organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)-3,5-dihy­dr­oxy­benzohydrazide monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 6 July 2010; accepted 13 July 2010; online 17 July 2010)

The Schiff base mol­ecule in the title compound, C14H11BrN2O4·H2O, is almost planar with an r.m.s. deviation for the non-H atoms of 0.16 Å. In the crystal structure, the Schiff base mol­ecules and the water mol­ecules are linked together by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, leading to layers parallel to the bc plane. An intra­molecular O—H⋯N hydrogen bond involving the imine N atom and a hy­droxy substituent is also observed.

Related literature

For the isotypic Cl analogue C14H11ClN2O4·H2O, see: Deng et al. (2009[Deng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O4·H2O

  • Mr = 369.17

  • Monoclinic, P 21 /c

  • a = 13.5685 (3) Å

  • b = 8.0532 (2) Å

  • c = 13.2447 (2) Å

  • β = 100.186 (1)°

  • V = 1424.44 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.58 × 0.33 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.283, Tmax = 0.845

  • 9148 measured reflections

  • 2579 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.04

  • 2579 reflections

  • 217 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 (2) 1.95 (2) 2.657 (2) 145 (3)
N2—H2N⋯O2 0.85 (2) 2.07 (2) 2.913 (3) 170 (2)
O11—H11⋯O8i 0.83 (2) 1.94 (2) 2.750 (2) 168 (3)
O13—H13⋯O1ii 0.79 (2) 2.19 (2) 2.959 (2) 165 (3)
O2—H2A⋯O8i 0.81 (2) 1.98 (2) 2.776 (3) 171 (4)
O2—H2B⋯O11iii 0.83 (2) 2.06 (2) 2.861 (3) 165 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1, and the crystal structure in Fig. 2. The present study shows that Br and Cl analogues (Deng et al., 2009) are isotypic crystals.

Related literature top

For the isotypic Cl analogue C14H11ClN2O4.H2O, see: Deng et al. (2009).

Experimental top

An ethanolic solution (15 ml) of 3,5-dihydroxybenzohydrazide (0.67 g, 4 mmol) and 5-bromosalicylaldehyde (0.8 g, 4 mmol) was refluxed for 2 h. The solution was then cooled and the solid product formed was filtered off, washed with cold ethanol, and dried over silica gel. Crystals of the title compound were obtained by slow evaporation of a DMSO solution at room temperature.

Refinement top

The carbon-bound H atoms were placed in calculated positions (C—H fixed to 0.93 Å) and treated as riding on their parent carbon atoms with Uiso(H) set to 1.2 Ueq(carrier C). The nitrogen- and oxygen-bound H atoms were located in a difference map and refined as free atoms, with N—H and O—H distances restrained to 0.86 (2) and 0.82 (2) Å, respectively.

Structure description top

The molecular structure of the title compound is shown in Fig. 1, and the crystal structure in Fig. 2. The present study shows that Br and Cl analogues (Deng et al., 2009) are isotypic crystals.

For the isotypic Cl analogue C14H11ClN2O4.H2O, see: Deng et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view looking down the crystallographic b unit cell edge.
(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3,5-dihydroxybenzohydrazide monohydrate top
Crystal data top
C14H11BrN2O4·H2OF(000) = 744
Mr = 369.17Dx = 1.721 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3109 reflections
a = 13.5685 (3) Åθ = 3.0–26.1°
b = 8.0532 (2) ŵ = 2.91 mm1
c = 13.2447 (2) ÅT = 296 K
β = 100.186 (1)°Plate, yellow
V = 1424.44 (5) Å30.58 × 0.33 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2579 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.283, Tmax = 0.845k = 99
9148 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.7124P]
where P = (Fo2 + 2Fc2)/3
2579 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = 0.56 e Å3
0 constraints
Crystal data top
C14H11BrN2O4·H2OV = 1424.44 (5) Å3
Mr = 369.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5685 (3) ŵ = 2.91 mm1
b = 8.0532 (2) ÅT = 296 K
c = 13.2447 (2) Å0.58 × 0.33 × 0.06 mm
β = 100.186 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2183 reflections with I > 2σ(I)
Tmin = 0.283, Tmax = 0.845Rint = 0.034
9148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
2579 reflectionsΔρmin = 0.56 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54976 (2)0.19522 (4)0.67677 (2)0.05405 (13)
O10.25489 (15)0.4914 (3)0.33122 (13)0.0448 (5)
H10.210 (2)0.542 (4)0.351 (2)0.067*
O80.01522 (14)0.6853 (2)0.34596 (12)0.0375 (4)
O110.18429 (14)0.9113 (2)0.71231 (12)0.0378 (4)
H110.1355 (18)0.868 (4)0.749 (2)0.057*
O130.29944 (14)1.0800 (2)0.37286 (13)0.0440 (5)
H130.285 (3)1.075 (4)0.3181 (17)0.066*
N10.15274 (14)0.5993 (2)0.47190 (14)0.0279 (4)
N20.07629 (15)0.6835 (2)0.50575 (14)0.0277 (4)
H2N0.088 (2)0.712 (3)0.5686 (14)0.033*
C10.31939 (19)0.4270 (3)0.41219 (17)0.0312 (5)
C20.3994 (2)0.3354 (3)0.39071 (19)0.0402 (6)
H20.40720.32080.32290.048*
C30.4676 (2)0.2657 (3)0.4683 (2)0.0391 (6)
H30.52110.20370.45340.047*
C40.45524 (18)0.2895 (3)0.56914 (18)0.0330 (6)
C50.37678 (18)0.3807 (3)0.59223 (17)0.0319 (5)
H50.37010.39510.66030.038*
C60.30662 (17)0.4524 (3)0.51387 (16)0.0278 (5)
C70.22369 (18)0.5450 (3)0.54062 (17)0.0300 (5)
H70.22190.56560.60940.036*
C80.00598 (18)0.7237 (3)0.43815 (16)0.0266 (5)
C90.08615 (17)0.8158 (3)0.47789 (16)0.0248 (5)
C100.09485 (18)0.8153 (3)0.58150 (16)0.0274 (5)
H100.04990.75590.62930.033*
C110.17126 (17)0.9044 (3)0.61131 (16)0.0276 (5)
C120.23974 (18)0.9932 (3)0.54147 (17)0.0303 (5)
H120.29081.05300.56320.036*
C130.23079 (18)0.9912 (3)0.43882 (16)0.0291 (5)
C140.15405 (17)0.9038 (3)0.40695 (16)0.0283 (5)
H140.14790.90400.33810.034*
O20.12746 (16)0.7432 (3)0.72574 (13)0.0428 (5)
H2A0.091 (2)0.772 (4)0.764 (2)0.064*
H2B0.153 (3)0.656 (3)0.750 (2)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03931 (19)0.0753 (2)0.04679 (19)0.02026 (15)0.00548 (13)0.01280 (14)
O10.0449 (12)0.0626 (13)0.0261 (9)0.0149 (10)0.0044 (8)0.0005 (8)
O80.0353 (10)0.0545 (11)0.0224 (8)0.0033 (9)0.0047 (7)0.0065 (7)
O110.0417 (11)0.0525 (11)0.0209 (8)0.0101 (9)0.0098 (7)0.0018 (7)
O130.0447 (11)0.0571 (12)0.0291 (9)0.0212 (10)0.0033 (8)0.0079 (8)
N10.0269 (11)0.0292 (10)0.0281 (10)0.0012 (9)0.0061 (8)0.0039 (8)
N20.0273 (11)0.0341 (11)0.0221 (9)0.0035 (9)0.0048 (8)0.0063 (8)
C10.0308 (13)0.0351 (13)0.0275 (12)0.0001 (11)0.0047 (10)0.0000 (10)
C20.0397 (16)0.0533 (17)0.0302 (13)0.0037 (13)0.0133 (11)0.0057 (11)
C30.0316 (15)0.0451 (15)0.0431 (15)0.0054 (12)0.0135 (11)0.0041 (11)
C40.0266 (14)0.0382 (14)0.0338 (13)0.0010 (11)0.0039 (10)0.0021 (10)
C50.0316 (14)0.0382 (13)0.0271 (12)0.0016 (11)0.0082 (10)0.0020 (10)
C60.0268 (13)0.0294 (12)0.0276 (11)0.0035 (10)0.0058 (9)0.0041 (9)
C70.0306 (13)0.0348 (13)0.0251 (11)0.0009 (11)0.0066 (10)0.0049 (9)
C80.0278 (13)0.0289 (12)0.0233 (12)0.0034 (10)0.0053 (9)0.0001 (9)
C90.0243 (12)0.0269 (11)0.0233 (11)0.0032 (9)0.0041 (9)0.0015 (9)
C100.0290 (13)0.0307 (12)0.0216 (11)0.0007 (10)0.0015 (9)0.0012 (9)
C110.0301 (13)0.0315 (12)0.0222 (11)0.0034 (10)0.0072 (9)0.0009 (9)
C120.0290 (13)0.0327 (13)0.0304 (12)0.0029 (10)0.0080 (10)0.0006 (9)
C130.0289 (13)0.0299 (12)0.0271 (11)0.0012 (10)0.0008 (10)0.0032 (9)
C140.0322 (14)0.0340 (13)0.0182 (10)0.0018 (11)0.0034 (9)0.0002 (9)
O20.0497 (13)0.0487 (11)0.0308 (10)0.0051 (10)0.0093 (8)0.0000 (8)
Geometric parameters (Å, º) top
Br1—C41.899 (2)C4—C51.372 (3)
O1—C11.361 (3)C5—C61.402 (3)
O1—H10.812 (18)C5—H50.9300
O8—C81.244 (3)C6—C71.445 (3)
O11—C111.381 (3)C7—H70.9300
O11—H110.827 (18)C8—C91.487 (3)
O13—C131.361 (3)C9—C141.389 (3)
O13—H130.785 (18)C9—C101.398 (3)
N1—C71.279 (3)C10—C111.375 (3)
N1—N21.379 (3)C10—H100.9300
N2—C81.341 (3)C11—C121.388 (3)
N2—H2N0.851 (17)C12—C131.386 (3)
C1—C21.383 (4)C12—H120.9300
C1—C61.403 (3)C13—C141.383 (3)
C2—C31.375 (4)C14—H140.9300
C2—H20.9300O2—H2A0.807 (18)
C3—C41.389 (3)O2—H2B0.825 (18)
C3—H30.9300
C1—O1—H1110 (2)N1—C7—C6121.5 (2)
C11—O11—H11109 (2)N1—C7—H7119.2
C13—O13—H13108 (3)C6—C7—H7119.2
C7—N1—N2116.85 (18)O8—C8—N2121.5 (2)
C8—N2—N1119.13 (18)O8—C8—C9121.2 (2)
C8—N2—H2N125.0 (18)N2—C8—C9117.29 (18)
N1—N2—H2N115.7 (18)C14—C9—C10120.3 (2)
O1—C1—C2117.4 (2)C14—C9—C8117.02 (19)
O1—C1—C6122.0 (2)C10—C9—C8122.7 (2)
C2—C1—C6120.6 (2)C11—C10—C9118.6 (2)
C3—C2—C1120.9 (2)C11—C10—H10120.7
C3—C2—H2119.6C9—C10—H10120.7
C1—C2—H2119.6C10—C11—O11122.1 (2)
C2—C3—C4118.8 (2)C10—C11—C12121.8 (2)
C2—C3—H3120.6O11—C11—C12116.1 (2)
C4—C3—H3120.6C13—C12—C11118.9 (2)
C5—C4—C3121.3 (2)C13—C12—H12120.5
C5—C4—Br1119.64 (18)C11—C12—H12120.5
C3—C4—Br1119.10 (19)O13—C13—C14122.5 (2)
C4—C5—C6120.5 (2)O13—C13—C12117.0 (2)
C4—C5—H5119.8C14—C13—C12120.4 (2)
C6—C5—H5119.8C13—C14—C9119.91 (19)
C5—C6—C1117.9 (2)C13—C14—H14120.0
C5—C6—C7119.1 (2)C9—C14—H14120.0
C1—C6—C7123.0 (2)H2A—O2—H2B105 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.81 (2)1.95 (2)2.657 (2)145 (3)
N2—H2N···O20.85 (2)2.07 (2)2.913 (3)170 (2)
O1—H1···O2i0.81 (2)2.52 (3)2.942 (3)114 (3)
O11—H11···O8ii0.83 (2)1.94 (2)2.750 (2)168 (3)
O13—H13···O1iii0.79 (2)2.19 (2)2.959 (2)165 (3)
O2—H2A···O8ii0.81 (2)1.98 (2)2.776 (3)171 (4)
O2—H2B···O11iv0.83 (2)2.06 (2)2.861 (3)165 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O4·H2O
Mr369.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.5685 (3), 8.0532 (2), 13.2447 (2)
β (°) 100.186 (1)
V3)1424.44 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.58 × 0.33 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.283, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
9148, 2579, 2183
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.04
No. of reflections2579
No. of parameters217
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.812 (18)1.95 (2)2.657 (2)145 (3)
N2—H2N···O20.851 (17)2.071 (17)2.913 (3)170 (2)
O11—H11···O8i0.827 (18)1.937 (19)2.750 (2)168 (3)
O13—H13···O1ii0.785 (18)2.19 (2)2.959 (2)165 (3)
O2—H2A···O8i0.807 (18)1.976 (19)2.776 (3)171 (4)
O2—H2B···O11iii0.825 (18)2.06 (2)2.861 (3)165 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C)

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds