organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-[(E)-4-methyl-1-(4-methyl­phenyl­sulfon­yl)-1,2-di­hydropyridin-2-yl­­idene]benzene­sulfonamide

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, bChemistry & Chemical Engineering Research Centre of Iran, Tehran, Iran, and cFachbereich Chemie, Universitat Marburg, Marburg, Germany
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 21 May 2010; accepted 26 June 2010; online 3 July 2010)

The reaction of 2-(amino­meth­yl)pyridine and 4-toluene­sulfonyl chloride in CH2Cl2 at pH 8 led to the title compound, C20H20N2O4S2. The aromatic rings are almost perpendicular to each other and the dihedral angles between the aromatic ring planes are 74.33 (9) (central pyridine versus benzene ring of the tosyl group bonded to the imine functionality), 73.77 (6) (pyridine versus benzene ring of the tosyl group bonded to pyridinic N atom) and 79.83 (9)° (benzene rings of tosyl groups). In the crystal structure, inter­molecular aromatic ππ stacking inter­actions [centroid–centroid separation = 3.6274 (14) Å] help to consolidate the packing.

Related literature

For sulfonamide compounds, see: Maren (1967[Maren, T. H. (1967). Physiol. Rev. 47, 597-781.]); Supuran et al. (1999[Supuran, C. T., Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F. & Mincione, G. (1999). Met. Based Drugs, 6, 67-73.]); Culf et al. (1997[Culf, A. S., Gerig, J. T. & Williams, P. G. (1997). J. Biomol. NMR, 10, 293-299.]); Kremer et al. (2006[Kremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167-1175.]). For 2-amino-methyl­pyridine sulfonamide derivatives, see: Beloso et al. (2003[Beloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2003). Polyhedron, 22, 1099-1111.], 2004[Beloso, I., Borrás, J., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2004). Eur. J. Inorg. Chem. pp. 635-645.], 2005[Beloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2005). Inorg. Chem. 44, 336-351.], 2006[Beloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2006). Polyhedron, 25, 2673-2682.]). For related N and S-containing compounds, see: Tabatabaee et al. (2006[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421-1425.], 2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.], 2008[Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173-x174.], 2009[Tabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120-124.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O4S2

  • Mr = 416.50

  • Orthorhombic, P b c a

  • a = 14.888 (1) Å

  • b = 13.884 (1) Å

  • c = 18.843 (1) Å

  • V = 3894.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.21 × 0.12 × 0.08 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.78, Tmax = 1.0

  • 39760 measured reflections

  • 3785 independent reflections

  • 2634 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.094

  • S = 0.94

  • 3785 reflections

  • 301 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The sulfonamides represent an important class of biologically active compounds (Supuran et al., 1999). There are several sulfonamide-based groups of drugs. Aromatic sulfonamides are strong inhibitors of carbonic anhydrase (Maren, 1967) and are of pharmacological value because of their effects on various physiological reactions ultimately involving bicarbonate. Some 10,000 structurally different sulfonamides have been synthesized as a result of the discovery of the antibacterial properties of sulfanilamide. The practice of synthesizing numerous structurally related compounds in an effort to find some that are more efficient or have fewer side effects than those already available is very important for the pharmaceutical industry. Moreover, sulfonamides containing different donor atoms find use in coordination chemistry. Recently, synthesis and crystal structure of several sulfonamide ligands with heterocyclic amines and their complexes have been reported (Culf et al., 1997; Kremer et al., 2006; Beloso et al., 2003, 2004, 2005, 2006). In continuation of our recent work on synthesis of new ligands with S and N donor atoms (Tabatabaee et al., 2006, 2007, 2008, 2009), in this paper we wish to report our results on the synthesis and crystal structure of a bisulfonamide compound, which resulted from 2-amino-4-methylpyridine and 4-toluenesulfonyl chloride. Reaction of one molecule of 4-toluenesulfonyl chloride with the NH2 group of 2-amino-4-methylpyridine led to corresponding sulfonamide. The resulting sulfonamide shows imido-amido tautomerism. Imido-amido tautomerism has been reported for some sulfonamide compounds (Beloso et al., 2003, 2004, 2005). Reaction of another molecule of 4-toluenesulfonyl chloride with endocyclic NH group in imido form led to the title molecule.

In the molecule (Fig. 1), the bond lengths and angles are unexceptional. The molecule crystallizes in the orthorhombic system, space group Pbca. The basic six-membered ring skeletons are planar. A: C1/C2/C3/C4/C5/N2; B: C10···C15; C: C17···C22. The dihedral angles formed by the planes A and B, A and C, and B and C: are 74.33 (9), 73.77 (6), and 79.83 (9)%, respectively, indicating that aromatic rings are almost perpendicular to each other.

Figure 2 shows aromatic ππ stacking interactions between 6-membered rings with separation 3.6274 (14) for Cg1···Cg3 (Cg1: ring A, Cg3: ring C).

Related literature top

For sulfonamide compounds, see: Maren (1967); Supuran et al. (1999); Culf et al. (1997); Kremer et al. (2006). For 2-amino-methylpyridine sulfonamide derivatives, see: Beloso et al. (2003, 2004, 2005, 2006). For N and S-containing related compounds, see: Tabatabaee et al. (2006, 2007, 2008, 2009).

Experimental top

2-amino-4-picoline (5 mmol) was added to a solution of 4-toluenesulfonyl chloride (10 mmol) in CH2Cl2 (30 ml). The pH of the resulting mixture was adjusted to 8 with an aqueous solution of sodium carbonate. The reaction mixture was stirred at room temperature. The progress of the reaction was monitored by thin layer chromatography (TLC), using ethyl acetate and n-hexane in 2:1 ratio as eluent. After completion of the reaction (12 h), water and ethyl acetate (50 ml 1:1) was added and the organic layer was separated. The solvent was evaporated and the solid residue was filtered, washed with cold CH2Cl2 (10 ml) and recrystallized from CH2Cl2.

Refinement top

All H atoms were detected in a difference map. Aromatic H atoms were refined freely, while methyl H atoms were idealized and refined as riding to their parent atom, with calculated isotropic displacement parameters.

Structure description top

The sulfonamides represent an important class of biologically active compounds (Supuran et al., 1999). There are several sulfonamide-based groups of drugs. Aromatic sulfonamides are strong inhibitors of carbonic anhydrase (Maren, 1967) and are of pharmacological value because of their effects on various physiological reactions ultimately involving bicarbonate. Some 10,000 structurally different sulfonamides have been synthesized as a result of the discovery of the antibacterial properties of sulfanilamide. The practice of synthesizing numerous structurally related compounds in an effort to find some that are more efficient or have fewer side effects than those already available is very important for the pharmaceutical industry. Moreover, sulfonamides containing different donor atoms find use in coordination chemistry. Recently, synthesis and crystal structure of several sulfonamide ligands with heterocyclic amines and their complexes have been reported (Culf et al., 1997; Kremer et al., 2006; Beloso et al., 2003, 2004, 2005, 2006). In continuation of our recent work on synthesis of new ligands with S and N donor atoms (Tabatabaee et al., 2006, 2007, 2008, 2009), in this paper we wish to report our results on the synthesis and crystal structure of a bisulfonamide compound, which resulted from 2-amino-4-methylpyridine and 4-toluenesulfonyl chloride. Reaction of one molecule of 4-toluenesulfonyl chloride with the NH2 group of 2-amino-4-methylpyridine led to corresponding sulfonamide. The resulting sulfonamide shows imido-amido tautomerism. Imido-amido tautomerism has been reported for some sulfonamide compounds (Beloso et al., 2003, 2004, 2005). Reaction of another molecule of 4-toluenesulfonyl chloride with endocyclic NH group in imido form led to the title molecule.

In the molecule (Fig. 1), the bond lengths and angles are unexceptional. The molecule crystallizes in the orthorhombic system, space group Pbca. The basic six-membered ring skeletons are planar. A: C1/C2/C3/C4/C5/N2; B: C10···C15; C: C17···C22. The dihedral angles formed by the planes A and B, A and C, and B and C: are 74.33 (9), 73.77 (6), and 79.83 (9)%, respectively, indicating that aromatic rings are almost perpendicular to each other.

Figure 2 shows aromatic ππ stacking interactions between 6-membered rings with separation 3.6274 (14) for Cg1···Cg3 (Cg1: ring A, Cg3: ring C).

For sulfonamide compounds, see: Maren (1967); Supuran et al. (1999); Culf et al. (1997); Kremer et al. (2006). For 2-amino-methylpyridine sulfonamide derivatives, see: Beloso et al. (2003, 2004, 2005, 2006). For N and S-containing related compounds, see: Tabatabaee et al. (2006, 2007, 2008, 2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The general view of the title compound. Non-H atoms are represented with thermal ellipsoids (p = 50%).
[Figure 2] Fig. 2. Representation of ππ stacking in the crystal.
4-Methyl-N-[(E)-4-methyl-1-(4-methylphenylsulfonyl)-1,2- dihydropyridin-2-ylidene]benzenesulfonamide top
Crystal data top
C20H20N2O4S2F(000) = 1744
Mr = 416.50Dx = 1.421 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15000 reflections
a = 14.888 (1) Åθ = 2.2–25.9°
b = 13.884 (1) ŵ = 0.30 mm1
c = 18.843 (1) ÅT = 100 K
V = 3894.9 (4) Å3Blocks, colorless
Z = 80.21 × 0.12 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
3785 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
ω scansθmax = 25.9°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1816
Tmin = 0.78, Tmax = 1.0k = 1717
39760 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
3785 reflections(Δ/σ)max = 0.006
301 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
0 constraints
Crystal data top
C20H20N2O4S2V = 3894.9 (4) Å3
Mr = 416.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.888 (1) ŵ = 0.30 mm1
b = 13.884 (1) ÅT = 100 K
c = 18.843 (1) Å0.21 × 0.12 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
3785 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2634 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 1.0Rint = 0.139
39760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.26 e Å3
3785 reflectionsΔρmin = 0.28 e Å3
301 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05540 (13)0.20334 (16)0.60238 (10)0.0345 (5)
C10.02054 (16)0.17947 (17)0.54034 (12)0.0320 (5)
C20.05445 (18)0.12038 (19)0.52422 (13)0.0350 (6)
H210.0872 (18)0.094 (2)0.5645 (14)0.043 (8)*
C30.07778 (16)0.09601 (18)0.45642 (13)0.0363 (6)
C40.02553 (18)0.1336 (2)0.40005 (14)0.0404 (6)
H410.0383 (19)0.118 (2)0.3541 (14)0.047 (8)*
C50.04321 (18)0.1926 (2)0.41261 (13)0.0380 (6)
H510.0800 (18)0.224 (2)0.3798 (14)0.043 (8)*
N20.06665 (13)0.21788 (15)0.48155 (10)0.0322 (5)
C60.15554 (18)0.0317 (2)0.44075 (15)0.0458 (7)
H610.19930.06630.41150.074 (3)*
H620.18400.01190.48530.074 (3)*
H630.13440.02550.41520.074 (3)*
S10.01200 (4)0.17417 (5)0.67754 (3)0.03399 (16)
O10.02748 (12)0.07934 (12)0.67874 (9)0.0400 (4)
O20.08054 (11)0.19323 (14)0.72943 (8)0.0437 (5)
C100.07471 (16)0.25859 (18)0.69174 (11)0.0311 (5)
C110.05235 (19)0.3552 (2)0.70311 (12)0.0378 (6)
H1110.0090 (19)0.375 (2)0.7026 (13)0.045 (8)*
C120.1196 (2)0.4205 (2)0.71944 (14)0.0423 (6)
H1210.1048 (18)0.484 (2)0.7293 (14)0.045 (8)*
C130.20904 (18)0.3922 (2)0.72532 (12)0.0388 (6)
C140.22968 (17)0.2957 (2)0.71211 (12)0.0350 (6)
H1410.2888 (16)0.2719 (17)0.7150 (11)0.026 (6)*
C150.16385 (17)0.22994 (19)0.69476 (11)0.0313 (5)
H1510.1737 (16)0.1651 (19)0.6852 (12)0.031 (6)*
C160.2808 (2)0.4625 (2)0.74675 (16)0.0559 (8)
H1610.32670.46560.70960.074 (3)*
H1620.25410.52630.75340.074 (3)*
H1630.30840.44120.79130.074 (3)*
S20.15670 (4)0.29710 (5)0.49328 (3)0.03332 (16)
O30.12874 (12)0.36943 (12)0.54198 (9)0.0383 (4)
O40.17995 (12)0.32336 (13)0.42217 (8)0.0397 (4)
C170.24203 (16)0.22493 (17)0.52834 (11)0.0300 (5)
C180.29660 (16)0.17449 (18)0.48104 (12)0.0333 (6)
H1810.2828 (16)0.1738 (18)0.4335 (13)0.035 (7)*
C190.36808 (17)0.12187 (18)0.50725 (13)0.0345 (6)
H1910.405 (2)0.088 (2)0.4766 (14)0.049 (8)*
C200.38645 (17)0.11905 (17)0.57977 (12)0.0316 (5)
C210.33018 (16)0.17011 (19)0.62528 (12)0.0336 (5)
H2110.3456 (18)0.173 (2)0.6730 (15)0.046 (7)*
C220.25832 (17)0.22302 (19)0.60086 (12)0.0334 (6)
H2210.2183 (18)0.259 (2)0.6317 (14)0.043 (7)*
C230.46446 (17)0.0628 (2)0.60856 (13)0.0384 (6)
H2310.51580.06910.57640.074 (3)*
H2320.44770.00530.61260.074 (3)*
H2330.48070.08770.65550.074 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0301 (10)0.0417 (12)0.0318 (10)0.0014 (10)0.0027 (8)0.0025 (9)
C10.0284 (12)0.0321 (13)0.0356 (12)0.0052 (11)0.0012 (10)0.0011 (10)
C20.0329 (13)0.0338 (14)0.0384 (13)0.0031 (11)0.0002 (11)0.0002 (11)
C30.0323 (13)0.0329 (14)0.0437 (13)0.0061 (11)0.0053 (11)0.0057 (11)
C40.0411 (15)0.0447 (16)0.0353 (14)0.0059 (13)0.0082 (12)0.0085 (12)
C50.0384 (14)0.0430 (16)0.0326 (13)0.0047 (13)0.0020 (11)0.0025 (12)
N20.0314 (10)0.0358 (12)0.0294 (10)0.0007 (9)0.0006 (8)0.0034 (8)
C60.0406 (15)0.0410 (16)0.0558 (16)0.0016 (13)0.0085 (13)0.0077 (12)
S10.0302 (3)0.0412 (4)0.0305 (3)0.0009 (3)0.0005 (2)0.0024 (3)
O10.0422 (10)0.0346 (10)0.0432 (9)0.0007 (8)0.0044 (8)0.0043 (8)
O20.0350 (9)0.0611 (13)0.0352 (9)0.0020 (9)0.0040 (7)0.0040 (8)
C100.0358 (13)0.0365 (14)0.0208 (11)0.0008 (11)0.0012 (9)0.0022 (10)
C110.0359 (14)0.0424 (16)0.0351 (13)0.0063 (13)0.0019 (11)0.0016 (11)
C120.0512 (17)0.0374 (16)0.0385 (14)0.0017 (14)0.0019 (12)0.0003 (12)
C130.0440 (15)0.0449 (17)0.0274 (11)0.0086 (13)0.0011 (11)0.0028 (11)
C140.0322 (13)0.0482 (16)0.0246 (11)0.0000 (12)0.0016 (9)0.0058 (11)
C150.0329 (13)0.0378 (15)0.0232 (11)0.0031 (11)0.0014 (9)0.0027 (10)
C160.0565 (19)0.054 (2)0.0571 (17)0.0186 (16)0.0006 (14)0.0007 (15)
S20.0315 (3)0.0334 (3)0.0350 (3)0.0006 (3)0.0029 (2)0.0004 (3)
O30.0372 (10)0.0310 (10)0.0465 (10)0.0024 (8)0.0042 (8)0.0071 (8)
O40.0376 (10)0.0441 (11)0.0374 (9)0.0026 (8)0.0052 (7)0.0088 (8)
C170.0292 (12)0.0297 (13)0.0311 (12)0.0023 (10)0.0014 (9)0.0005 (9)
C180.0338 (13)0.0396 (15)0.0264 (12)0.0009 (11)0.0032 (10)0.0005 (10)
C190.0375 (14)0.0353 (14)0.0308 (12)0.0042 (11)0.0038 (11)0.0011 (11)
C200.0316 (13)0.0293 (14)0.0339 (12)0.0029 (11)0.0008 (10)0.0001 (10)
C210.0318 (13)0.0415 (15)0.0277 (11)0.0034 (11)0.0007 (10)0.0012 (10)
C220.0317 (13)0.0377 (15)0.0310 (12)0.0028 (11)0.0046 (10)0.0065 (11)
C230.0371 (14)0.0396 (15)0.0384 (13)0.0002 (12)0.0057 (11)0.0002 (11)
Geometric parameters (Å, º) top
N1—C11.321 (3)C13—C141.397 (4)
N1—S11.609 (2)C13—C161.502 (4)
C1—N21.408 (3)C14—C151.379 (4)
C1—C21.418 (4)C14—H1410.94 (2)
C2—C31.367 (3)C15—H1510.93 (3)
C2—H210.98 (3)C16—H1610.9800
C3—C41.416 (4)C16—H1620.9800
C3—C61.492 (4)C16—H1630.9800
C4—C51.333 (4)S2—O31.4225 (17)
C4—H410.91 (3)S2—O41.4310 (17)
C5—N21.390 (3)S2—C171.748 (2)
C5—H510.93 (3)C17—C221.388 (3)
N2—S21.748 (2)C17—C181.395 (3)
C6—H610.9800C18—C191.382 (3)
C6—H620.9800C18—H1810.92 (2)
C6—H630.9800C19—C201.394 (3)
S1—O21.4378 (18)C19—H1910.93 (3)
S1—O11.4421 (19)C20—C211.393 (3)
S1—C101.764 (3)C20—C231.501 (3)
C10—C151.387 (3)C21—C221.377 (4)
C10—C111.398 (4)C21—H2110.93 (3)
C11—C121.385 (4)C22—H2210.97 (3)
C11—H1110.96 (3)C23—H2310.9800
C12—C131.392 (4)C23—H2320.9800
C12—H1210.93 (3)C23—H2330.9800
C1—N1—S1123.92 (18)C15—C14—C13121.4 (2)
N1—C1—N2114.2 (2)C15—C14—H141116.4 (15)
N1—C1—C2130.1 (2)C13—C14—H141122.2 (14)
N2—C1—C2115.7 (2)C14—C15—C10120.0 (2)
C3—C2—C1122.9 (2)C14—C15—H151125.1 (16)
C3—C2—H21120.4 (16)C10—C15—H151114.9 (15)
C1—C2—H21116.6 (15)C13—C16—H161109.5
C2—C3—C4118.1 (2)C13—C16—H162109.5
C2—C3—C6122.0 (2)H161—C16—H162109.5
C4—C3—C6119.9 (2)C13—C16—H163109.5
C5—C4—C3121.0 (2)H161—C16—H163109.5
C5—C4—H41118.5 (18)H162—C16—H163109.5
C3—C4—H41120.5 (18)O3—S2—O4119.67 (11)
C4—C5—N2120.9 (2)O3—S2—C17111.94 (11)
C4—C5—H51128.4 (16)O4—S2—C17108.91 (11)
N2—C5—H51110.7 (17)O3—S2—N2107.53 (10)
C5—N2—C1121.2 (2)O4—S2—N2103.14 (10)
C5—N2—S2117.98 (17)C17—S2—N2104.15 (11)
C1—N2—S2120.84 (15)C22—C17—C18121.2 (2)
C3—C6—H61109.5C22—C17—S2120.67 (18)
C3—C6—H62109.5C18—C17—S2118.02 (17)
H61—C6—H62109.5C19—C18—C17119.1 (2)
C3—C6—H63109.5C19—C18—H181121.0 (16)
H61—C6—H63109.5C17—C18—H181119.8 (16)
H62—C6—H63109.5C18—C19—C20121.1 (2)
O2—S1—O1116.53 (11)C18—C19—H191120.5 (17)
O2—S1—N1105.50 (11)C20—C19—H191118.4 (17)
O1—S1—N1114.05 (11)C21—C20—C19118.1 (2)
O2—S1—C10107.09 (11)C21—C20—C23120.5 (2)
O1—S1—C10107.82 (11)C19—C20—C23121.4 (2)
N1—S1—C10105.09 (11)C22—C21—C20122.2 (2)
C15—C10—C11119.8 (2)C22—C21—H211119.6 (17)
C15—C10—S1121.1 (2)C20—C21—H211117.9 (17)
C11—C10—S1119.09 (19)C21—C22—C17118.4 (2)
C12—C11—C10119.3 (3)C21—C22—H221123.4 (15)
C12—C11—H111120.0 (17)C17—C22—H221118.3 (15)
C10—C11—H111120.5 (17)C20—C23—H231109.5
C11—C12—C13121.7 (3)C20—C23—H232109.5
C11—C12—H121119.6 (17)H231—C23—H232109.5
C13—C12—H121118.7 (17)C20—C23—H233109.5
C12—C13—C14117.8 (2)H231—C23—H233109.5
C12—C13—C16121.2 (3)H232—C23—H233109.5
C14—C13—C16121.0 (3)

Experimental details

Crystal data
Chemical formulaC20H20N2O4S2
Mr416.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.888 (1), 13.884 (1), 18.843 (1)
V3)3894.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.21 × 0.12 × 0.08
Data collection
DiffractometerStoe IPDS2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.78, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
39760, 3785, 2634
Rint0.139
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.094, 0.94
No. of reflections3785
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful to the Islamic Azad University, Yazd Branch, for support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeloso, I., Borrás, J., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2004). Eur. J. Inorg. Chem. pp. 635–645.  Web of Science CSD CrossRef Google Scholar
First citationBeloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2003). Polyhedron, 22, 1099–1111.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2005). Inorg. Chem. 44, 336–351.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeloso, I., Castro, J., García-Vázquez, J. A., Pérez-Lourido, P., Romero, J. & Sousa, A. (2006). Polyhedron, 25, 2673–2682.  Web of Science CSD CrossRef CAS Google Scholar
First citationCulf, A. S., Gerig, J. T. & Williams, P. G. (1997). J. Biomol. NMR, 10, 293–299.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167–1175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaren, T. H. (1967). Physiol. Rev. 47, 597–781.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSupuran, C. T., Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F. & Mincione, G. (1999). Met. Based Drugs, 6, 67–73.  CrossRef PubMed CAS Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173–x174.  CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421–1425.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds