organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2-Anilino-4-oxo-3,4-di­hydro­quinazolin-3-yl)phen­­oxy]-3-phenyl­quinazolin-4(3H)-one methanol hemisolvate

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, Hubei, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, Hubei, People's Republic of China, and cCollege of Life and Environmental Science, Kaili University, Kaili 556000, Guizhou, People's Republic of China
*Correspondence e-mail: chenxiaobao@yahoo.com.cn

(Received 6 July 2010; accepted 14 July 2010; online 21 July 2010)

In the title compound, C34H23N5O3·0.5CH3OH, each pyrimid­in­one heterocycle and its adjacent benzene ring are almost coplanar, making dihedral angles of 0.69 (13) and 1.87 (13)°. The lower pyrimidinone ring makes a dihedral angle of 40.41 (15)° with the —NH— bonded phenyl ring. O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are observed in the crystal structure. The methanol solvent molecule is disordered over two positions of equal occupancy.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999[Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11-17.]); Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]); Malamas & Millen (1991[Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.]); Palmer et al. (1997[Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519-1529.]); Tsou et al. (2001[Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719-2734.]); Matsuno et al.(2002[Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057-3066.]). For the synthesis of the title compound, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C34H23N5O3·0.5CH4O

  • Mr = 565.60

  • Monoclinic, C 2/c

  • a = 24.268 (2) Å

  • b = 16.5049 (14) Å

  • c = 15.2929 (12) Å

  • β = 110.382 (1)°

  • V = 5741.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.32 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.979

  • 16455 measured reflections

  • 5631 independent reflections

  • 3943 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.228

  • S = 1.04

  • 5631 reflections

  • 397 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C29–C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H35⋯O5i 0.96 0.96 1.711 (7) 125
C2—H2⋯Cg1ii 0.93 2.75 3.617 (3) 155
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999 and Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al.,2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are almost planar and inclined at 0.69 (13) ° and 1.87 (13) °. The crystal structure (Fig. 2) is stabilized by weak intermolecular C—H···π hydrogen bonds (Table 1).

Related literature top

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al.(2002). For the synthesis of the title compound, see: Yang et al. (2008).

Experimental top

To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added isocyanatobenzene (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added 2-aminophenol (1.5 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. The product was recrystallized from methanol-dichloromethane (1:2 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction (yield 74%).

Refinement top

All the carbon-bonded hydrogen atoms were located at theire ideal positons with C—H=0.93Å (aromatic) and 0.96Å (methyl), and Uiso(H) = 1.2UeqC for aromatic and 1.5 UeqC for methyl hydrogen atoms, respectively. H atoms bonded to N and O atoms were found from the difference maps and then refined with distance restraints of N—H=0.91 (2)Å and O—H=0.96 (2) Å. The thermal factors were set k times of their carriar atoms (k =1.2 for N and 1.5 for O atoms). H20 and H35 was set attached to N1 and O5 atoms, respectively, and they were both constrained to be at their ideal positions.

Structure description top

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999 and Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al.,2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are almost planar and inclined at 0.69 (13) ° and 1.87 (13) °. The crystal structure (Fig. 2) is stabilized by weak intermolecular C—H···π hydrogen bonds (Table 1).

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al.(2002). For the synthesis of the title compound, see: Yang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I). Dashed lines show C-H···π interaction.
2-[2-(2-Anilino-4-oxo-3,4-dihydroquinazolin-3-yl)phenoxy]-3- phenylquinazolin-4(3H)-one methanol hemisolvate top
Crystal data top
C34H23N5O3·0.5CH4OF(000) = 2360
Mr = 565.60Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3884 reflections
a = 24.268 (2) Åθ = 2.5–23.6°
b = 16.5049 (14) ŵ = 0.09 mm1
c = 15.2929 (12) ÅT = 292 K
β = 110.382 (1)°Block, colorless
V = 5741.9 (8) Å30.32 × 0.25 × 0.24 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5631 independent reflections
Radiation source: fine-focus sealed tube3943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2923
Tmin = 0.963, Tmax = 0.979k = 2020
16455 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1434P)2 + 2.1314P]
where P = (Fo2 + 2Fc2)/3
5631 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 0.78 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
C34H23N5O3·0.5CH4OV = 5741.9 (8) Å3
Mr = 565.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.268 (2) ŵ = 0.09 mm1
b = 16.5049 (14) ÅT = 292 K
c = 15.2929 (12) Å0.32 × 0.25 × 0.24 mm
β = 110.382 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5631 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3943 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.979Rint = 0.022
16455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06212 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.04Δρmax = 0.78 e Å3
5631 reflectionsΔρmin = 0.26 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.33889 (11)0.39224 (16)0.95966 (18)0.0574 (6)
H10.29860.38430.94290.069*
C20.37488 (14)0.3822 (2)1.0508 (2)0.0749 (8)
H20.35870.36811.09560.090*
C30.43447 (15)0.3929 (3)1.0766 (2)0.0890 (10)
H30.45860.38571.13840.107*
C40.45792 (13)0.4139 (3)1.0111 (2)0.0921 (11)
H40.49830.42111.02840.110*
C50.42214 (12)0.4248 (2)0.9184 (2)0.0709 (8)
H50.43850.43920.87390.085*
C60.36227 (10)0.41392 (14)0.89331 (17)0.0478 (5)
C70.27029 (10)0.43844 (13)0.76026 (15)0.0444 (5)
C80.18242 (10)0.43060 (15)0.62005 (16)0.0491 (6)
C90.15259 (10)0.46910 (14)0.67699 (16)0.0477 (5)
C100.09255 (11)0.48514 (16)0.6402 (2)0.0600 (7)
H100.07120.47180.57860.072*
C110.06483 (12)0.52059 (18)0.6949 (2)0.0688 (8)
H110.02470.53140.67040.083*
C120.09658 (13)0.54019 (18)0.7862 (2)0.0689 (8)
H120.07750.56420.82290.083*
C130.15578 (12)0.52491 (15)0.8240 (2)0.0587 (6)
H130.17660.53880.88570.070*
C140.18475 (10)0.48859 (13)0.76995 (16)0.0458 (5)
C150.27546 (10)0.37942 (14)0.61502 (15)0.0458 (5)
C160.29309 (12)0.42318 (16)0.55277 (17)0.0565 (6)
H160.28410.47800.54330.068*
C170.32434 (13)0.38468 (18)0.50451 (19)0.0642 (7)
H170.33710.41400.46320.077*
C180.33669 (12)0.30324 (18)0.51737 (18)0.0614 (7)
H180.35700.27770.48360.074*
C190.31914 (11)0.25893 (16)0.58009 (17)0.0535 (6)
H190.32790.20400.58930.064*
C200.28861 (10)0.29777 (14)0.62827 (15)0.0457 (5)
C210.30048 (10)0.22726 (13)0.76894 (16)0.0457 (5)
C220.38728 (11)0.19895 (14)0.88305 (17)0.0527 (6)
C230.44826 (12)0.20351 (18)0.9158 (2)0.0678 (7)
H230.46750.22780.87960.081*
C240.48029 (14)0.1718 (2)1.0022 (2)0.0782 (9)
H240.52110.17571.02440.094*
C250.45238 (15)0.1344 (2)1.0559 (2)0.0796 (9)
H250.47430.11291.11380.096*
C260.39234 (14)0.12903 (18)1.0239 (2)0.0698 (8)
H260.37350.10331.05980.084*
C270.35942 (12)0.16190 (15)0.93765 (17)0.0547 (6)
C280.29550 (12)0.15817 (16)0.90513 (18)0.0570 (6)
C290.20409 (10)0.20150 (14)0.78235 (16)0.0465 (5)
C300.17127 (12)0.13978 (17)0.72933 (18)0.0598 (7)
H300.18960.09340.71820.072*
C310.11087 (13)0.1470 (2)0.6926 (2)0.0734 (8)
H310.08840.10540.65640.088*
C320.08382 (12)0.2155 (2)0.7093 (2)0.0707 (8)
H320.04310.22030.68430.085*
C330.11721 (13)0.27667 (19)0.7630 (2)0.0713 (8)
H330.09900.32300.77440.086*
C340.17759 (12)0.26988 (16)0.8003 (2)0.0615 (7)
H340.20010.31110.83720.074*
N10.32858 (9)0.42035 (13)0.79688 (14)0.0520 (5)
N20.24407 (8)0.47305 (12)0.81070 (13)0.0486 (5)
N30.24277 (8)0.41832 (11)0.66622 (13)0.0461 (5)
N40.35614 (9)0.23084 (12)0.79476 (14)0.0510 (5)
N50.26758 (9)0.19548 (12)0.81838 (13)0.0494 (5)
O10.15912 (8)0.40913 (13)0.53964 (13)0.0688 (5)
O20.26452 (7)0.25565 (10)0.68598 (11)0.0513 (4)
O30.26588 (9)0.12670 (15)0.94629 (15)0.0855 (7)
H200.34540.40380.75530.128*
C350.5532 (2)0.4402 (4)0.8065 (4)0.0697 (15)0.50
H35A0.58580.44920.78570.105*0.50
H35B0.56440.45480.87110.105*0.50
H35C0.52050.47290.77030.105*0.50
O50.53385 (15)0.3409 (4)0.7931 (3)0.0959 (18)0.50
H350.50000.36790.75000.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0490 (14)0.0654 (16)0.0556 (15)0.0017 (12)0.0153 (12)0.0043 (12)
C20.0726 (19)0.090 (2)0.0585 (17)0.0144 (16)0.0187 (15)0.0178 (15)
C30.071 (2)0.119 (3)0.0589 (18)0.0104 (19)0.0004 (16)0.0188 (18)
C40.0460 (16)0.128 (3)0.081 (2)0.0047 (18)0.0044 (15)0.015 (2)
C50.0473 (15)0.094 (2)0.0680 (17)0.0001 (14)0.0156 (13)0.0115 (16)
C60.0442 (12)0.0444 (12)0.0483 (13)0.0035 (10)0.0080 (10)0.0035 (10)
C70.0442 (12)0.0446 (12)0.0427 (12)0.0025 (10)0.0129 (10)0.0002 (9)
C80.0472 (13)0.0523 (13)0.0431 (13)0.0004 (10)0.0100 (10)0.0033 (10)
C90.0455 (12)0.0461 (12)0.0508 (13)0.0005 (10)0.0158 (10)0.0040 (10)
C100.0455 (13)0.0617 (15)0.0686 (17)0.0002 (11)0.0146 (12)0.0048 (13)
C110.0464 (14)0.0698 (18)0.093 (2)0.0073 (13)0.0277 (15)0.0050 (16)
C120.0618 (17)0.0650 (17)0.091 (2)0.0062 (14)0.0415 (17)0.0021 (15)
C130.0620 (16)0.0545 (14)0.0664 (16)0.0029 (12)0.0310 (13)0.0028 (12)
C140.0474 (12)0.0390 (11)0.0528 (13)0.0007 (9)0.0198 (11)0.0029 (10)
C150.0465 (12)0.0510 (13)0.0396 (12)0.0012 (10)0.0145 (10)0.0007 (10)
C160.0686 (16)0.0552 (14)0.0501 (14)0.0009 (12)0.0263 (12)0.0080 (11)
C170.0759 (18)0.0719 (18)0.0549 (15)0.0002 (14)0.0354 (14)0.0089 (13)
C180.0617 (16)0.0774 (18)0.0519 (14)0.0054 (13)0.0284 (12)0.0057 (13)
C190.0525 (14)0.0556 (14)0.0519 (13)0.0061 (11)0.0174 (11)0.0013 (11)
C200.0439 (12)0.0536 (13)0.0389 (11)0.0010 (10)0.0133 (10)0.0047 (10)
C210.0489 (13)0.0415 (11)0.0468 (13)0.0020 (10)0.0170 (10)0.0027 (10)
C220.0532 (14)0.0446 (12)0.0536 (14)0.0046 (11)0.0104 (11)0.0031 (11)
C230.0557 (16)0.0647 (16)0.0731 (18)0.0019 (13)0.0101 (14)0.0070 (14)
C240.0592 (17)0.077 (2)0.078 (2)0.0017 (15)0.0017 (15)0.0021 (16)
C250.077 (2)0.078 (2)0.0643 (18)0.0122 (16)0.0001 (16)0.0130 (16)
C260.078 (2)0.0664 (17)0.0570 (16)0.0106 (15)0.0134 (14)0.0137 (14)
C270.0611 (15)0.0498 (13)0.0492 (14)0.0069 (11)0.0143 (12)0.0060 (11)
C280.0609 (15)0.0572 (15)0.0525 (14)0.0055 (12)0.0191 (12)0.0130 (12)
C290.0480 (13)0.0471 (12)0.0458 (12)0.0003 (10)0.0181 (10)0.0076 (10)
C300.0643 (16)0.0556 (14)0.0570 (15)0.0019 (12)0.0182 (13)0.0006 (12)
C310.0647 (18)0.079 (2)0.0650 (18)0.0138 (15)0.0076 (14)0.0048 (15)
C320.0490 (15)0.088 (2)0.0686 (18)0.0013 (14)0.0126 (13)0.0145 (16)
C330.0608 (17)0.0680 (17)0.088 (2)0.0112 (14)0.0292 (16)0.0046 (16)
C340.0552 (15)0.0544 (15)0.0740 (17)0.0031 (12)0.0214 (13)0.0056 (13)
N10.0453 (11)0.0629 (12)0.0463 (11)0.0034 (9)0.0140 (9)0.0051 (9)
N20.0471 (11)0.0502 (11)0.0477 (11)0.0012 (8)0.0155 (9)0.0053 (9)
N30.0470 (11)0.0496 (11)0.0419 (10)0.0021 (8)0.0158 (8)0.0001 (8)
N40.0492 (11)0.0518 (11)0.0505 (11)0.0022 (9)0.0153 (9)0.0058 (9)
N50.0513 (11)0.0480 (10)0.0500 (11)0.0031 (9)0.0190 (9)0.0110 (9)
O10.0585 (11)0.0912 (14)0.0487 (11)0.0062 (10)0.0088 (9)0.0088 (10)
O20.0474 (9)0.0591 (10)0.0468 (9)0.0021 (7)0.0156 (7)0.0142 (7)
O30.0739 (14)0.1109 (17)0.0767 (14)0.0072 (12)0.0324 (11)0.0445 (13)
C350.053 (3)0.090 (4)0.062 (3)0.010 (3)0.014 (3)0.016 (3)
O50.0276 (17)0.201 (6)0.058 (2)0.005 (2)0.0139 (16)0.020 (3)
Geometric parameters (Å, º) top
C1—C61.371 (4)C19—H190.9300
C1—C21.373 (4)C20—O21.401 (3)
C1—H10.9300C21—N41.270 (3)
C2—C31.372 (4)C21—O21.349 (3)
C2—H20.9300C21—N51.380 (3)
C3—C41.357 (5)C22—C271.386 (4)
C3—H30.9300C22—C231.389 (4)
C4—C51.393 (4)C22—N41.400 (3)
C4—H40.9300C23—C241.382 (4)
C5—C61.379 (3)C23—H230.9300
C5—H50.9300C24—C251.378 (5)
C6—N11.419 (3)C24—H240.9300
C7—N21.292 (3)C25—C261.369 (4)
C7—N11.361 (3)C25—H250.9300
C7—N31.398 (3)C26—C271.392 (4)
C8—O11.214 (3)C26—H260.9300
C8—N31.402 (3)C27—C281.456 (4)
C8—C91.458 (3)C28—O31.224 (3)
C9—C101.392 (3)C28—N51.404 (3)
C9—C141.400 (3)C29—C301.371 (4)
C10—C111.373 (4)C29—C341.374 (3)
C10—H100.9300C29—N51.448 (3)
C11—C121.378 (4)C30—C311.380 (4)
C11—H110.9300C30—H300.9300
C12—C131.373 (4)C31—C321.375 (4)
C12—H120.9300C31—H310.9300
C13—C141.394 (3)C32—C331.375 (4)
C13—H130.9300C32—H320.9300
C14—N21.379 (3)C33—C341.379 (4)
C15—C161.376 (3)C33—H330.9300
C15—C201.383 (3)C34—H340.9300
C15—N31.445 (3)N1—H200.9098
C16—C171.383 (4)C35—O51.698 (9)
C16—H160.9300C35—H35A0.9600
C17—C181.376 (4)C35—H35B0.9600
C17—H170.9300C35—H35C0.9600
C18—C191.386 (4)O5—O5i1.711 (7)
C18—H180.9300O5—H350.9646
C19—C201.372 (3)
C6—C1—C2120.1 (3)N4—C21—N5127.1 (2)
C6—C1—H1119.9O2—C21—N5109.81 (19)
C2—C1—H1119.9C27—C22—C23119.2 (2)
C3—C2—C1120.6 (3)C27—C22—N4122.3 (2)
C3—C2—H2119.7C23—C22—N4118.5 (2)
C1—C2—H2119.7C24—C23—C22119.9 (3)
C4—C3—C2119.5 (3)C24—C23—H23120.1
C4—C3—H3120.2C22—C23—H23120.1
C2—C3—H3120.2C25—C24—C23120.6 (3)
C3—C4—C5120.7 (3)C25—C24—H24119.7
C3—C4—H4119.6C23—C24—H24119.7
C5—C4—H4119.6C26—C25—C24119.9 (3)
C6—C5—C4119.3 (3)C26—C25—H25120.1
C6—C5—H5120.3C24—C25—H25120.1
C4—C5—H5120.3C25—C26—C27120.1 (3)
C1—C6—C5119.7 (2)C25—C26—H26119.9
C1—C6—N1123.4 (2)C27—C26—H26119.9
C5—C6—N1116.7 (2)C22—C27—C26120.2 (3)
N2—C7—N1120.6 (2)C22—C27—C28119.9 (2)
N2—C7—N3124.1 (2)C26—C27—C28119.9 (3)
N1—C7—N3115.27 (19)O3—C28—N5119.7 (2)
O1—C8—N3120.3 (2)O3—C28—C27126.1 (2)
O1—C8—C9125.4 (2)N5—C28—C27114.2 (2)
N3—C8—C9114.3 (2)C30—C29—C34120.8 (2)
C10—C9—C14120.1 (2)C30—C29—N5119.8 (2)
C10—C9—C8120.6 (2)C34—C29—N5119.4 (2)
C14—C9—C8119.3 (2)C29—C30—C31119.5 (3)
C11—C10—C9120.1 (3)C29—C30—H30120.2
C11—C10—H10120.0C31—C30—H30120.2
C9—C10—H10120.0C32—C31—C30120.2 (3)
C10—C11—C12119.8 (2)C32—C31—H31119.9
C10—C11—H11120.1C30—C31—H31119.9
C12—C11—H11120.1C31—C32—C33119.7 (3)
C13—C12—C11121.2 (3)C31—C32—H32120.2
C13—C12—H12119.4C33—C32—H32120.2
C11—C12—H12119.4C32—C33—C34120.5 (3)
C12—C13—C14120.0 (3)C32—C33—H33119.7
C12—C13—H13120.0C34—C33—H33119.7
C14—C13—H13120.0C29—C34—C33119.2 (3)
N2—C14—C13118.3 (2)C29—C34—H34120.4
N2—C14—C9122.8 (2)C33—C34—H34120.4
C13—C14—C9118.9 (2)C7—N1—C6125.7 (2)
C16—C15—C20120.1 (2)C7—N1—H20115.7
C16—C15—N3120.2 (2)C6—N1—H20117.9
C20—C15—N3119.72 (19)C7—N2—C14117.8 (2)
C15—C16—C17119.2 (2)C7—N3—C8121.65 (19)
C15—C16—H16120.4C7—N3—C15120.48 (19)
C17—C16—H16120.4C8—N3—C15117.77 (18)
C18—C17—C16120.3 (2)C21—N4—C22116.2 (2)
C18—C17—H17119.8C21—N5—C28120.2 (2)
C16—C17—H17119.8C21—N5—C29120.49 (18)
C17—C18—C19120.7 (2)C28—N5—C29119.28 (19)
C17—C18—H18119.7C21—O2—C20119.30 (17)
C19—C18—H18119.7O5—C35—H35A109.5
C20—C19—C18118.6 (2)O5—C35—H35B109.5
C20—C19—H19120.7H35A—C35—H35B109.5
C18—C19—H19120.7O5—C35—H35C109.5
C19—C20—C15121.1 (2)H35A—C35—H35C109.5
C19—C20—O2121.9 (2)H35B—C35—H35C109.5
C15—C20—O2116.73 (19)C35—O5—O5i104.1 (2)
N4—C21—O2123.1 (2)
C6—C1—C2—C30.7 (5)C34—C29—C30—C310.9 (4)
C1—C2—C3—C40.3 (6)N5—C29—C30—C31177.9 (2)
C2—C3—C4—C50.1 (6)C29—C30—C31—C320.2 (4)
C3—C4—C5—C60.1 (6)C30—C31—C32—C330.2 (5)
C2—C1—C6—C50.7 (4)C31—C32—C33—C340.0 (5)
C2—C1—C6—N1175.8 (3)C30—C29—C34—C331.1 (4)
C4—C5—C6—C10.3 (4)N5—C29—C34—C33177.7 (2)
C4—C5—C6—N1175.8 (3)C32—C33—C34—C290.6 (4)
O1—C8—C9—C100.7 (4)N2—C7—N1—C619.3 (4)
N3—C8—C9—C10179.9 (2)N3—C7—N1—C6161.8 (2)
O1—C8—C9—C14178.1 (2)C1—C6—N1—C727.8 (4)
N3—C8—C9—C141.2 (3)C5—C6—N1—C7156.9 (2)
C14—C9—C10—C110.4 (4)N1—C7—N2—C14179.0 (2)
C8—C9—C10—C11179.3 (2)N3—C7—N2—C142.3 (3)
C9—C10—C11—C120.0 (4)C13—C14—N2—C7179.1 (2)
C10—C11—C12—C130.0 (5)C9—C14—N2—C70.6 (3)
C11—C12—C13—C140.3 (4)N2—C7—N3—C83.6 (3)
C12—C13—C14—N2179.0 (2)N1—C7—N3—C8177.6 (2)
C12—C13—C14—C90.7 (4)N2—C7—N3—C15179.8 (2)
C10—C9—C14—N2179.0 (2)N1—C7—N3—C151.3 (3)
C8—C9—C14—N20.1 (3)O1—C8—N3—C7176.6 (2)
C10—C9—C14—C130.7 (3)C9—C8—N3—C72.8 (3)
C8—C9—C14—C13179.6 (2)O1—C8—N3—C150.2 (3)
C20—C15—C16—C170.5 (4)C9—C8—N3—C15179.16 (19)
N3—C15—C16—C17180.0 (2)C16—C15—N3—C7103.9 (3)
C15—C16—C17—C181.2 (4)C20—C15—N3—C776.6 (3)
C16—C17—C18—C191.3 (4)C16—C15—N3—C879.7 (3)
C17—C18—C19—C200.7 (4)C20—C15—N3—C899.8 (3)
C18—C19—C20—C150.0 (4)O2—C21—N4—C22179.8 (2)
C18—C19—C20—O2173.7 (2)N5—C21—N4—C220.0 (4)
C16—C15—C20—C190.1 (4)C27—C22—N4—C213.1 (3)
N3—C15—C20—C19179.4 (2)C23—C22—N4—C21178.1 (2)
C16—C15—C20—O2174.2 (2)N4—C21—N5—C283.7 (4)
N3—C15—C20—O25.3 (3)O2—C21—N5—C28176.5 (2)
C27—C22—C23—C240.5 (4)N4—C21—N5—C29175.2 (2)
N4—C22—C23—C24179.3 (3)O2—C21—N5—C294.6 (3)
C22—C23—C24—C251.0 (5)O3—C28—N5—C21176.4 (2)
C23—C24—C25—C260.5 (5)C27—C28—N5—C213.9 (3)
C24—C25—C26—C270.6 (5)O3—C28—N5—C294.7 (4)
C23—C22—C27—C260.6 (4)C27—C28—N5—C29175.0 (2)
N4—C22—C27—C26178.2 (2)C30—C29—N5—C2192.6 (3)
C23—C22—C27—C28178.7 (2)C34—C29—N5—C2186.1 (3)
N4—C22—C27—C282.5 (4)C30—C29—N5—C2888.5 (3)
C25—C26—C27—C221.2 (4)C34—C29—N5—C2892.8 (3)
C25—C26—C27—C28178.1 (3)N4—C21—O2—C206.0 (3)
C22—C27—C28—O3179.3 (3)N5—C21—O2—C20173.79 (18)
C26—C27—C28—O31.3 (4)C19—C20—O2—C2173.6 (3)
C22—C27—C28—N51.0 (3)C15—C20—O2—C21112.4 (2)
C26—C27—C28—N5178.3 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C29–C34 ring.
D—H···AD—HH···AD···AD—H···A
O5—H35···O5i0.960.961.711 (7)125
C2—H2···Cg1ii0.932.753.617 (3)155
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC34H23N5O3·0.5CH4O
Mr565.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)24.268 (2), 16.5049 (14), 15.2929 (12)
β (°) 110.382 (1)
V3)5741.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.963, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
16455, 5631, 3943
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.228, 1.04
No. of reflections5631
No. of parameters397
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C29–C34 ring.
D—H···AD—HH···AD···AD—H···A
O5—H35···O5i0.960.961.711 (7)124.9
C2—H2···Cg1ii0.932.753.617 (3)155
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Guizhou Educational Committee (grant No. 20090079) for financial support, and acknowledge the Sophisticated Analyt­ical Instrument Facility, Central China Normal University, Wuhan, for the data collection.

References

First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492–1503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationMatsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationTsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds