metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)copper(II) dideca­noate dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 June 2010; accepted 30 June 2010; online 7 July 2010)

The CuII atom in the title salt, [Cu(C10H24N4)(H2O)2][CH3(CH2)8CO2]2·2H2O, is chelated by the four N atoms of the 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and is coordinated by two water mol­ecules in a Jahn–Teller-type tetra­gonally distorted octa­hedral geometry. The CuII atom lies on a center of inversion. The cations, anions and uncoordinated water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a layer structure parallel to (001).

Related literature

For related (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper carb­oxy­l­ates, see: Lindoy et al. (2003[Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203-1213.]); Hunter et al. (2005[Hunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2O

  • Mr = 678.44

  • Triclinic, [P \overline 1]

  • a = 6.9820 (6) Å

  • b = 8.8006 (8) Å

  • c = 15.3291 (13) Å

  • α = 95.045 (1)°

  • β = 93.158 (1)°

  • γ = 98.423 (1)°

  • V = 925.93 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.832, Tmax = 0.987

  • 8967 measured reflections

  • 4230 independent reflections

  • 3736 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.06

  • 4230 reflections

  • 220 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.029 (1)
Cu1—N2 2.000 (1)
Cu1—O1w 2.443 (1)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 (1) 2.30 (1) 3.025 (2) 144 (2)
N2—H2⋯O2wi 0.85 (1) 2.18 (1) 2.974 (2) 154 (2)
O1w—H11⋯O2i 0.83 (1) 1.95 (1) 2.774 (2) 172 (2)
O1w—H12⋯O2w 0.83 (1) 1.98 (1) 2.799 (2) 169 (2)
O2w—H21⋯O1 0.83 (1) 1.86 (1) 2.694 (2) 177 (2)
O2w—H22⋯O1ii 0.83 (1) 1.97 (1) 2.771 (2) 163 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly with the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)8CO2]-.2H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry. The copper atom lies on a center of inversion (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

Related literature top

For related (1,4,8,11-tetraazacyclotetradecane)copper carboxylates, see: Lindoy et al. (2003); Hunter et al. (2005).

Experimental top

1,4,8,11-Tetraazacyclotetradecane (0.50 g, 2.50 mmol) dissolved in ethanol (25 ml) was mixed with a suspension of copper decanoate (1.01.80 g, 2.5 mmol) in ethanol (50 ml) to give a purple solution. The solution was heated for an hour and then filtered. Prismatic crystals separated from the solution when it was left to cool slowly.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01, O–H 0.84±0.01 Å; their displacement parameters were freely refined.

Structure description top

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly with the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)8CO2]-.2H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry. The copper atom lies on a center of inversion (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

For related (1,4,8,11-tetraazacyclotetradecane)copper carboxylates, see: Lindoy et al. (2003); Hunter et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Cu(H2O)2(C10H24N4)]2+ 2[CH3(CH2)8CO2]-.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Diaqua(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)copper(II) didecanoate dihydrate top
Crystal data top
[Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2OZ = 1
Mr = 678.44F(000) = 371
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9820 (6) ÅCell parameters from 3079 reflections
b = 8.8006 (8) Åθ = 2.4–28.1°
c = 15.3291 (13) ŵ = 0.64 mm1
α = 95.045 (1)°T = 100 K
β = 93.158 (1)°Plate, purple
γ = 98.423 (1)°0.30 × 0.20 × 0.02 mm
V = 925.93 (14) Å3
Data collection top
Bruker SMART APEX
diffractometer
4230 independent reflections
Radiation source: fine-focus sealed tube3736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.832, Tmax = 0.987k = 1111
8967 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.1911P]
where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2Oγ = 98.423 (1)°
Mr = 678.44V = 925.93 (14) Å3
Triclinic, P1Z = 1
a = 6.9820 (6) ÅMo Kα radiation
b = 8.8006 (8) ŵ = 0.64 mm1
c = 15.3291 (13) ÅT = 100 K
α = 95.045 (1)°0.30 × 0.20 × 0.02 mm
β = 93.158 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4230 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3736 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.987Rint = 0.034
8967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
4230 reflectionsΔρmin = 0.43 e Å3
220 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01105 (9)
O10.9257 (2)0.05590 (14)0.38643 (8)0.0242 (3)
O20.93155 (17)0.28063 (13)0.33012 (8)0.0179 (3)
O1W0.81745 (18)0.48550 (14)0.57137 (9)0.0204 (3)
H110.900 (3)0.555 (2)0.5970 (13)0.035 (6)*
H120.870 (3)0.4065 (17)0.5704 (15)0.037 (7)*
O2W0.95494 (18)0.20230 (14)0.54959 (9)0.0185 (3)
H210.945 (3)0.160 (2)0.4983 (8)0.040 (7)*
H220.982 (3)0.1320 (19)0.5783 (13)0.029 (6)*
N10.55275 (19)0.35212 (15)0.39806 (9)0.0135 (3)
H10.6723 (15)0.342 (2)0.4045 (12)0.022 (5)*
N20.6209 (2)0.68731 (15)0.44674 (9)0.0130 (3)
H20.7437 (14)0.692 (2)0.4559 (12)0.017 (5)*
C10.5260 (3)0.4008 (2)0.30884 (11)0.0184 (4)
H1A0.38790.41040.29630.022*
H1B0.56020.32110.26530.022*
C20.6516 (3)0.5543 (2)0.29990 (11)0.0200 (4)
H2A0.65090.57220.23700.024*
H2B0.78690.54800.32050.024*
C30.5859 (3)0.6912 (2)0.35105 (11)0.0186 (4)
H3A0.65700.78810.33320.022*
H3B0.44570.69020.33670.022*
C40.5625 (2)0.82300 (18)0.49625 (12)0.0179 (4)
H4A0.42970.83610.47540.021*
H4B0.65220.91740.48710.021*
C50.5685 (2)0.79793 (18)0.59202 (12)0.0181 (4)
H5A0.70390.79670.61450.022*
H5B0.51780.88260.62590.022*
C60.9049 (2)0.13621 (18)0.32350 (11)0.0137 (3)
C70.8332 (3)0.04950 (19)0.23452 (11)0.0172 (4)
H7A0.68950.03110.23090.021*
H7B0.87760.05250.23130.021*
C80.8998 (2)0.1307 (2)0.15509 (11)0.0177 (4)
H8A0.82650.07600.10150.021*
H8B0.86900.23720.16130.021*
C91.1168 (2)0.1371 (2)0.14399 (12)0.0194 (4)
H9A1.19020.20060.19490.023*
H9B1.14990.03140.14370.023*
C101.1795 (2)0.2040 (2)0.06012 (11)0.0189 (4)
H10A1.14260.30840.05980.023*
H10B1.10780.13890.00930.023*
C111.3965 (3)0.2155 (2)0.04841 (12)0.0204 (4)
H11A1.46840.28660.09680.024*
H11B1.43560.11250.05250.024*
C121.4536 (2)0.2727 (2)0.03877 (11)0.0188 (4)
H12A1.40840.37320.04390.023*
H12B1.38570.19890.08700.023*
C131.6711 (3)0.2921 (2)0.05047 (11)0.0196 (4)
H13A1.73940.36780.00320.024*
H13B1.71740.19220.04440.024*
C141.7228 (3)0.3460 (2)0.13872 (12)0.0253 (4)
H14A1.67230.44400.14540.030*
H14B1.65700.26850.18570.030*
C151.9396 (3)0.3709 (3)0.15119 (14)0.0329 (5)
H15A1.96170.40470.20950.049*
H15B1.99080.27400.14580.049*
H15C2.00580.45010.10620.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01256 (15)0.00841 (14)0.01241 (16)0.00162 (10)0.00342 (11)0.00065 (10)
O10.0374 (8)0.0185 (6)0.0167 (7)0.0035 (5)0.0007 (6)0.0043 (5)
O20.0220 (6)0.0131 (5)0.0184 (6)0.0051 (5)0.0005 (5)0.0012 (5)
O1W0.0139 (6)0.0158 (6)0.0306 (8)0.0045 (5)0.0032 (5)0.0027 (5)
O2W0.0200 (6)0.0159 (6)0.0200 (7)0.0046 (5)0.0001 (5)0.0010 (5)
N10.0089 (7)0.0154 (7)0.0157 (7)0.0023 (5)0.0020 (6)0.0020 (5)
N20.0096 (7)0.0127 (6)0.0176 (7)0.0030 (5)0.0031 (6)0.0028 (5)
C10.0170 (9)0.0250 (9)0.0133 (9)0.0061 (7)0.0014 (7)0.0026 (7)
C20.0177 (9)0.0310 (10)0.0133 (9)0.0062 (7)0.0045 (7)0.0074 (7)
C30.0170 (9)0.0211 (8)0.0193 (9)0.0037 (7)0.0017 (7)0.0098 (7)
C40.0144 (8)0.0085 (7)0.0312 (10)0.0019 (6)0.0050 (7)0.0014 (7)
C50.0148 (8)0.0109 (7)0.0270 (10)0.0001 (6)0.0039 (7)0.0052 (7)
C60.0098 (8)0.0163 (8)0.0155 (9)0.0034 (6)0.0040 (6)0.0002 (6)
C70.0184 (9)0.0157 (8)0.0163 (9)0.0006 (6)0.0040 (7)0.0016 (7)
C80.0179 (9)0.0211 (8)0.0133 (8)0.0003 (7)0.0030 (7)0.0002 (7)
C90.0176 (9)0.0240 (9)0.0168 (9)0.0027 (7)0.0032 (7)0.0017 (7)
C100.0174 (9)0.0234 (9)0.0156 (9)0.0009 (7)0.0036 (7)0.0024 (7)
C110.0192 (9)0.0259 (9)0.0162 (9)0.0025 (7)0.0054 (7)0.0021 (7)
C120.0165 (9)0.0242 (9)0.0150 (9)0.0003 (7)0.0031 (7)0.0018 (7)
C130.0186 (9)0.0250 (9)0.0154 (9)0.0024 (7)0.0033 (7)0.0027 (7)
C140.0210 (10)0.0367 (11)0.0182 (10)0.0012 (8)0.0044 (7)0.0071 (8)
C150.0250 (10)0.0443 (12)0.0316 (12)0.0039 (9)0.0138 (9)0.0104 (9)
Geometric parameters (Å, º) top
Cu1—N12.029 (1)C5—H5B0.9900
Cu1—N1i2.029 (1)C6—C71.524 (2)
Cu1—N22.000 (1)C7—C81.526 (2)
Cu1—N2i2.000 (1)C7—H7A0.9900
Cu1—O1w2.443 (1)C7—H7B0.9900
O1—C61.259 (2)C8—C91.527 (2)
O2—C61.2515 (19)C8—H8A0.9900
O1W—H110.832 (10)C8—H8B0.9900
O1W—H120.831 (9)C9—C101.520 (2)
O2W—H210.834 (9)C9—H9A0.9900
O2W—H220.828 (9)C9—H9B0.9900
N1—C11.479 (2)C10—C111.525 (2)
N1—C5i1.485 (2)C10—H10A0.9900
N1—H10.855 (9)C10—H10B0.9900
N2—C31.478 (2)C11—C121.522 (2)
N2—C41.478 (2)C11—H11A0.9900
N2—H20.854 (9)C11—H11B0.9900
C1—C21.520 (2)C12—C131.525 (2)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—C31.521 (2)C13—C141.517 (2)
C2—H2A0.9900C13—H13A0.9900
C2—H2B0.9900C13—H13B0.9900
C3—H3A0.9900C14—C151.522 (3)
C3—H3B0.9900C14—H14A0.9900
C4—C51.503 (3)C14—H14B0.9900
C4—H4A0.9900C15—H15A0.9800
C4—H4B0.9900C15—H15B0.9800
C5—N1i1.485 (2)C15—H15C0.9800
C5—H5A0.9900
N2—Cu1—N2i180.000 (1)O2—C6—C7118.55 (15)
N2—Cu1—N193.73 (6)O1—C6—C7116.87 (14)
N2i—Cu1—N186.27 (6)C6—C7—C8115.27 (13)
N2—Cu1—N1i86.27 (6)C6—C7—H7A108.5
N2i—Cu1—N1i93.73 (6)C8—C7—H7A108.5
N1—Cu1—N1i180.00 (5)C6—C7—H7B108.5
N2—Cu1—O1W88.48 (5)C8—C7—H7B108.5
N2i—Cu1—O1W91.52 (5)H7A—C7—H7B107.5
N1—Cu1—O1W90.25 (5)C9—C8—C7113.07 (15)
N1i—Cu1—O1W89.75 (5)C9—C8—H8A109.0
Cu1—O1W—H11130.2 (16)C7—C8—H8A109.0
Cu1—O1W—H12124.9 (16)C9—C8—H8B109.0
H11—O1W—H12105 (2)C7—C8—H8B109.0
H21—O2W—H22102 (2)H8A—C8—H8B107.8
C1—N1—C5i112.07 (13)C10—C9—C8113.02 (15)
C1—N1—Cu1117.07 (10)C10—C9—H9A109.0
C5i—N1—Cu1106.17 (10)C8—C9—H9A109.0
C1—N1—H1105.4 (13)C10—C9—H9B109.0
C5i—N1—H1108.8 (13)C8—C9—H9B109.0
Cu1—N1—H1107.0 (13)H9A—C9—H9B107.8
C3—N2—C4111.44 (13)C9—C10—C11114.15 (15)
C3—N2—Cu1117.71 (10)C9—C10—H10A108.7
C4—N2—Cu1107.26 (10)C11—C10—H10A108.7
C3—N2—H2105.7 (13)C9—C10—H10B108.7
C4—N2—H2107.8 (13)C11—C10—H10B108.7
Cu1—N2—H2106.5 (13)H10A—C10—H10B107.6
N1—C1—C2111.30 (14)C12—C11—C10113.15 (15)
N1—C1—H1A109.4C12—C11—H11A108.9
C2—C1—H1A109.4C10—C11—H11A108.9
N1—C1—H1B109.4C12—C11—H11B108.9
C2—C1—H1B109.4C10—C11—H11B108.9
H1A—C1—H1B108.0H11A—C11—H11B107.8
C1—C2—C3113.84 (14)C11—C12—C13114.24 (15)
C1—C2—H2A108.8C11—C12—H12A108.7
C3—C2—H2A108.8C13—C12—H12A108.7
C1—C2—H2B108.8C11—C12—H12B108.7
C3—C2—H2B108.8C13—C12—H12B108.7
H2A—C2—H2B107.7H12A—C12—H12B107.6
N2—C3—C2111.53 (13)C14—C13—C12112.92 (15)
N2—C3—H3A109.3C14—C13—H13A109.0
C2—C3—H3A109.3C12—C13—H13A109.0
N2—C3—H3B109.3C14—C13—H13B109.0
C2—C3—H3B109.3C12—C13—H13B109.0
H3A—C3—H3B108.0H13A—C13—H13B107.8
N2—C4—C5108.50 (13)C13—C14—C15114.09 (16)
N2—C4—H4A110.0C13—C14—H14A108.7
C5—C4—H4A110.0C15—C14—H14A108.7
N2—C4—H4B110.0C13—C14—H14B108.7
C5—C4—H4B110.0C15—C14—H14B108.7
H4A—C4—H4B108.4H14A—C14—H14B107.6
N1i—C5—C4108.31 (13)C14—C15—H15A109.5
N1i—C5—H5A110.0C14—C15—H15B109.5
C4—C5—H5A110.0H15A—C15—H15B109.5
N1i—C5—H5B110.0C14—C15—H15C109.5
C4—C5—H5B110.0H15A—C15—H15C109.5
H5A—C5—H5B108.4H15B—C15—H15C109.5
O2—C6—O1124.52 (15)
N2—Cu1—N1—C139.47 (12)C4—N2—C3—C2178.27 (13)
N2i—Cu1—N1—C1140.53 (12)Cu1—N2—C3—C257.23 (16)
O1W—Cu1—N1—C1127.96 (11)C1—C2—C3—N270.00 (18)
N2—Cu1—N1—C5i165.46 (11)C3—N2—C4—C5170.11 (13)
N2i—Cu1—N1—C5i14.54 (11)Cu1—N2—C4—C539.93 (15)
O1W—Cu1—N1—C5i106.05 (11)N2—C4—C5—N1i54.24 (17)
N1—Cu1—N2—C339.47 (12)O2—C6—C7—C831.5 (2)
N1i—Cu1—N2—C3140.53 (12)O1—C6—C7—C8151.30 (16)
O1W—Cu1—N2—C3129.61 (11)C6—C7—C8—C969.42 (19)
N1—Cu1—N2—C4166.02 (11)C7—C8—C9—C10174.47 (14)
N1i—Cu1—N2—C413.98 (11)C8—C9—C10—C11178.58 (14)
O1W—Cu1—N2—C4103.84 (10)C9—C10—C11—C12176.14 (14)
C5i—N1—C1—C2179.84 (13)C10—C11—C12—C13177.40 (14)
Cu1—N1—C1—C257.16 (16)C11—C12—C13—C14178.81 (15)
N1—C1—C2—C370.19 (19)C12—C13—C14—C15178.29 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)2.30 (1)3.025 (2)144 (2)
N2—H2···O2wii0.85 (1)2.18 (1)2.974 (2)154 (2)
O1w—H11···O2ii0.83 (1)1.95 (1)2.774 (2)172 (2)
O1w—H12···O2w0.83 (1)1.98 (1)2.799 (2)169 (2)
O2w—H21···O10.83 (1)1.86 (1)2.694 (2)177 (2)
O2w—H22···O1iii0.83 (1)1.97 (1)2.771 (2)163 (2)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H24N4)(H2O)2](C10H19O2)2·2H2O
Mr678.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9820 (6), 8.8006 (8), 15.3291 (13)
α, β, γ (°)95.045 (1), 93.158 (1), 98.423 (1)
V3)925.93 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.20 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.832, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8967, 4230, 3736
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.06
No. of reflections4230
No. of parameters220
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—N12.029 (1)Cu1—O1w2.443 (1)
Cu1—N22.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)2.30 (1)3.025 (2)144 (2)
N2—H2···O2wi0.85 (1)2.18 (1)2.974 (2)154 (2)
O1w—H11···O2i0.83 (1)1.95 (1)2.774 (2)172 (2)
O1w—H12···O2w0.83 (1)1.98 (1)2.799 (2)169 (2)
O2w—H21···O10.83 (1)1.86 (1)2.694 (2)177 (2)
O2w—H22···O1ii0.83 (1)1.97 (1)2.771 (2)163 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

We thank the University of Malaya (RG039/09SUS) and the Ministry of Higher Education (FP017/2009) for for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288–2292.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds