivatives of aromatic carboxylic acids, methyl 4-(piperidine-1-carbonyl)benzoate, C14H17N1O3 (I) was prepared from 4-(methoxycarbonyl)benzoic acid in excellent yield, exploring classical methodology, using thionyl chloride as the more electrophilic acid chloride, followed by treatment with piperidine in the presence of chloroform, at room temperature (Lima et al., 2002). The study of this reaction showed that it could be controlled by the stoichimetric and reaction conditions, making the reaction of the piperidine with acyl chloride more favoured than with the ester group, by the use of an easy and convenient method.

In the structure of the title compound (Fig. 1) all bond lengths and angles are in agreement with literature values (Allen et al., 1987). The aromatic ring and the ester are close to planar [C9–C10–C13–O3, -171.21 (12)°; C10–C13–O3–C14, 175.10 (11)°], whereas the carbonyl group is twisted out of the plane of the ring [C12–C7–C6–O1, 122.57 (15)°]. The piperidine ring has the more energetically favored boat conformation, with an intramolecular C5—H···O(carbonyl) interaction [C···O, 2.750 (3) Å] which stabilizes the molecular conformation. As expected, the supramolecular structure has no formal intermolecular hydrogen bonds (Fig. 2).

Related literature top

For Pd(0)-catalysed carbonylation of aryl halides, see: Jia & Morris (1991); Stille & Wong (1975); Magerlein, et al. (2001); Zhao et al. (2008). For procedural modifications for carbonylation reactions, see: Lagerlund & Larhed (2006). For the preparation of other piperidine derivatives, see Lima et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 0.50 g of 4-(methoxycarbonyl)benzoic acid in 15 ml of chloroform, 0.30 ml of freshly distilled thionyl chloride and a catalytic amount of dimethylformamide was stirred under reflux for 1 h. After this time, the solvent was carefully evaporated at reduced pressure and a solution of 2.78 mmol of piperidine and 0.78 ml of triethylamine in 10 ml of chloroform was added. The reaction mixture was stirred for 30 min at room temperature, after which 10 ml of saturated sodium carbonate aqueous solution was added and the mixture extracted with chloroform (3x15 ml). The organic layer was separated, washed with water, rewashed with brine and dried over anhydrous sodium sulfate. The solvent was evaporated at reduced pressure after which the compound was purified by column chromatography using Merck Silica Gel 60 (0.040–0.063 mm) and a mixture of hexane/ethyl acetate (8:2,V/V) as eluent (0.56 g, 82%). Crystals suitable for X-ray diffraction were grown from a mixture of hexane/ethyl acetate (8:2, V/V). IR (KBr, cm-1): ν 1724, 1680, 1436, 1276, 1114. 1H NMR (200 MHz, CDCl3, p.p.m.): δ 1.27 (m, 2H), 1.70 (m, 2H), 3.33 (m, 2H), 3.74 (m, 2H), 3.95 (s, 3H), 7.47 (d, 3 J = 8.27 Hz), 8.09 (d, 3 J = 8.17). 13C NMR (200 MHz, CDCl3, p.p.m.): δ 24.5, 25.6, 26.5, 42.2, 51.2, 52.6, 126.7, 129.8, 130.8, 140.9, 166.4, 169.2.

Refinement top

The H atoms were located from the difference electron density synthesis and allowed to ride on their parent atoms, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.97 Å and Uiso(H)= 1.5Ueq for methyl H atoms or 1.2Ueq for the remaining H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I).
Methyl 4-(piperidin-1-ylcarbonyl)benzoate top
Crystal data top
C14H17NO3Z = 2
Mr = 247.29F(000) = 264
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.879 (5) ÅCell parameters from 2414 reflections
b = 9.693 (5) Åθ = 3.3–29.4°
c = 12.190 (5) ŵ = 0.09 mm1
α = 69.684 (5)°T = 150 K
β = 82.535 (5)°Prism, colourless
γ = 77.502 (5)°0.05 × 0.05 × 0.05 mm
V = 634.9 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
Rint = 0.033
Detector resolution: 10.4186 pixels mm-1θmax = 29.4°, θmin = 3.3°
ω scansh = 77
4958 measured reflectionsk = 1112
2958 independent reflectionsl = 1316
2036 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0676P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.25 e Å3
2958 reflectionsΔρmin = 0.26 e Å3
164 parameters
Crystal data top
C14H17NO3γ = 77.502 (5)°
Mr = 247.29V = 634.9 (7) Å3
Triclinic, P1Z = 2
a = 5.879 (5) ÅMo Kα radiation
b = 9.693 (5) ŵ = 0.09 mm1
c = 12.190 (5) ÅT = 150 K
α = 69.684 (5)°0.05 × 0.05 × 0.05 mm
β = 82.535 (5)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
2036 reflections with I > 2σ(I)
4958 measured reflectionsRint = 0.033
2958 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
2958 reflectionsΔρmin = 0.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.73762 (16)0.78416 (10)0.51830 (8)0.0285 (2)
O21.10549 (18)0.65801 (11)0.54066 (9)0.0377 (3)
O11.41852 (17)1.30674 (12)0.11938 (9)0.0378 (3)
N11.14709 (19)1.30851 (12)0.00274 (9)0.0232 (3)
C71.1642 (2)1.13450 (14)0.20582 (11)0.0214 (3)
C110.8703 (2)1.03005 (14)0.34869 (11)0.0220 (3)
H110.71791.03880.38120.026*
C101.0327 (2)0.90031 (14)0.39573 (11)0.0211 (3)
C130.9679 (2)0.76837 (15)0.49291 (11)0.0240 (3)
C41.3404 (3)1.36011 (16)0.19405 (12)0.0285 (3)
H4A1.47731.28430.1670.034*
H4B1.3891.4390.26160.034*
C81.3275 (2)1.00679 (15)0.25594 (12)0.0256 (3)
H81.48210.22620.031*
C120.9354 (2)1.14597 (14)0.25349 (11)0.0234 (3)
H120.82591.23160.22140.028*
C51.2352 (3)1.42408 (15)0.09739 (12)0.0281 (3)
H5A1.35271.46150.07250.034*
H5B1.10851.50710.12690.034*
C31.1643 (3)1.29141 (15)0.22919 (12)0.0275 (3)
H3A1.23881.24340.28580.033*
H3B1.03721.36970.2660.033*
C21.0677 (2)1.17679 (15)0.12294 (11)0.0260 (3)
H2A0.94531.14170.14630.031*
H2B1.19091.09150.0930.031*
C61.2522 (2)1.25752 (15)0.10503 (12)0.0233 (3)
C91.2617 (2)0.89002 (15)0.34957 (12)0.0259 (3)
H91.37110.80440.38170.031*
C10.9701 (2)1.24338 (16)0.02665 (12)0.0258 (3)
H1A0.83381.32010.05270.031*
H1B0.92261.16590.04240.031*
C140.6585 (3)0.65522 (17)0.60534 (13)0.0328 (3)
H14A0.72270.56740.58420.049*
H14B0.49120.67070.60880.049*
H14C0.70940.64230.68060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0247 (5)0.0288 (5)0.0255 (5)0.0082 (4)0.0020 (4)0.0002 (4)
O20.0287 (6)0.0328 (6)0.0408 (6)0.0048 (5)0.0073 (5)0.0027 (5)
O10.0341 (6)0.0479 (6)0.0359 (6)0.0257 (5)0.0023 (5)0.0085 (5)
N10.0275 (6)0.0235 (6)0.0219 (6)0.0127 (5)0.0033 (4)0.0085 (5)
C70.0230 (7)0.0256 (6)0.0204 (7)0.0095 (5)0.0002 (5)0.0110 (5)
C110.0180 (7)0.0274 (7)0.0226 (7)0.0067 (5)0.0020 (5)0.0102 (6)
C100.0228 (7)0.0254 (7)0.0184 (6)0.0077 (5)0.0025 (5)0.0088 (5)
C130.0234 (7)0.0286 (7)0.0215 (7)0.0067 (6)0.0033 (5)0.0083 (6)
C40.0320 (8)0.0276 (7)0.0240 (7)0.0118 (6)0.0052 (6)0.0050 (6)
C80.0175 (7)0.0344 (7)0.0260 (7)0.0073 (6)0.0012 (5)0.0108 (6)
C120.0216 (7)0.0233 (7)0.0260 (7)0.0030 (5)0.0020 (5)0.0095 (6)
C50.0356 (8)0.0213 (7)0.0279 (7)0.0126 (6)0.0033 (6)0.0064 (6)
C30.0311 (8)0.0294 (7)0.0221 (7)0.0055 (6)0.0010 (5)0.0090 (6)
C20.0286 (8)0.0279 (7)0.0251 (7)0.0089 (6)0.0044 (6)0.0099 (6)
C60.0214 (7)0.0252 (7)0.0259 (7)0.0077 (5)0.0034 (5)0.0113 (6)
C90.0221 (7)0.0291 (7)0.0257 (7)0.0020 (6)0.0053 (5)0.0083 (6)
C10.0235 (7)0.0308 (7)0.0250 (7)0.0103 (6)0.0004 (5)0.0087 (6)
C140.0298 (8)0.0348 (8)0.0278 (8)0.0132 (6)0.0000 (6)0.0008 (6)
Geometric parameters (Å, º) top
O3—C131.337 (2)C4—H4B0.97
O3—C141.4514 (17)C8—C91.3826 (19)
O2—C131.2054 (17)C8—H80.93
O1—C61.2320 (18)C12—H120.93
N1—C61.3496 (18)C5—H5A0.97
N1—C11.4655 (19)C5—H5B0.97
N1—C51.4664 (17)C3—C21.5223 (19)
C7—C121.391 (2)C3—H3A0.97
C7—C81.393 (2)C3—H3B0.97
C7—C61.5113 (18)C2—C11.5213 (19)
C11—C121.3861 (18)C2—H2A0.97
C11—C101.3942 (19)C2—H2B0.97
C11—H110.93C9—H90.93
C10—C91.387 (2)C1—H1A0.97
C10—C131.4918 (19)C1—H1B0.97
C4—C51.5191 (19)C14—H14A0.96
C4—C31.520 (2)C14—H14B0.96
C4—H4A0.97C14—H14C0.96
C13—O3—C14115.47 (10)C4—C5—H5B109.6
C6—N1—C1125.92 (11)H5A—C5—H5B108.1
C6—N1—C5119.70 (12)C4—C3—C2110.94 (12)
C1—N1—C5113.67 (11)C4—C3—H3A109.5
C12—C7—C8119.40 (12)C2—C3—H3A109.5
C12—C7—C6123.66 (11)C4—C3—H3B109.5
C8—C7—C6116.86 (12)C2—C3—H3B109.5
C12—C11—C10120.13 (12)H3A—C3—H3B108
C12—C11—H11119.9C1—C2—C3111.32 (11)
C10—C11—H11119.9C1—C2—H2A109.4
C9—C10—C11119.69 (12)C3—C2—H2A109.4
C9—C10—C13118.03 (11)C1—C2—H2B109.4
C11—C10—C13122.26 (12)C3—C2—H2B109.4
O2—C13—O3123.63 (13)H2A—C2—H2B108
O2—C13—C10124.22 (13)O1—C6—N1122.56 (12)
O3—C13—C10112.10 (11)O1—C6—C7118.58 (12)
C5—C4—C3110.68 (12)N1—C6—C7118.86 (12)
C5—C4—H4A109.5C8—C9—C10120.14 (12)
C3—C4—H4A109.5C8—C9—H9119.9
C5—C4—H4B109.5C10—C9—H9119.9
C3—C4—H4B109.5N1—C1—C2110.13 (12)
H4A—C4—H4B108.1N1—C1—H1A109.6
C9—C8—C7120.44 (13)C2—C1—H1A109.6
C9—C8—H8119.8N1—C1—H1B109.6
C7—C8—H8119.8C2—C1—H1B109.6
C11—C12—C7120.15 (12)H1A—C1—H1B108.1
C11—C12—H12119.9O3—C14—H14A109.5
C7—C12—H12119.9O3—C14—H14B109.5
N1—C5—C4110.27 (11)H14A—C14—H14B109.5
N1—C5—H5A109.6O3—C14—H14C109.5
C4—C5—H5A109.6H14A—C14—H14C109.5
N1—C5—H5B109.6H14B—C14—H14C109.5
C12—C11—C10—C92.35 (19)C5—C4—C3—C254.04 (15)
C12—C11—C10—C13175.86 (12)C4—C3—C2—C153.59 (15)
C14—O3—C13—O22.60 (19)C1—N1—C6—O1171.43 (13)
C14—O3—C13—C10175.10 (11)C5—N1—C6—O11.71 (19)
C9—C10—C13—O26.5 (2)C1—N1—C6—C78.12 (19)
C11—C10—C13—O2175.28 (13)C5—N1—C6—C7177.84 (11)
C9—C10—C13—O3171.20 (11)C12—C7—C6—O1122.57 (15)
C11—C10—C13—O37.03 (18)C8—C7—C6—O154.07 (17)
C12—C7—C8—C92.31 (19)C12—C7—C6—N157.86 (18)
C6—C7—C8—C9179.10 (12)C8—C7—C6—N1125.50 (14)
C10—C11—C12—C71.17 (19)C7—C8—C9—C101.1 (2)
C8—C7—C12—C111.15 (19)C11—C10—C9—C81.19 (19)
C6—C7—C12—C11177.71 (12)C13—C10—C9—C8177.09 (12)
C6—N1—C5—C4112.46 (14)C6—N1—C1—C2112.70 (14)
C1—N1—C5—C458.47 (15)C5—N1—C1—C257.56 (15)
C3—C4—C5—N155.55 (15)C3—C2—C1—N154.21 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.972.332.750 (3)105
C14—H14B···O2i0.962.563.436 (4)153
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H17NO3
Mr247.29
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.879 (5), 9.693 (5), 12.190 (5)
α, β, γ (°)69.684 (5), 82.535 (5), 77.502 (5)
V3)634.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.05 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4958, 2958, 2036
Rint0.033
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.01
No. of reflections2958
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.972.332.750 (3)105
C14—H14B···O2i0.962.563.436 (4)153
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Brazilian agencies CNPq, FINEP, FAPEMIG and CAPES for financial support. The authors are also grateful to CNPq (ACD), CAPES (RMDA) and PIBIC/CNPq/UNIFAL-MG (IMRL and TES) for providing their respective fellowships. The authors express sincere thanks to LabCRI (UFMG), particularly Professor Nilvado L. Speziali and Carlos B. Pinheiro for the measurements and for support of the X-ray facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJia, G. & Morris, R. H. (1991). J. Am. Chem. Soc. 113, 875–883.  CrossRef CAS Web of Science Google Scholar
First citationLagerlund, O. & Larhed, M. (2006). J. Comb. Chem. 8, 4–6.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., de Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067–3073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMagerlein, W., Indolese, A. F. & Beller, M. (2001). Angew. Chem. Int. Ed. 40, 2856–2859.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStille, J. K. & Wong, P. K. (1975). J. Org. Chem. 40, 532–534.  CrossRef CAS Web of Science Google Scholar
First citationZhao, Y., Jin, L., Li, P. & Lei, A. (2008). J. Am. Chem. Soc. 130, 9429–9433.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds