metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,3-di­benzyl­imidazolium) μ-oxido-bis­­[tri­chloridoferrate(III)]

aUniversity of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, England
*Correspondence e-mail: chemm@bristol.ac.uk

(Received 7 June 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound (C17H17N2)2[Fe2Cl6O], obtained from the solid-state reaction of FeCl2 and N,N′-dibenzyl­imidazolium chloride, the complex anion has approximate D3d symmetry with crystallographically imposed inversion symmetry coincident with the bridging μ-O atom. The stereochemistry about each FeCl3O centre is distorted tetra­hedral [Fe—Cl = 2.2176 (5)–2.2427 (5) Å and Fe—O = 1.7545 (2) Å]. The Cl atoms are involved in weak anion–cation C—H⋯Cl inter­actions, giving a network structure.

Related literature

For literature relating to the intended product, see: Yoshida et al. (2005[Yoshida, Y., Otsuka, A., Saito, G., Natsume, S., Nishibori, E., Takata, M., Sakata, M., Takahashi, M. & Yoko, T. (2005). Bull. Chem. Soc. Jpn, 78, 1921-1928.]); Zhong et al. (2007[Zhong, C., Sasaki, T., Jimbo-Kobayashi, A., Fujiwara, E., Kobayashi, A., Tada, M. & Iwasawa, Y. (2007). Bull. Chem. Soc. Jpn, 80, 2365-2374.]). For literature relating to anions see: Molins et al. (1998[Molins, E., Roig, A., Miravitlles, C., Moreno-Manas, M., Vallribera, A., Galvez, N. & Serra, N. (1998). Struct. Chem. 9, 203-208.]); Kohn et al. (1996[Kohn, R. D., Seifert, G. & Kociok-Kohn, G. (1996). Angew. Chem. Int. Ed. 35, 2879-2881.]); Vasilevsky et al. (1988[Vasilevsky, I., Stenkamp, R. E., Lingafelter, E. C. & Rose, N. J. (1988). J. Coord. Chem. 19, 171-187.]).

[Scheme 1]

Experimental

Crystal data
  • (C17H17N2)2[Fe2Cl6O]

  • Mr = 839.05

  • Orthorhombic, P b c a

  • a = 16.2468 (5) Å

  • b = 12.8841 (4) Å

  • c = 17.6041 (5) Å

  • V = 3684.99 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.31 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.681, Tmax = 0.815

  • 42672 measured reflections

  • 5399 independent reflections

  • 4111 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.04

  • 5399 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.95 2.82 3.6579 (16) 147
C3—H3⋯Cl1 0.95 2.81 3.4853 (17) 129
C11—H11A⋯Cl1i 0.99 2.85 3.7440 (18) 151
C13—H13⋯Cl2ii 0.95 2.86 3.5619 (18) 131
C15—H15⋯Cl2iii 0.95 2.91 3.8403 (18) 167
C2—H2⋯Cl3 0.95 2.91 3.8223 (17) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We sought to widen the synthetic routes for the synthesis of [FeCl4]-–[HIBz]+ compounds (IBz = N,N'-dibenzylimidazole) by using solid state reactions without resorting to solution methods. The aim was to form the salts by grinding together the reactants and this was done with FeCl2 and IBz.HCl resulting in formation of the title compound (C17H17N2)2 [Cl6Fe2O] (I), which was obtained during the recrystallization process after extracting with dichloromethane and the structure is reported here. The asymmetric unit of (I) contains one HIBz+ cation and half of [Fe2OCl6]2- dianion has D3d symmetry with crystallographically imposed inversion symmetry coincident with the bridging O atom (Fig. 1). The stereochemistry about each FeCl3O centre is tetrahedral [Fe–Cl, 2.2176 (5)–2.2427 (5) Å: Fe–O, 1.7545 (2) Å]. The Fe—O bond distance compares very well with the average bond length of 1.758 Å for similar anions reported in the CSD. However, the Fe—Cl bond distances are slightly longer compared to the mean Fe—Cl distance of 2.181 Å in the tetrahedral FeCl4, but agree well with the average distance of 2.214 Å reported in the CSD for anions similar to (I). In the cation the phenyl rings lie approximately perpendicular to the plane of the HIBz ring [torsion angles C1–N1–C4–C5, 86.90 (19)°; C1–N2–C11–C12, 109.17 (18)°].

The crystal structure shows weak cation–anion C—H···Cl hydrogen-bonding interactions (Table 1, Fig. 2), giving a network structure (Figure 3).

Related literature top

For literature relating to the intended product, see: Yoshida et al. (2005); Zhong et al. (2007). For literature relating to anions see: Molins et al. (1998); Kohn et al. (1996); Vasilevsky et al. (1988).

Experimental top

FeCl2 (0.0299 g: 0.1 mmol) and N,N'-dibenzylimidazolium chloride (0.0858 g: 0.2 mmol) were ground together for ca. 10 minutes using a mortar and pestle. A small amount of the crystalline product was dissolved in dichloromethane and allowed to slowly evaporate at room temperature, giving after 3 days, yellow plate-like crystals of (I) suitable for X-ray diffraction.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic) or 0.99 Å (aliphatic) and Uiso(H) = 1.2 times Ueq (C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom numbering scheme for the IBz cation and the complex dianion in (I). The dianion lies across an inversion centre: for primed atoms, the symmetry code is -x + 1, -y, -z + 2. Non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Cation–anion C—H···Cl interactions in (I).
[Figure 3] Fig. 3. Crystal packing showing the three-dimensional networks formed in (I).
Bis(1,3-dibenzylimidazolium) µ-oxido-bis[trichloridoferrate(III)] top
Crystal data top
(C17H17N2)2[Fe2Cl6O]F(000) = 1712
Mr = 839.05Dx = 1.512 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8129 reflections
a = 16.2468 (5) Åθ = 2.3–29.0°
b = 12.8841 (4) ŵ = 1.26 mm1
c = 17.6041 (5) ÅT = 100 K
V = 3684.99 (19) Å3Plate, yellow
Z = 40.31 × 0.21 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5399 independent reflections
Radiation source: sealed tube4111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 30.1°, θmin = 3.4°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1018
Tmin = 0.681, Tmax = 0.815l = 2424
42672 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0331P)2 + 1.977P]
where P = (Fo2 + 2Fc2)/3
5399 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C17H17N2)2[Fe2Cl6O]V = 3684.99 (19) Å3
Mr = 839.05Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 16.2468 (5) ŵ = 1.26 mm1
b = 12.8841 (4) ÅT = 100 K
c = 17.6041 (5) Å0.31 × 0.21 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4111 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.815Rint = 0.052
42672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.04Δρmax = 0.77 e Å3
5399 reflectionsΔρmin = 0.44 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.572901 (17)0.002174 (18)0.926492 (14)0.01778 (7)
N10.69781 (9)0.34450 (10)0.70045 (8)0.0158 (3)
N20.60555 (9)0.24363 (10)0.65187 (8)0.0162 (3)
C10.65919 (11)0.31864 (12)0.63681 (9)0.0168 (3)
H10.66840.34890.58830.020*
C20.60972 (11)0.22098 (13)0.72855 (9)0.0191 (3)
H20.57820.17040.75500.023*
C30.66719 (11)0.28445 (13)0.75867 (9)0.0191 (3)
H30.68350.28720.81050.023*
C40.75812 (11)0.42987 (12)0.70917 (9)0.0180 (3)
H4A0.79040.43740.66180.022*
H4B0.79670.41320.75090.022*
C50.71438 (11)0.53029 (12)0.72638 (9)0.0158 (3)
C60.70433 (11)0.56215 (13)0.80122 (10)0.0192 (3)
H60.72710.52200.84130.023*
C70.66112 (12)0.65228 (14)0.81769 (11)0.0255 (4)
H70.65530.67440.86890.031*
C80.62652 (12)0.70995 (14)0.75939 (12)0.0283 (4)
H80.59580.77080.77060.034*
C90.63691 (13)0.67870 (14)0.68495 (12)0.0289 (4)
H90.61360.71860.64500.035*
C100.68116 (12)0.58936 (14)0.66809 (10)0.0226 (4)
H100.68870.56880.61670.027*
C110.54927 (11)0.19507 (13)0.59652 (10)0.0182 (3)
H11A0.54940.23640.54910.022*
H11B0.49260.19610.61730.022*
C120.57281 (11)0.08439 (12)0.57817 (9)0.0159 (3)
C130.64112 (11)0.06417 (13)0.53308 (9)0.0185 (3)
H130.67450.11990.51580.022*
C140.66090 (12)0.03689 (14)0.51314 (9)0.0209 (4)
H140.70820.05030.48290.025*
C150.61153 (12)0.11859 (13)0.53742 (10)0.0219 (4)
H150.62440.18770.52280.026*
C160.54355 (12)0.09921 (14)0.58294 (10)0.0213 (4)
H160.51020.15510.59990.026*
C170.52421 (12)0.00244 (13)0.60382 (10)0.0184 (3)
H170.47800.01570.63540.022*
Cl10.63474 (3)0.15767 (3)0.93098 (2)0.02198 (10)
Cl20.66715 (3)0.12117 (3)0.94427 (3)0.02821 (11)
Cl30.51889 (3)0.02728 (3)0.81283 (3)0.02493 (10)
O40.50000.00001.00000.0421 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02114 (14)0.01791 (12)0.01430 (12)0.00244 (9)0.00495 (10)0.00096 (8)
N10.0180 (8)0.0140 (6)0.0153 (6)0.0019 (5)0.0011 (6)0.0013 (5)
N20.0190 (8)0.0135 (6)0.0160 (6)0.0021 (5)0.0017 (6)0.0007 (5)
C10.0204 (9)0.0156 (7)0.0144 (7)0.0025 (6)0.0018 (7)0.0000 (6)
C20.0234 (10)0.0164 (8)0.0174 (8)0.0015 (7)0.0040 (7)0.0035 (6)
C30.0252 (10)0.0170 (8)0.0151 (7)0.0038 (7)0.0017 (7)0.0026 (6)
C40.0169 (9)0.0170 (8)0.0202 (8)0.0002 (6)0.0008 (7)0.0017 (6)
C50.0147 (8)0.0145 (7)0.0182 (8)0.0022 (6)0.0011 (6)0.0006 (6)
C60.0189 (9)0.0187 (8)0.0200 (8)0.0023 (6)0.0013 (7)0.0001 (6)
C70.0246 (10)0.0211 (9)0.0308 (10)0.0048 (7)0.0083 (8)0.0076 (7)
C80.0206 (10)0.0137 (8)0.0506 (12)0.0014 (7)0.0110 (9)0.0004 (8)
C90.0252 (11)0.0218 (9)0.0397 (11)0.0013 (7)0.0011 (9)0.0168 (8)
C100.0251 (10)0.0222 (9)0.0204 (8)0.0006 (7)0.0022 (7)0.0058 (6)
C110.0173 (9)0.0170 (8)0.0202 (8)0.0001 (6)0.0016 (7)0.0014 (6)
C120.0179 (9)0.0155 (7)0.0144 (7)0.0020 (6)0.0029 (7)0.0002 (5)
C130.0191 (9)0.0206 (8)0.0159 (7)0.0007 (7)0.0012 (7)0.0012 (6)
C140.0224 (10)0.0255 (9)0.0148 (8)0.0065 (7)0.0015 (7)0.0010 (6)
C150.0297 (11)0.0196 (8)0.0163 (8)0.0058 (7)0.0071 (7)0.0024 (6)
C160.0250 (10)0.0182 (8)0.0208 (8)0.0020 (7)0.0053 (7)0.0027 (6)
C170.0189 (9)0.0203 (8)0.0160 (7)0.0015 (7)0.0016 (7)0.0006 (6)
Cl10.0318 (3)0.01609 (19)0.01806 (19)0.00222 (16)0.00283 (17)0.00090 (14)
Cl20.0343 (3)0.0168 (2)0.0335 (2)0.00020 (18)0.0127 (2)0.00265 (16)
Cl30.0263 (2)0.0239 (2)0.0246 (2)0.00011 (17)0.00685 (19)0.00070 (16)
O40.0488 (15)0.0435 (13)0.0342 (12)0.0089 (10)0.0261 (11)0.0015 (9)
Geometric parameters (Å, º) top
Fe1—O41.7545 (2)C7—H70.9500
Fe1—Cl32.2176 (5)C8—C91.381 (3)
Fe1—Cl22.2290 (5)C8—H80.9500
Fe1—Cl12.2427 (5)C9—C101.389 (3)
N1—C11.327 (2)C9—H90.9500
N1—C31.377 (2)C10—H100.9500
N1—C41.481 (2)C11—C121.511 (2)
N2—C11.328 (2)C11—H11A0.9900
N2—C21.383 (2)C11—H11B0.9900
N2—C111.476 (2)C12—C131.389 (2)
C1—H10.9500C12—C171.394 (2)
C2—C31.350 (2)C13—C141.386 (2)
C2—H20.9500C13—H130.9500
C3—H30.9500C14—C151.391 (3)
C4—C51.507 (2)C14—H140.9500
C4—H4A0.9900C15—C161.387 (3)
C4—H4B0.9900C15—H150.9500
C5—C101.387 (2)C16—C171.396 (2)
C5—C61.390 (2)C16—H160.9500
C6—C71.387 (2)C17—H170.9500
C6—H60.9500O4—Fe1i1.7545 (2)
C7—C81.386 (3)
O4—Fe1—Cl3113.304 (18)C9—C8—C7119.78 (17)
O4—Fe1—Cl2110.417 (18)C9—C8—H8120.1
O4—Fe1—Cl1106.901 (16)C7—C8—H8120.1
Cl3—Fe1—Cl1111.221 (19)C8—C9—C10120.49 (17)
Cl2—Fe1—Cl1108.92 (2)C8—C9—H9119.8
C1—N1—C3108.45 (14)C10—C9—H9119.8
C1—N1—C4125.94 (14)C5—C10—C9119.86 (17)
C3—N1—C4125.39 (14)C5—C10—H10120.1
C1—N2—C2108.44 (14)C9—C10—H10120.1
C1—N2—C11125.69 (14)N2—C11—C12112.61 (14)
C2—N2—C11125.84 (15)N2—C11—H11A109.1
N1—C1—N2108.93 (14)C12—C11—H11A109.1
N1—C1—H1125.5N2—C11—H11B109.1
N2—C1—H1125.5C12—C11—H11B109.1
C3—C2—N2106.84 (15)H11A—C11—H11B107.8
C3—C2—H2126.6C13—C12—C17119.72 (15)
N2—C2—H2126.6C13—C12—C11120.09 (15)
C2—C3—N1107.33 (15)C17—C12—C11120.14 (16)
C2—C3—H3126.3C14—C13—C12120.40 (16)
N1—C3—H3126.3C14—C13—H13119.8
N1—C4—C5110.28 (14)C12—C13—H13119.8
N1—C4—H4A109.6C13—C14—C15119.96 (17)
C5—C4—H4A109.6C13—C14—H14120.0
N1—C4—H4B109.6C15—C14—H14120.0
C5—C4—H4B109.6C16—C15—C14120.04 (16)
H4A—C4—H4B108.1C16—C15—H15120.0
C10—C5—C6119.58 (16)C14—C15—H15120.0
C10—C5—C4120.39 (15)C15—C16—C17120.01 (17)
C6—C5—C4119.98 (15)C15—C16—H16120.0
C7—C6—C5120.31 (17)C17—C16—H16120.0
C7—C6—H6119.8C12—C17—C16119.86 (17)
C5—C6—H6119.8C12—C17—H17120.1
C8—C7—C6119.95 (17)C16—C17—H17120.1
C8—C7—H7120.0Fe1—O4—Fe1i180.0
C6—C7—H7120.0
C3—N1—C1—N20.60 (19)C7—C8—C9—C100.6 (3)
C4—N1—C1—N2175.46 (14)C6—C5—C10—C91.2 (3)
C2—N2—C1—N10.37 (19)C4—C5—C10—C9176.32 (17)
C11—N2—C1—N1178.63 (14)C8—C9—C10—C50.8 (3)
C1—N2—C2—C30.01 (19)C1—N2—C11—C12109.77 (18)
C11—N2—C2—C3178.25 (15)C2—N2—C11—C1272.3 (2)
N2—C2—C3—N10.37 (19)N2—C11—C12—C1373.19 (19)
C1—N1—C3—C20.60 (19)N2—C11—C12—C17109.41 (18)
C4—N1—C3—C2175.50 (15)C17—C12—C13—C140.4 (2)
C1—N1—C4—C586.90 (19)C11—C12—C13—C14177.04 (15)
C3—N1—C4—C587.12 (19)C12—C13—C14—C150.9 (3)
N1—C4—C5—C1082.77 (19)C13—C14—C15—C161.4 (3)
N1—C4—C5—C694.71 (18)C14—C15—C16—C170.6 (3)
C10—C5—C6—C70.2 (3)C13—C12—C17—C161.2 (3)
C4—C5—C6—C7177.29 (16)C11—C12—C17—C16176.24 (15)
C5—C6—C7—C81.1 (3)C15—C16—C17—C120.7 (3)
C6—C7—C8—C91.5 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1ii0.952.823.6579 (16)147
C3—H3···Cl10.952.813.4853 (17)129
C11—H11A···Cl1ii0.992.853.7440 (18)151
C13—H13···Cl2iii0.952.863.5619 (18)131
C15—H15···Cl2iv0.952.913.8403 (18)167
C2—H2···Cl30.952.913.8223 (17)162
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+3/2, y, z1/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C17H17N2)2[Fe2Cl6O]
Mr839.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.2468 (5), 12.8841 (4), 17.6041 (5)
V3)3684.99 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.31 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
42672, 5399, 4111
Rint0.052
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.04
No. of reflections5399
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.952.823.6579 (16)147
C3—H3···Cl10.952.813.4853 (17)129
C11—H11A···Cl1i0.992.853.7440 (18)151
C13—H13···Cl2ii0.952.863.5619 (18)131
C15—H15···Cl2iii0.952.913.8403 (18)167
C2—H2···Cl30.952.913.8223 (17)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/2, y, z1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

EMM thanks the University of Bristol and Overseas Research Scholarship Awards Scheme (ORSAS) for funding.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKohn, R. D., Seifert, G. & Kociok-Kohn, G. (1996). Angew. Chem. Int. Ed. 35, 2879–2881.  Google Scholar
First citationMolins, E., Roig, A., Miravitlles, C., Moreno-Manas, M., Vallribera, A., Galvez, N. & Serra, N. (1998). Struct. Chem. 9, 203–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasilevsky, I., Stenkamp, R. E., Lingafelter, E. C. & Rose, N. J. (1988). J. Coord. Chem. 19, 171–187.  CrossRef CAS Google Scholar
First citationYoshida, Y., Otsuka, A., Saito, G., Natsume, S., Nishibori, E., Takata, M., Sakata, M., Takahashi, M. & Yoko, T. (2005). Bull. Chem. Soc. Jpn, 78, 1921–1928.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, C., Sasaki, T., Jimbo-Kobayashi, A., Fujiwara, E., Kobayashi, A., Tada, M. & Iwasawa, Y. (2007). Bull. Chem. Soc. Jpn, 80, 2365–2374.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds