organic compounds
Methyl 4-(piperidin-1-ylcarbonyl)benzoate
aLaboratório de Fitoquímica e Química Medicinal, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil, and bLaboratório de Cristalografia, Instituto de Ciências Exatas, Universidade Federal de Alfenas- Unifal-MG, Alfenas, MG 37130-000, Brazil
*Correspondence e-mail: doriguetto@unifal-mg.edu.br
In the title compound, C14H17NO3, the piperidine ring has a chair conformation and an intramolecular C—H⋯O interaction stabilizes the molecular conformation. In the crystal, weak intermolecular C—H⋯O interactions occur.
Related literature
For Pd(0)-catalysed carbonylation of aryl halides, see: Jia & Morris (1991); Stille & Wong (1975); Magerlein, et al. (2001); Zhao et al. (2008). For procedural modifications for carbonylation reactions, see: Lagerlund & Larhed (2006). For the preparation of other piperidine derivatives, see Lima et al. (2002). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810021720/zs2043sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810021720/zs2043Isup2.hkl
A solution of 0.50 g of 4-(methoxycarbonyl)benzoic acid in 15 ml of chloroform, 0.30 ml of freshly distilled thionyl chloride and a catalytic amount of dimethylformamide was stirred under reflux for 1 h. After this time, the solvent was carefully evaporated at reduced pressure and a solution of 2.78 mmol of piperidine and 0.78 ml of triethylamine in 10 ml of chloroform was added. The reaction mixture was stirred for 30 min at room temperature, after which 10 ml of saturated sodium carbonate aqueous solution was added and the mixture extracted with chloroform (3x15 ml). The organic layer was separated, washed with water, rewashed with brine and dried over anhydrous sodium sulfate. The solvent was evaporated at reduced pressure after which the compound was purified by ν 1724, 1680, 1436, 1276, 1114. 1H NMR (200 MHz, CDCl3, p.p.m.): δ 1.27 (m, 2H), 1.70 (m, 2H), 3.33 (m, 2H), 3.74 (m, 2H), 3.95 (s, 3H), 7.47 (d, 3 J = 8.27 Hz), 8.09 (d, 3 J = 8.17). 13C NMR (200 MHz, CDCl3, p.p.m.): δ 24.5, 25.6, 26.5, 42.2, 51.2, 52.6, 126.7, 129.8, 130.8, 140.9, 166.4, 169.2.
using Merck Silica Gel 60 (0.040–0.063 mm) and a mixture of hexane/ethyl acetate (8:2,V/V) as (0.56 g, 82%). Crystals suitable for X-ray diffraction were grown from a mixture of hexane/ethyl acetate (8:2, V/V). IR (KBr, cm-1):The H atoms were located from the difference electron density synthesis and allowed to ride on their parent atoms, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.97 Å and Uiso(H)= 1.5Ueq for methyl H atoms or 1.2Ueq for the remaining H atoms.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of (I). |
C14H17NO3 | Z = 2 |
Mr = 247.29 | F(000) = 264 |
Triclinic, P1 | Dx = 1.294 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.879 (5) Å | Cell parameters from 2414 reflections |
b = 9.693 (5) Å | θ = 3.3–29.4° |
c = 12.190 (5) Å | µ = 0.09 mm−1 |
α = 69.684 (5)° | T = 150 K |
β = 82.535 (5)° | Prism, colourless |
γ = 77.502 (5)° | 0.05 × 0.05 × 0.05 mm |
V = 634.9 (7) Å3 |
Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer | Rint = 0.033 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 29.4°, θmin = 3.3° |
ω scans | h = −7→7 |
4958 measured reflections | k = −11→12 |
2958 independent reflections | l = −13→16 |
2036 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.25 e Å−3 |
2958 reflections | Δρmin = −0.26 e Å−3 |
164 parameters |
C14H17NO3 | γ = 77.502 (5)° |
Mr = 247.29 | V = 634.9 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.879 (5) Å | Mo Kα radiation |
b = 9.693 (5) Å | µ = 0.09 mm−1 |
c = 12.190 (5) Å | T = 150 K |
α = 69.684 (5)° | 0.05 × 0.05 × 0.05 mm |
β = 82.535 (5)° |
Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer | 2036 reflections with I > 2σ(I) |
4958 measured reflections | Rint = 0.033 |
2958 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.25 e Å−3 |
2958 reflections | Δρmin = −0.26 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.73762 (16) | 0.78416 (10) | 0.51830 (8) | 0.0285 (2) | |
O2 | 1.10549 (18) | 0.65801 (11) | 0.54066 (9) | 0.0377 (3) | |
O1 | 1.41852 (17) | 1.30674 (12) | 0.11938 (9) | 0.0378 (3) | |
N1 | 1.14709 (19) | 1.30851 (12) | 0.00274 (9) | 0.0232 (3) | |
C7 | 1.1642 (2) | 1.13450 (14) | 0.20582 (11) | 0.0214 (3) | |
C11 | 0.8703 (2) | 1.03005 (14) | 0.34869 (11) | 0.0220 (3) | |
H11 | 0.7179 | 1.0388 | 0.3812 | 0.026* | |
C10 | 1.0327 (2) | 0.90031 (14) | 0.39573 (11) | 0.0211 (3) | |
C13 | 0.9679 (2) | 0.76837 (15) | 0.49291 (11) | 0.0240 (3) | |
C4 | 1.3404 (3) | 1.36011 (16) | −0.19405 (12) | 0.0285 (3) | |
H4A | 1.4773 | 1.2843 | −0.167 | 0.034* | |
H4B | 1.389 | 1.439 | −0.2616 | 0.034* | |
C8 | 1.3275 (2) | 1.00679 (15) | 0.25594 (12) | 0.0256 (3) | |
H8 | 1.482 | 1 | 0.2262 | 0.031* | |
C12 | 0.9354 (2) | 1.14597 (14) | 0.25349 (11) | 0.0234 (3) | |
H12 | 0.8259 | 1.2316 | 0.2214 | 0.028* | |
C5 | 1.2352 (3) | 1.42408 (15) | −0.09739 (12) | 0.0281 (3) | |
H5A | 1.3527 | 1.4615 | −0.0725 | 0.034* | |
H5B | 1.1085 | 1.5071 | −0.1269 | 0.034* | |
C3 | 1.1643 (3) | 1.29141 (15) | −0.22919 (12) | 0.0275 (3) | |
H3A | 1.2388 | 1.2434 | −0.2858 | 0.033* | |
H3B | 1.0372 | 1.3697 | −0.266 | 0.033* | |
C2 | 1.0677 (2) | 1.17679 (15) | −0.12294 (11) | 0.0260 (3) | |
H2A | 0.9453 | 1.1417 | −0.1463 | 0.031* | |
H2B | 1.1909 | 1.0915 | −0.093 | 0.031* | |
C6 | 1.2522 (2) | 1.25752 (15) | 0.10503 (12) | 0.0233 (3) | |
C9 | 1.2617 (2) | 0.89002 (15) | 0.34957 (12) | 0.0259 (3) | |
H9 | 1.3711 | 0.8044 | 0.3817 | 0.031* | |
C1 | 0.9701 (2) | 1.24338 (16) | −0.02665 (12) | 0.0258 (3) | |
H1A | 0.8338 | 1.3201 | −0.0527 | 0.031* | |
H1B | 0.9226 | 1.1659 | 0.0424 | 0.031* | |
C14 | 0.6585 (3) | 0.65522 (17) | 0.60534 (13) | 0.0328 (3) | |
H14A | 0.7227 | 0.5674 | 0.5842 | 0.049* | |
H14B | 0.4912 | 0.6707 | 0.6088 | 0.049* | |
H14C | 0.7094 | 0.6423 | 0.6806 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0247 (5) | 0.0288 (5) | 0.0255 (5) | −0.0082 (4) | 0.0020 (4) | −0.0002 (4) |
O2 | 0.0287 (6) | 0.0328 (6) | 0.0408 (6) | −0.0048 (5) | −0.0073 (5) | 0.0027 (5) |
O1 | 0.0341 (6) | 0.0479 (6) | 0.0359 (6) | −0.0257 (5) | −0.0023 (5) | −0.0085 (5) |
N1 | 0.0275 (6) | 0.0235 (6) | 0.0219 (6) | −0.0127 (5) | 0.0033 (4) | −0.0085 (5) |
C7 | 0.0230 (7) | 0.0256 (6) | 0.0204 (7) | −0.0095 (5) | 0.0002 (5) | −0.0110 (5) |
C11 | 0.0180 (7) | 0.0274 (7) | 0.0226 (7) | −0.0067 (5) | 0.0020 (5) | −0.0102 (6) |
C10 | 0.0228 (7) | 0.0254 (7) | 0.0184 (6) | −0.0077 (5) | −0.0025 (5) | −0.0088 (5) |
C13 | 0.0234 (7) | 0.0286 (7) | 0.0215 (7) | −0.0067 (6) | −0.0033 (5) | −0.0083 (6) |
C4 | 0.0320 (8) | 0.0276 (7) | 0.0240 (7) | −0.0118 (6) | 0.0052 (6) | −0.0050 (6) |
C8 | 0.0175 (7) | 0.0344 (7) | 0.0260 (7) | −0.0073 (6) | 0.0012 (5) | −0.0108 (6) |
C12 | 0.0216 (7) | 0.0233 (7) | 0.0260 (7) | −0.0030 (5) | −0.0020 (5) | −0.0095 (6) |
C5 | 0.0356 (8) | 0.0213 (7) | 0.0279 (7) | −0.0126 (6) | 0.0033 (6) | −0.0064 (6) |
C3 | 0.0311 (8) | 0.0294 (7) | 0.0221 (7) | −0.0055 (6) | −0.0010 (5) | −0.0090 (6) |
C2 | 0.0286 (8) | 0.0279 (7) | 0.0251 (7) | −0.0089 (6) | −0.0044 (6) | −0.0099 (6) |
C6 | 0.0214 (7) | 0.0252 (7) | 0.0259 (7) | −0.0077 (5) | 0.0034 (5) | −0.0113 (6) |
C9 | 0.0221 (7) | 0.0291 (7) | 0.0257 (7) | −0.0020 (6) | −0.0053 (5) | −0.0083 (6) |
C1 | 0.0235 (7) | 0.0308 (7) | 0.0250 (7) | −0.0103 (6) | −0.0004 (5) | −0.0087 (6) |
C14 | 0.0298 (8) | 0.0348 (8) | 0.0278 (8) | −0.0132 (6) | 0.0000 (6) | 0.0008 (6) |
O3—C13 | 1.337 (2) | C4—H4B | 0.97 |
O3—C14 | 1.4514 (17) | C8—C9 | 1.3826 (19) |
O2—C13 | 1.2054 (17) | C8—H8 | 0.93 |
O1—C6 | 1.2320 (18) | C12—H12 | 0.93 |
N1—C6 | 1.3496 (18) | C5—H5A | 0.97 |
N1—C1 | 1.4655 (19) | C5—H5B | 0.97 |
N1—C5 | 1.4664 (17) | C3—C2 | 1.5223 (19) |
C7—C12 | 1.391 (2) | C3—H3A | 0.97 |
C7—C8 | 1.393 (2) | C3—H3B | 0.97 |
C7—C6 | 1.5113 (18) | C2—C1 | 1.5213 (19) |
C11—C12 | 1.3861 (18) | C2—H2A | 0.97 |
C11—C10 | 1.3942 (19) | C2—H2B | 0.97 |
C11—H11 | 0.93 | C9—H9 | 0.93 |
C10—C9 | 1.387 (2) | C1—H1A | 0.97 |
C10—C13 | 1.4918 (19) | C1—H1B | 0.97 |
C4—C5 | 1.5191 (19) | C14—H14A | 0.96 |
C4—C3 | 1.520 (2) | C14—H14B | 0.96 |
C4—H4A | 0.97 | C14—H14C | 0.96 |
C13—O3—C14 | 115.47 (10) | C4—C5—H5B | 109.6 |
C6—N1—C1 | 125.92 (11) | H5A—C5—H5B | 108.1 |
C6—N1—C5 | 119.70 (12) | C4—C3—C2 | 110.94 (12) |
C1—N1—C5 | 113.67 (11) | C4—C3—H3A | 109.5 |
C12—C7—C8 | 119.40 (12) | C2—C3—H3A | 109.5 |
C12—C7—C6 | 123.66 (11) | C4—C3—H3B | 109.5 |
C8—C7—C6 | 116.86 (12) | C2—C3—H3B | 109.5 |
C12—C11—C10 | 120.13 (12) | H3A—C3—H3B | 108 |
C12—C11—H11 | 119.9 | C1—C2—C3 | 111.32 (11) |
C10—C11—H11 | 119.9 | C1—C2—H2A | 109.4 |
C9—C10—C11 | 119.69 (12) | C3—C2—H2A | 109.4 |
C9—C10—C13 | 118.03 (11) | C1—C2—H2B | 109.4 |
C11—C10—C13 | 122.26 (12) | C3—C2—H2B | 109.4 |
O2—C13—O3 | 123.63 (13) | H2A—C2—H2B | 108 |
O2—C13—C10 | 124.22 (13) | O1—C6—N1 | 122.56 (12) |
O3—C13—C10 | 112.10 (11) | O1—C6—C7 | 118.58 (12) |
C5—C4—C3 | 110.68 (12) | N1—C6—C7 | 118.86 (12) |
C5—C4—H4A | 109.5 | C8—C9—C10 | 120.14 (12) |
C3—C4—H4A | 109.5 | C8—C9—H9 | 119.9 |
C5—C4—H4B | 109.5 | C10—C9—H9 | 119.9 |
C3—C4—H4B | 109.5 | N1—C1—C2 | 110.13 (12) |
H4A—C4—H4B | 108.1 | N1—C1—H1A | 109.6 |
C9—C8—C7 | 120.44 (13) | C2—C1—H1A | 109.6 |
C9—C8—H8 | 119.8 | N1—C1—H1B | 109.6 |
C7—C8—H8 | 119.8 | C2—C1—H1B | 109.6 |
C11—C12—C7 | 120.15 (12) | H1A—C1—H1B | 108.1 |
C11—C12—H12 | 119.9 | O3—C14—H14A | 109.5 |
C7—C12—H12 | 119.9 | O3—C14—H14B | 109.5 |
N1—C5—C4 | 110.27 (11) | H14A—C14—H14B | 109.5 |
N1—C5—H5A | 109.6 | O3—C14—H14C | 109.5 |
C4—C5—H5A | 109.6 | H14A—C14—H14C | 109.5 |
N1—C5—H5B | 109.6 | H14B—C14—H14C | 109.5 |
C12—C11—C10—C9 | 2.35 (19) | C5—C4—C3—C2 | −54.04 (15) |
C12—C11—C10—C13 | −175.86 (12) | C4—C3—C2—C1 | 53.59 (15) |
C14—O3—C13—O2 | −2.60 (19) | C1—N1—C6—O1 | 171.43 (13) |
C14—O3—C13—C10 | 175.10 (11) | C5—N1—C6—O1 | 1.71 (19) |
C9—C10—C13—O2 | 6.5 (2) | C1—N1—C6—C7 | −8.12 (19) |
C11—C10—C13—O2 | −175.28 (13) | C5—N1—C6—C7 | −177.84 (11) |
C9—C10—C13—O3 | −171.20 (11) | C12—C7—C6—O1 | 122.57 (15) |
C11—C10—C13—O3 | 7.03 (18) | C8—C7—C6—O1 | −54.07 (17) |
C12—C7—C8—C9 | 2.31 (19) | C12—C7—C6—N1 | −57.86 (18) |
C6—C7—C8—C9 | 179.10 (12) | C8—C7—C6—N1 | 125.50 (14) |
C10—C11—C12—C7 | −1.17 (19) | C7—C8—C9—C10 | −1.1 (2) |
C8—C7—C12—C11 | −1.15 (19) | C11—C10—C9—C8 | −1.19 (19) |
C6—C7—C12—C11 | −177.71 (12) | C13—C10—C9—C8 | 177.09 (12) |
C6—N1—C5—C4 | 112.46 (14) | C6—N1—C1—C2 | −112.70 (14) |
C1—N1—C5—C4 | −58.47 (15) | C5—N1—C1—C2 | 57.56 (15) |
C3—C4—C5—N1 | 55.55 (15) | C3—C2—C1—N1 | −54.21 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1 | 0.97 | 2.33 | 2.750 (3) | 105 |
C14—H14B···O2i | 0.96 | 2.56 | 3.436 (4) | 153 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H17NO3 |
Mr | 247.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 5.879 (5), 9.693 (5), 12.190 (5) |
α, β, γ (°) | 69.684 (5), 82.535 (5), 77.502 (5) |
V (Å3) | 634.9 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.05 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4958, 2958, 2036 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.691 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.122, 1.01 |
No. of reflections | 2958 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.26 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1 | 0.97 | 2.33 | 2.750 (3) | 105 |
C14—H14B···O2i | 0.96 | 2.56 | 3.436 (4) | 153 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The authors thank the Brazilian agencies CNPq, FINEP, FAPEMIG and CAPES for financial support. The authors are also grateful to CNPq (ACD), CAPES (RMDA) and PIBIC/CNPq/UNIFAL-MG (IMRL and TES) for providing their respective fellowships. The authors express sincere thanks to LabCRI (UFMG), particularly Professor Nilvado L. Speziali and Carlos B. Pinheiro for the measurements and for support of the X-ray facilities.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jia, G. & Morris, R. H. (1991). J. Am. Chem. Soc. 113, 875–883. CrossRef CAS Web of Science Google Scholar
Lagerlund, O. & Larhed, M. (2006). J. Comb. Chem. 8, 4–6. Web of Science CrossRef PubMed CAS Google Scholar
Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., de Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067–3073. Web of Science CrossRef PubMed CAS Google Scholar
Magerlein, W., Indolese, A. F. & Beller, M. (2001). Angew. Chem. Int. Ed. 40, 2856–2859. CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stille, J. K. & Wong, P. K. (1975). J. Org. Chem. 40, 532–534. CrossRef CAS Web of Science Google Scholar
Zhao, Y., Jin, L., Li, P. & Lei, A. (2008). J. Am. Chem. Soc. 130, 9429–9433. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are many methods documented for the synthesis of a wide range of aromatic carboxylic acid derivatives, including benzamides. These compounds can be prepared using palladium(0)-catalyzed carbonylation of aryl halides with various nucleophiles (Zhao et al., 2008; Margerlein et al., 2001; Stille & Wong, 1975). The aminocarbonylation reaction of aryl halides achieved using the commercially available preligand [(tBu)3PH]BF4 as the key component in combination with Herrmann's palladacycle as the Pd source (Jia & Morris, 1991). In other studies procedures employing Mo(CO)6 as a carbon monoxide releasing reagent, together with the use of controlled microwave irradiation as the energy source have been used to overcome the problems of introducing a gaseous reactant in small-scale high-speed protocols (Lagerlund & Larhed, 2006). In addition to other methods for obtaining derivatives of aromatic carboxylic acids, methyl 4-(piperidine-1-carbonyl)benzoate, C14H17N1O3 (I) was prepared from 4-(methoxycarbonyl)benzoic acid in excellent yield, exploring classical methodology, using thionyl chloride as the more electrophilic acid chloride, followed by treatment with piperidine in the presence of chloroform, at room temperature (Lima et al., 2002). The study of this reaction showed that it could be controlled by the stoichimetric and reaction conditions, making the reaction of the piperidine with acyl chloride more favoured than with the ester group, by the use of an easy and convenient method.
In the structure of the title compound (Fig. 1) all bond lengths and angles are in agreement with literature values (Allen et al., 1987). The aromatic ring and the ester are close to planar [C9–C10–C13–O3, -171.21 (12)°; C10–C13–O3–C14, 175.10 (11)°], whereas the carbonyl group is twisted out of the plane of the ring [C12–C7–C6–O1, 122.57 (15)°]. The piperidine ring has the more energetically favored boat conformation, with an intramolecular C5—H···O(carbonyl) interaction [C···O, 2.750 (3) Å] which stabilizes the molecular conformation. As expected, the supramolecular structure has no formal intermolecular hydrogen bonds (Fig. 2).