metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)magnesium(II)

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 30 June 2010; accepted 8 July 2010; online 21 July 2010)

The title compound, [Mg(NCS)2(C12H8N2)2], has been synthesized from the hydro­thermal reaction of MgCl2, KSCN, 1,10-phenanthroline and H2O. Its structure is isotypic with the MnII, FeII, CoII, NiII, CuII and ZnII analogues. The MgII cation has a slightly distorted octa­hedral geometry containing four N atoms from two 1,10-phenanthroline mol­ecules and two N atoms from two thio­cyanate anions. The asymmetric unit contains one-half mol­ecule, and the complete complex has 2 symmetry.

Related literature

For isotypic compounds with transition metals, see: Baker & Bobonich (1964[Baker, W. A. & Bobonich, H. M. (1964). Inorg. Chem. 3, 1184-1188.]); Gallois et al. (1990[Gallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152-1158.]); Ganguli et al. (1981[Ganguli, P., Gütlich, P., Müller, E. W. & Irler, W. (1981). J. Chem. Soc. Dalton Trans. pp. 441-446.]); Gütlich (1981[Gütlich, P. (1981). Struct. Bonding (Berlin), 44, 83-195.]); König (1968[König, E. (1968). Coord. Chem. Rev. 3, 471-495.]); Holleman et al. (1994[Holleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867-869.]); Yin (2007[Yin, G.-Q. (2007). Acta Cryst. E63, m1542-m1543.]); Freire et al. (2001[Freire, E., Baggio, S., Suescun, L. & Baggio, R. (2001). Acta Cryst. C57, 905-908.]); Kabešová & Kožíšková (1992[Kabešová, M. & Kožíšková, Z. (1992). Collect. Czech. Chem. Commun. 57, 1269-1277.]); Parker et al. (1996[Parker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39-41.]); Liu et al. (2005[Liu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367-m2368.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(NCS)2(C12H8N2)2]

  • Mr = 500.88

  • Orthorhombic, P b c n

  • a = 13.2159 (3) Å

  • b = 10.1426 (2) Å

  • c = 17.4783 (3) Å

  • V = 2342.85 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.933

  • 10066 measured reflections

  • 2168 independent reflections

  • 1631 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.03

  • 2168 reflections

  • 159 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metallorganic compounds with the general formula [M(NCS)2(C12H8N2)2] (M=MnII, FeII, CoII, NiII, CuII and ZnII) have been studied for many decades. Thereinto, [Fe(NCS)2(C12H8N2)2] is reported to be one of the prototypical spin crossover compounds and its magnetic properties have been most investigated by various techniques (Baker & Bobonich, 1964; Gallois et al., 1990; Ganguli et al., 1981; Gütlich, 1981; König, 1968). Henceforth, isostructural compounds for MnII (Holleman et al., 1994), CoII (Yin, 2007), NiII (Freire et al., 2001), CuII (Kabešová & Kožíšková, 1992; Parker et al., 1996) and ZnII (Liu et al., 2005) analogues have been prepared and their structures have been studied. However, as far as our knowledge goes, the crystal structure for MgII analogue has not been reported so far. Herein, we report the single-crystal structure of the magnesium complex [Mg(NCS)2(C12H8N2)2] prepared by hydrothermal reaction.

The molecular structure of the title compound is shown in Fig. 1. The coordination geometry of the MgII ion is distorted octahedral, in which four positions are occupied by four N atoms of two chelating phen ligands and the other two occupied by two N atoms of two thiocyanate ligands with a cis arrangement. The Mg—Nphen and Mg—Nthiocyanate bond lengths are 2.2151 (15), 2.2253 (16) and 2.0844 (18) Å, respectively.

Related literature top

For isostructural compounds with transition metals, see: Baker & Bobonich (1964); Gallois et al. (1990); Ganguli et al. (1981); Gütlich (1981); König (1968); Holleman et al. (1994); Yin (2007); Freire et al. (2001); Kabešová & Kožíšková, (1992); Parker et al. (1996); Liu et al. (2005).

Experimental top

A mixture of MgCl2 (0.05 g), KSCN (0.1 g), 1,10-phenanthroline (0.1 g) and H2O (15 ml), was sealed in a 25 ml Teflonlined bomb at 448 K for 7 days and then cooled to room temperature. Colorless prismatic crystals were obtained in low yield.

Refinement top

Constraint instruction 'DELU 0.005 C1 S1' was used in the refinement. The final difference map shows that the highest peak is 0.16 e/Å3 at 1.00 Å from S1, while the deepest hole is -0.26 e/Å3 at 0.55 Å from S1, too. All H atoms were placed in idealized positions with C—H bond lengths constrained to 0.93 Å and Uiso(H)=1.2Ueq(carrier C atom).

Structure description top

Metallorganic compounds with the general formula [M(NCS)2(C12H8N2)2] (M=MnII, FeII, CoII, NiII, CuII and ZnII) have been studied for many decades. Thereinto, [Fe(NCS)2(C12H8N2)2] is reported to be one of the prototypical spin crossover compounds and its magnetic properties have been most investigated by various techniques (Baker & Bobonich, 1964; Gallois et al., 1990; Ganguli et al., 1981; Gütlich, 1981; König, 1968). Henceforth, isostructural compounds for MnII (Holleman et al., 1994), CoII (Yin, 2007), NiII (Freire et al., 2001), CuII (Kabešová & Kožíšková, 1992; Parker et al., 1996) and ZnII (Liu et al., 2005) analogues have been prepared and their structures have been studied. However, as far as our knowledge goes, the crystal structure for MgII analogue has not been reported so far. Herein, we report the single-crystal structure of the magnesium complex [Mg(NCS)2(C12H8N2)2] prepared by hydrothermal reaction.

The molecular structure of the title compound is shown in Fig. 1. The coordination geometry of the MgII ion is distorted octahedral, in which four positions are occupied by four N atoms of two chelating phen ligands and the other two occupied by two N atoms of two thiocyanate ligands with a cis arrangement. The Mg—Nphen and Mg—Nthiocyanate bond lengths are 2.2151 (15), 2.2253 (16) and 2.0844 (18) Å, respectively.

For isostructural compounds with transition metals, see: Baker & Bobonich (1964); Gallois et al. (1990); Ganguli et al. (1981); Gütlich (1981); König (1968); Holleman et al. (1994); Yin (2007); Freire et al. (2001); Kabešová & Kožíšková, (1992); Parker et al. (1996); Liu et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
cis-Bis(1,10-phenanthroline-κ2N,N')bis(thiocyanato- κN)magnesium(II) top
Crystal data top
[Mg(NCS)2(C12H8N2)2]F(000) = 1032
Mr = 500.88Dx = 1.420 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2890 reflections
a = 13.2159 (3) Åθ = 2.5–24.9°
b = 10.1426 (2) ŵ = 0.28 mm1
c = 17.4783 (3) ÅT = 296 K
V = 2342.85 (8) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1512
Tmin = 0.920, Tmax = 0.933k = 127
10066 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.7099P]
where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.23 e Å3
0 constraints
Crystal data top
[Mg(NCS)2(C12H8N2)2]V = 2342.85 (8) Å3
Mr = 500.88Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 13.2159 (3) ŵ = 0.28 mm1
b = 10.1426 (2) ÅT = 296 K
c = 17.4783 (3) Å0.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1631 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.933Rint = 0.024
10066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2168 reflectionsΔρmin = 0.23 e Å3
159 parameters
Special details top

Refinement. Constraint instruction 'DELU 0.005 C1 S1' was used in the refinement to minimize the large differences in the anisotropic displacement parameters along the C—S bond in the thiocyanate group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64249 (5)0.47752 (6)0.07238 (3)0.0661 (2)
Mg10.50000.16430 (8)0.25000.0383 (2)
N10.66107 (11)0.12610 (14)0.27718 (9)0.0407 (4)
C10.58353 (15)0.37621 (18)0.12830 (11)0.0433 (5)
N20.54082 (13)0.30322 (16)0.16772 (10)0.0530 (4)
C20.74157 (15)0.18248 (18)0.24607 (11)0.0481 (5)
H20.73140.24880.21020.058*
C30.84039 (16)0.1479 (2)0.26420 (13)0.0577 (6)
H30.89450.19040.24070.069*
C40.85730 (16)0.0515 (2)0.31650 (13)0.0566 (6)
H40.92310.02760.32930.068*
C50.78512 (18)0.1150 (2)0.40632 (12)0.0571 (6)
H50.84940.14350.42020.069*
C60.70375 (19)0.1715 (2)0.43840 (12)0.0597 (6)
H60.71280.23790.47440.072*
C70.51610 (19)0.1879 (2)0.44975 (14)0.0689 (7)
H70.52130.25510.48570.083*
C80.4239 (2)0.1440 (2)0.42750 (15)0.0723 (7)
H80.36540.17940.44890.087*
C90.41727 (17)0.0456 (2)0.37250 (13)0.0573 (6)
H90.35340.01650.35790.069*
N100.49728 (12)0.00873 (15)0.33976 (9)0.0441 (4)
C110.59014 (15)0.03253 (17)0.36322 (10)0.0409 (4)
C120.60330 (17)0.13185 (19)0.41840 (11)0.0502 (5)
C130.67710 (14)0.02912 (17)0.32956 (10)0.0391 (4)
C140.77482 (15)0.01174 (18)0.35110 (11)0.0464 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0746 (5)0.0616 (4)0.0620 (4)0.0142 (3)0.0094 (3)0.0093 (3)
Mg10.0326 (5)0.0381 (4)0.0441 (5)0.0000.0008 (4)0.000
N10.0369 (9)0.0411 (8)0.0442 (8)0.0004 (7)0.0021 (7)0.0023 (7)
C10.0423 (11)0.0413 (10)0.0464 (11)0.0071 (9)0.0031 (9)0.0029 (9)
N20.0500 (11)0.0498 (9)0.0592 (11)0.0024 (8)0.0044 (9)0.0091 (9)
C20.0391 (11)0.0512 (11)0.0542 (12)0.0026 (9)0.0011 (9)0.0013 (10)
C30.0371 (11)0.0646 (13)0.0714 (15)0.0005 (10)0.0035 (10)0.0037 (12)
C40.0344 (12)0.0650 (13)0.0705 (15)0.0097 (10)0.0071 (10)0.0075 (12)
C50.0543 (14)0.0574 (13)0.0597 (13)0.0124 (11)0.0188 (11)0.0034 (11)
C60.0707 (16)0.0539 (12)0.0545 (13)0.0126 (12)0.0174 (12)0.0082 (11)
C70.0724 (17)0.0671 (15)0.0671 (15)0.0040 (13)0.0048 (13)0.0271 (12)
C80.0616 (16)0.0769 (16)0.0785 (16)0.0115 (13)0.0059 (13)0.0314 (14)
C90.0442 (12)0.0620 (13)0.0656 (14)0.0032 (10)0.0021 (11)0.0149 (11)
N100.0390 (9)0.0446 (8)0.0486 (9)0.0017 (7)0.0009 (7)0.0036 (7)
C110.0469 (11)0.0377 (9)0.0381 (10)0.0042 (8)0.0067 (9)0.0038 (8)
C120.0603 (14)0.0454 (11)0.0450 (11)0.0019 (10)0.0071 (10)0.0030 (9)
C130.0402 (11)0.0382 (9)0.0390 (10)0.0027 (8)0.0047 (8)0.0080 (8)
C140.0446 (12)0.0469 (11)0.0478 (11)0.0086 (9)0.0104 (9)0.0107 (9)
Geometric parameters (Å, º) top
S1—C11.618 (2)C5—C61.341 (3)
Mg1—N22.0843 (18)C5—C141.431 (3)
Mg1—N2i2.0844 (18)C5—H50.9300
Mg1—N12.2151 (15)C6—C121.431 (3)
Mg1—N1i2.2152 (15)C6—H60.9300
Mg1—N10i2.2253 (16)C7—C81.355 (3)
Mg1—N102.2254 (16)C7—C121.397 (3)
N1—C21.325 (2)C7—H70.9300
N1—C131.360 (2)C8—C91.388 (3)
C1—N21.158 (2)C8—H80.9300
C2—C31.389 (3)C9—N101.323 (3)
C2—H20.9300C9—H90.9300
C3—C41.357 (3)N10—C111.360 (2)
C3—H30.9300C11—C121.405 (3)
C4—C141.402 (3)C11—C131.434 (3)
C4—H40.9300C13—C141.408 (3)
N2—Mg1—N2i94.93 (10)C6—C5—H5119.4
N2—Mg1—N191.00 (6)C14—C5—H5119.4
N2i—Mg1—N1102.65 (6)C5—C6—C12121.44 (19)
N2—Mg1—N1i102.65 (6)C5—C6—H6119.3
N2i—Mg1—N1i91.00 (6)C12—C6—H6119.3
N1—Mg1—N1i159.85 (9)C8—C7—C12119.7 (2)
N2—Mg1—N10i89.35 (6)C8—C7—H7120.1
N2i—Mg1—N10i165.91 (6)C12—C7—H7120.1
N1—Mg1—N10i90.67 (6)C7—C8—C9119.4 (2)
N1i—Mg1—N10i74.95 (6)C7—C8—H8120.3
N2—Mg1—N10165.91 (6)C9—C8—H8120.3
N2i—Mg1—N1089.35 (6)N10—C9—C8123.3 (2)
N1—Mg1—N1074.95 (6)N10—C9—H9118.3
N1i—Mg1—N1090.67 (6)C8—C9—H9118.3
N10i—Mg1—N1089.69 (9)C9—N10—C11117.57 (16)
C2—N1—C13117.60 (16)C9—N10—Mg1127.84 (14)
C2—N1—Mg1127.47 (13)C11—N10—Mg1114.59 (12)
C13—N1—Mg1114.86 (12)N10—C11—C12122.62 (19)
N2—C1—S1179.34 (19)N10—C11—C13117.73 (16)
C1—N2—Mg1165.63 (16)C12—C11—C13119.65 (18)
N1—C2—C3123.54 (19)C7—C12—C11117.3 (2)
N1—C2—H2118.2C7—C12—C6123.72 (19)
C3—C2—H2118.2C11—C12—C6119.0 (2)
C4—C3—C2119.4 (2)N1—C13—C14122.40 (18)
C4—C3—H3120.3N1—C13—C11117.80 (17)
C2—C3—H3120.3C14—C13—C11119.80 (17)
C3—C4—C14119.49 (19)C4—C14—C13117.60 (18)
C3—C4—H4120.3C4—C14—C5123.50 (19)
C14—C4—H4120.3C13—C14—C5118.90 (19)
C6—C5—C14121.2 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg(NCS)2(C12H8N2)2]
Mr500.88
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)13.2159 (3), 10.1426 (2), 17.4783 (3)
V3)2342.85 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.920, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
10066, 2168, 1631
Rint0.024
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.03
No. of reflections2168
No. of parameters159
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

References

First citationBaker, W. A. & Bobonich, H. M. (1964). Inorg. Chem. 3, 1184–1188.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreire, E., Baggio, S., Suescun, L. & Baggio, R. (2001). Acta Cryst. C57, 905–908.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152–1158.  CSD CrossRef CAS Web of Science Google Scholar
First citationGanguli, P., Gütlich, P., Müller, E. W. & Irler, W. (1981). J. Chem. Soc. Dalton Trans. pp. 441–446.  CrossRef Web of Science Google Scholar
First citationGütlich, P. (1981). Struct. Bonding (Berlin), 44, 83–195.  Google Scholar
First citationHolleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867–869.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabešová, M. & Kožíšková, Z. (1992). Collect. Czech. Chem. Commun. 57, 1269–1277.  Google Scholar
First citationKönig, E. (1968). Coord. Chem. Rev. 3, 471–495.  Google Scholar
First citationLiu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367–m2368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39–41.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, G.-Q. (2007). Acta Cryst. E63, m1542–m1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds