metal-organic compounds
cis-Bis(1,10-phenanthroline-κ2N,N′)bis(thiocyanato-κN)magnesium(II)
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The title compound, [Mg(NCS)2(C12H8N2)2], has been synthesized from the hydrothermal reaction of MgCl2, KSCN, 1,10-phenanthroline and H2O. Its structure is isotypic with the MnII, FeII, CoII, NiII, CuII and ZnII analogues. The MgII cation has a slightly distorted octahedral geometry containing four N atoms from two 1,10-phenanthroline molecules and two N atoms from two thiocyanate anions. The contains one-half molecule, and the complete complex has 2 symmetry.
Related literature
For isotypic compounds with transition metals, see: Baker & Bobonich (1964); Gallois et al. (1990); Ganguli et al. (1981); Gütlich (1981); König (1968); Holleman et al. (1994); Yin (2007); Freire et al. (2001); Kabešová & Kožíšková (1992); Parker et al. (1996); Liu et al. (2005).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810027054/bh2298sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027054/bh2298Isup2.hkl
A mixture of MgCl2 (0.05 g), KSCN (0.1 g), 1,10-phenanthroline (0.1 g) and H2O (15 ml), was sealed in a 25 ml Teflonlined bomb at 448 K for 7 days and then cooled to room temperature. Colorless prismatic crystals were obtained in low yield.
Constraint instruction 'DELU 0.005 C1 S1' was used in the
The final difference map shows that the highest peak is 0.16 e/Å3 at 1.00 Å from S1, while the deepest hole is -0.26 e/Å3 at 0.55 Å from S1, too. All H atoms were placed in idealized positions with C—H bond lengths constrained to 0.93 Å and Uiso(H)=1.2Ueq(carrier C atom).Metallorganic compounds with the general formula [M(NCS)2(C12H8N2)2] (M=MnII, FeII, CoII, NiII, CuII and ZnII) have been studied for many decades. Thereinto, [Fe(NCS)2(C12H8N2)2] is reported to be one of the prototypical spin crossover compounds and its magnetic properties have been most investigated by various techniques (Baker & Bobonich, 1964; Gallois et al., 1990; Ganguli et al., 1981; Gütlich, 1981; König, 1968). Henceforth, isostructural compounds for MnII (Holleman et al., 1994), CoII (Yin, 2007), NiII (Freire et al., 2001), CuII (Kabešová & Kožíšková, 1992; Parker et al., 1996) and ZnII (Liu et al., 2005) analogues have been prepared and their structures have been studied. However, as far as our knowledge goes, the
for MgII analogue has not been reported so far. Herein, we report the single-crystal structure of the magnesium complex [Mg(NCS)2(C12H8N2)2] prepared by hydrothermal reaction.The molecular structure of the title compound is shown in Fig. 1. The coordination geometry of the MgII ion is distorted octahedral, in which four positions are occupied by four N atoms of two chelating phen ligands and the other two occupied by two N atoms of two thiocyanate ligands with a cis arrangement. The Mg—Nphen and Mg—Nthiocyanate bond lengths are 2.2151 (15), 2.2253 (16) and 2.0844 (18) Å, respectively.
For isostructural compounds with transition metals, see: Baker & Bobonich (1964); Gallois et al. (1990); Ganguli et al. (1981); Gütlich (1981); König (1968); Holleman et al. (1994); Yin (2007); Freire et al. (2001); Kabešová & Kožíšková, (1992); Parker et al. (1996); Liu et al. (2005).
Data collection: APEX2 (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. |
[Mg(NCS)2(C12H8N2)2] | F(000) = 1032 |
Mr = 500.88 | Dx = 1.420 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 2890 reflections |
a = 13.2159 (3) Å | θ = 2.5–24.9° |
b = 10.1426 (2) Å | µ = 0.28 mm−1 |
c = 17.4783 (3) Å | T = 296 K |
V = 2342.85 (8) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.25 × 0.25 mm |
Bruker APEXII CCD diffractometer | 2168 independent reflections |
Radiation source: fine-focus sealed tube | 1631 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 25.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −15→12 |
Tmin = 0.920, Tmax = 0.933 | k = −12→7 |
10066 measured reflections | l = −18→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.7099P] where P = (Fo2 + 2Fc2)/3 |
2168 reflections | (Δ/σ)max < 0.001 |
159 parameters | Δρmax = 0.16 e Å−3 |
1 restraint | Δρmin = −0.23 e Å−3 |
0 constraints |
[Mg(NCS)2(C12H8N2)2] | V = 2342.85 (8) Å3 |
Mr = 500.88 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 13.2159 (3) Å | µ = 0.28 mm−1 |
b = 10.1426 (2) Å | T = 296 K |
c = 17.4783 (3) Å | 0.30 × 0.25 × 0.25 mm |
Bruker APEXII CCD diffractometer | 2168 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1631 reflections with I > 2σ(I) |
Tmin = 0.920, Tmax = 0.933 | Rint = 0.024 |
10066 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.16 e Å−3 |
2168 reflections | Δρmin = −0.23 e Å−3 |
159 parameters |
Refinement. Constraint instruction 'DELU 0.005 C1 S1' was used in the refinement to minimize the large differences in the anisotropic displacement parameters along the C—S bond in the thiocyanate group. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.64249 (5) | 0.47752 (6) | 0.07238 (3) | 0.0661 (2) | |
Mg1 | 0.5000 | 0.16430 (8) | 0.2500 | 0.0383 (2) | |
N1 | 0.66107 (11) | 0.12610 (14) | 0.27718 (9) | 0.0407 (4) | |
C1 | 0.58353 (15) | 0.37621 (18) | 0.12830 (11) | 0.0433 (5) | |
N2 | 0.54082 (13) | 0.30322 (16) | 0.16772 (10) | 0.0530 (4) | |
C2 | 0.74157 (15) | 0.18248 (18) | 0.24607 (11) | 0.0481 (5) | |
H2 | 0.7314 | 0.2488 | 0.2102 | 0.058* | |
C3 | 0.84039 (16) | 0.1479 (2) | 0.26420 (13) | 0.0577 (6) | |
H3 | 0.8945 | 0.1904 | 0.2407 | 0.069* | |
C4 | 0.85730 (16) | 0.0515 (2) | 0.31650 (13) | 0.0566 (6) | |
H4 | 0.9231 | 0.0276 | 0.3293 | 0.068* | |
C5 | 0.78512 (18) | −0.1150 (2) | 0.40632 (12) | 0.0571 (6) | |
H5 | 0.8494 | −0.1435 | 0.4202 | 0.069* | |
C6 | 0.70375 (19) | −0.1715 (2) | 0.43840 (12) | 0.0597 (6) | |
H6 | 0.7128 | −0.2379 | 0.4744 | 0.072* | |
C7 | 0.51610 (19) | −0.1879 (2) | 0.44975 (14) | 0.0689 (7) | |
H7 | 0.5213 | −0.2551 | 0.4857 | 0.083* | |
C8 | 0.4239 (2) | −0.1440 (2) | 0.42750 (15) | 0.0723 (7) | |
H8 | 0.3654 | −0.1794 | 0.4489 | 0.087* | |
C9 | 0.41727 (17) | −0.0456 (2) | 0.37250 (13) | 0.0573 (6) | |
H9 | 0.3534 | −0.0165 | 0.3579 | 0.069* | |
N10 | 0.49728 (12) | 0.00873 (15) | 0.33976 (9) | 0.0441 (4) | |
C11 | 0.59014 (15) | −0.03253 (17) | 0.36322 (10) | 0.0409 (4) | |
C12 | 0.60330 (17) | −0.13185 (19) | 0.41840 (11) | 0.0502 (5) | |
C13 | 0.67710 (14) | 0.02912 (17) | 0.32956 (10) | 0.0391 (4) | |
C14 | 0.77482 (15) | −0.01174 (18) | 0.35110 (11) | 0.0464 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0746 (5) | 0.0616 (4) | 0.0620 (4) | −0.0142 (3) | 0.0094 (3) | 0.0093 (3) |
Mg1 | 0.0326 (5) | 0.0381 (4) | 0.0441 (5) | 0.000 | −0.0008 (4) | 0.000 |
N1 | 0.0369 (9) | 0.0411 (8) | 0.0442 (8) | 0.0004 (7) | −0.0021 (7) | −0.0023 (7) |
C1 | 0.0423 (11) | 0.0413 (10) | 0.0464 (11) | 0.0071 (9) | −0.0031 (9) | −0.0029 (9) |
N2 | 0.0500 (11) | 0.0498 (9) | 0.0592 (11) | 0.0024 (8) | 0.0044 (9) | 0.0091 (9) |
C2 | 0.0391 (11) | 0.0512 (11) | 0.0542 (12) | −0.0026 (9) | 0.0011 (9) | 0.0013 (10) |
C3 | 0.0371 (11) | 0.0646 (13) | 0.0714 (15) | −0.0005 (10) | 0.0035 (10) | −0.0037 (12) |
C4 | 0.0344 (12) | 0.0650 (13) | 0.0705 (15) | 0.0097 (10) | −0.0071 (10) | −0.0075 (12) |
C5 | 0.0543 (14) | 0.0574 (13) | 0.0597 (13) | 0.0124 (11) | −0.0188 (11) | −0.0034 (11) |
C6 | 0.0707 (16) | 0.0539 (12) | 0.0545 (13) | 0.0126 (12) | −0.0174 (12) | 0.0082 (11) |
C7 | 0.0724 (17) | 0.0671 (15) | 0.0671 (15) | −0.0040 (13) | −0.0048 (13) | 0.0271 (12) |
C8 | 0.0616 (16) | 0.0769 (16) | 0.0785 (16) | −0.0115 (13) | 0.0059 (13) | 0.0314 (14) |
C9 | 0.0442 (12) | 0.0620 (13) | 0.0656 (14) | −0.0032 (10) | 0.0021 (11) | 0.0149 (11) |
N10 | 0.0390 (9) | 0.0446 (8) | 0.0486 (9) | −0.0017 (7) | −0.0009 (7) | 0.0036 (7) |
C11 | 0.0469 (11) | 0.0377 (9) | 0.0381 (10) | 0.0042 (8) | −0.0067 (9) | −0.0038 (8) |
C12 | 0.0603 (14) | 0.0454 (11) | 0.0450 (11) | 0.0019 (10) | −0.0071 (10) | 0.0030 (9) |
C13 | 0.0402 (11) | 0.0382 (9) | 0.0390 (10) | 0.0027 (8) | −0.0047 (8) | −0.0080 (8) |
C14 | 0.0446 (12) | 0.0469 (11) | 0.0478 (11) | 0.0086 (9) | −0.0104 (9) | −0.0107 (9) |
S1—C1 | 1.618 (2) | C5—C6 | 1.341 (3) |
Mg1—N2 | 2.0843 (18) | C5—C14 | 1.431 (3) |
Mg1—N2i | 2.0844 (18) | C5—H5 | 0.9300 |
Mg1—N1 | 2.2151 (15) | C6—C12 | 1.431 (3) |
Mg1—N1i | 2.2152 (15) | C6—H6 | 0.9300 |
Mg1—N10i | 2.2253 (16) | C7—C8 | 1.355 (3) |
Mg1—N10 | 2.2254 (16) | C7—C12 | 1.397 (3) |
N1—C2 | 1.325 (2) | C7—H7 | 0.9300 |
N1—C13 | 1.360 (2) | C8—C9 | 1.388 (3) |
C1—N2 | 1.158 (2) | C8—H8 | 0.9300 |
C2—C3 | 1.389 (3) | C9—N10 | 1.323 (3) |
C2—H2 | 0.9300 | C9—H9 | 0.9300 |
C3—C4 | 1.357 (3) | N10—C11 | 1.360 (2) |
C3—H3 | 0.9300 | C11—C12 | 1.405 (3) |
C4—C14 | 1.402 (3) | C11—C13 | 1.434 (3) |
C4—H4 | 0.9300 | C13—C14 | 1.408 (3) |
N2—Mg1—N2i | 94.93 (10) | C6—C5—H5 | 119.4 |
N2—Mg1—N1 | 91.00 (6) | C14—C5—H5 | 119.4 |
N2i—Mg1—N1 | 102.65 (6) | C5—C6—C12 | 121.44 (19) |
N2—Mg1—N1i | 102.65 (6) | C5—C6—H6 | 119.3 |
N2i—Mg1—N1i | 91.00 (6) | C12—C6—H6 | 119.3 |
N1—Mg1—N1i | 159.85 (9) | C8—C7—C12 | 119.7 (2) |
N2—Mg1—N10i | 89.35 (6) | C8—C7—H7 | 120.1 |
N2i—Mg1—N10i | 165.91 (6) | C12—C7—H7 | 120.1 |
N1—Mg1—N10i | 90.67 (6) | C7—C8—C9 | 119.4 (2) |
N1i—Mg1—N10i | 74.95 (6) | C7—C8—H8 | 120.3 |
N2—Mg1—N10 | 165.91 (6) | C9—C8—H8 | 120.3 |
N2i—Mg1—N10 | 89.35 (6) | N10—C9—C8 | 123.3 (2) |
N1—Mg1—N10 | 74.95 (6) | N10—C9—H9 | 118.3 |
N1i—Mg1—N10 | 90.67 (6) | C8—C9—H9 | 118.3 |
N10i—Mg1—N10 | 89.69 (9) | C9—N10—C11 | 117.57 (16) |
C2—N1—C13 | 117.60 (16) | C9—N10—Mg1 | 127.84 (14) |
C2—N1—Mg1 | 127.47 (13) | C11—N10—Mg1 | 114.59 (12) |
C13—N1—Mg1 | 114.86 (12) | N10—C11—C12 | 122.62 (19) |
N2—C1—S1 | 179.34 (19) | N10—C11—C13 | 117.73 (16) |
C1—N2—Mg1 | 165.63 (16) | C12—C11—C13 | 119.65 (18) |
N1—C2—C3 | 123.54 (19) | C7—C12—C11 | 117.3 (2) |
N1—C2—H2 | 118.2 | C7—C12—C6 | 123.72 (19) |
C3—C2—H2 | 118.2 | C11—C12—C6 | 119.0 (2) |
C4—C3—C2 | 119.4 (2) | N1—C13—C14 | 122.40 (18) |
C4—C3—H3 | 120.3 | N1—C13—C11 | 117.80 (17) |
C2—C3—H3 | 120.3 | C14—C13—C11 | 119.80 (17) |
C3—C4—C14 | 119.49 (19) | C4—C14—C13 | 117.60 (18) |
C3—C4—H4 | 120.3 | C4—C14—C5 | 123.50 (19) |
C14—C4—H4 | 120.3 | C13—C14—C5 | 118.90 (19) |
C6—C5—C14 | 121.2 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mg(NCS)2(C12H8N2)2] |
Mr | 500.88 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 296 |
a, b, c (Å) | 13.2159 (3), 10.1426 (2), 17.4783 (3) |
V (Å3) | 2342.85 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.920, 0.933 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10066, 2168, 1631 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.098, 1.03 |
No. of reflections | 2168 |
No. of parameters | 159 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.23 |
Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).
References
Baker, W. A. & Bobonich, H. M. (1964). Inorg. Chem. 3, 1184–1188. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Freire, E., Baggio, S., Suescun, L. & Baggio, R. (2001). Acta Cryst. C57, 905–908. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152–1158. CSD CrossRef CAS Web of Science Google Scholar
Ganguli, P., Gütlich, P., Müller, E. W. & Irler, W. (1981). J. Chem. Soc. Dalton Trans. pp. 441–446. CrossRef Web of Science Google Scholar
Gütlich, P. (1981). Struct. Bonding (Berlin), 44, 83–195. Google Scholar
Holleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867–869. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kabešová, M. & Kožíšková, Z. (1992). Collect. Czech. Chem. Commun. 57, 1269–1277. Google Scholar
König, E. (1968). Coord. Chem. Rev. 3, 471–495. Google Scholar
Liu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367–m2368. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39–41. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yin, G.-Q. (2007). Acta Cryst. E63, m1542–m1543. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metallorganic compounds with the general formula [M(NCS)2(C12H8N2)2] (M=MnII, FeII, CoII, NiII, CuII and ZnII) have been studied for many decades. Thereinto, [Fe(NCS)2(C12H8N2)2] is reported to be one of the prototypical spin crossover compounds and its magnetic properties have been most investigated by various techniques (Baker & Bobonich, 1964; Gallois et al., 1990; Ganguli et al., 1981; Gütlich, 1981; König, 1968). Henceforth, isostructural compounds for MnII (Holleman et al., 1994), CoII (Yin, 2007), NiII (Freire et al., 2001), CuII (Kabešová & Kožíšková, 1992; Parker et al., 1996) and ZnII (Liu et al., 2005) analogues have been prepared and their structures have been studied. However, as far as our knowledge goes, the crystal structure for MgII analogue has not been reported so far. Herein, we report the single-crystal structure of the magnesium complex [Mg(NCS)2(C12H8N2)2] prepared by hydrothermal reaction.
The molecular structure of the title compound is shown in Fig. 1. The coordination geometry of the MgII ion is distorted octahedral, in which four positions are occupied by four N atoms of two chelating phen ligands and the other two occupied by two N atoms of two thiocyanate ligands with a cis arrangement. The Mg—Nphen and Mg—Nthiocyanate bond lengths are 2.2151 (15), 2.2253 (16) and 2.0844 (18) Å, respectively.