organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diyl bis­­(4-amino­benzoate)

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

Mol­ecules of the title compound, C17H18N2O4, lie on a twofold rotation axis that passes through the central methyl­ene C atom. The mol­ecules adopt a `V' shape and the trimethyl­ene unit assumes a gauchegauche conformation. The amino N atom shows a nonplanar coordination. Adjacent mol­ecules are connected by N—H⋯O hydrogen bonds into chains running along [001]. Furthermore, N—H⋯N hydrogen bonds connect these chains into a three-dimensional network.

Related literature

For the crystal structure of 1,3-propandiyl-bis­(benzoate), see: Pérez & Brisse (1977[Pérez, S. & Brisse, F. (1977). Acta Cryst. B33, 3259-3262.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Monoclinic, C 2

  • a = 23.725 (5) Å

  • b = 4.5109 (9) Å

  • c = 8.2171 (17) Å

  • β = 107.173 (3)°

  • V = 840.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 3936 measured reflections

  • 1082 independent reflections

  • 788 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 0.96

  • 1082 reflections

  • 113 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.86 (1) 2.15 (2) 2.958 (3) 157 (5)
N1—H12⋯N1ii 0.86 (1) 2.25 (1) 3.104 (3) 169 (2)
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemical is a commercially available chemical that should be compable of condensing with carbonyl compounds to yield Schff bases; its special feature is its trimethylene portion, which assumes a V shape. The C17H18N2O4 molecule (Scheme I) lies on a twofold rotation axis that passes through the central methylene carbon atom; this symmetry element relates one 4-aminobenzoate unit to the other. The molecule assumes a V shape and the trimethylene portion assumes a gauchegauche conformation. The amino nitrogen atom shows non-planar coordination (Fig. 1). Adjacent molecules are connected by N–H···O and N–H···N shydrogen bonds to form a three-dimensional network.

Related literature top

For the crystal structure of 1,3-propandiyl-bis(benzoate), see: Pérez & Brisse (1977).

Experimental top

The compound was returned unchanged but in a crystalline form in an unsuccessful condensation with o-vanillin in ethanol medium.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95–0.99 Å, U(H) 1.2U(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N–H 0.86±0.01 Å. 822 Friedel pairs were merged.

Structure description top

The chemical is a commercially available chemical that should be compable of condensing with carbonyl compounds to yield Schff bases; its special feature is its trimethylene portion, which assumes a V shape. The C17H18N2O4 molecule (Scheme I) lies on a twofold rotation axis that passes through the central methylene carbon atom; this symmetry element relates one 4-aminobenzoate unit to the other. The molecule assumes a V shape and the trimethylene portion assumes a gauchegauche conformation. The amino nitrogen atom shows non-planar coordination (Fig. 1). Adjacent molecules are connected by N–H···O and N–H···N shydrogen bonds to form a three-dimensional network.

For the crystal structure of 1,3-propandiyl-bis(benzoate), see: Pérez & Brisse (1977).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C17H18N2O4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Propane-1,3-diyl bis(4-aminobenzoate) top
Crystal data top
C17H18N2O4F(000) = 332
Mr = 314.33Dx = 1.242 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 915 reflections
a = 23.725 (5) Åθ = 2.6–26.8°
b = 4.5109 (9) ŵ = 0.09 mm1
c = 8.2171 (17) ÅT = 100 K
β = 107.173 (3)°Plate, yellow
V = 840.2 (3) Å30.35 × 0.35 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
788 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.090
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 3029
3936 measured reflectionsk = 55
1082 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
1082 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H18N2O4V = 840.2 (3) Å3
Mr = 314.33Z = 2
Monoclinic, C2Mo Kα radiation
a = 23.725 (5) ŵ = 0.09 mm1
b = 4.5109 (9) ÅT = 100 K
c = 8.2171 (17) Å0.35 × 0.35 × 0.02 mm
β = 107.173 (3)°
Data collection top
Bruker SMART APEX
diffractometer
788 reflections with I > 2σ(I)
3936 measured reflectionsRint = 0.090
1082 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.24 e Å3
1082 reflectionsΔρmin = 0.24 e Å3
113 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.42724 (7)0.4987 (4)0.0488 (2)0.0262 (5)
O20.35969 (8)0.7580 (5)0.1476 (2)0.0304 (5)
N10.29701 (11)1.0783 (6)0.5367 (3)0.0298 (6)
C10.50000.1862 (10)0.00000.0279 (10)
H1A0.50950.05690.08570.033*0.50
H1B0.49050.05690.08570.033*0.50
C20.44676 (11)0.3705 (7)0.0862 (3)0.0263 (7)
H2A0.45720.52790.15620.032*
H2B0.41530.24540.16090.032*
C30.38135 (11)0.6876 (7)0.0010 (3)0.0244 (7)
C40.36179 (11)0.7924 (7)0.1432 (3)0.0228 (6)
C50.31600 (11)0.9969 (7)0.1134 (3)0.0260 (7)
H50.29911.07210.00160.031*
C60.29486 (12)1.0917 (7)0.2423 (3)0.0286 (7)
H60.26311.22890.21870.034*
C70.31969 (11)0.9879 (7)0.4094 (3)0.0252 (7)
C80.36569 (11)0.7851 (8)0.4393 (3)0.0295 (7)
H80.38300.71230.55140.035*
C90.38646 (11)0.6885 (8)0.3103 (3)0.0282 (7)
H90.41790.54950.33380.034*
H110.3137 (17)1.032 (12)0.641 (2)0.098 (16)*
H120.2748 (10)1.233 (4)0.519 (3)0.025 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (9)0.0351 (12)0.0206 (9)0.0041 (10)0.0021 (7)0.0031 (9)
O20.0239 (10)0.0453 (13)0.0165 (9)0.0042 (10)0.0024 (7)0.0029 (10)
N10.0272 (14)0.0364 (17)0.0227 (13)0.0056 (12)0.0025 (11)0.0016 (12)
C10.021 (2)0.030 (3)0.029 (2)0.0000.0034 (16)0.000
C20.0205 (13)0.0329 (17)0.0243 (14)0.0040 (13)0.0046 (11)0.0024 (13)
C30.0172 (13)0.0302 (17)0.0224 (13)0.0048 (13)0.0005 (11)0.0009 (13)
C40.0163 (12)0.0304 (17)0.0183 (12)0.0025 (12)0.0001 (10)0.0023 (11)
C50.0190 (13)0.0322 (17)0.0193 (13)0.0007 (14)0.0058 (11)0.0043 (13)
C60.0191 (14)0.0368 (19)0.0236 (14)0.0029 (13)0.0031 (12)0.0038 (13)
C70.0186 (13)0.0335 (18)0.0202 (13)0.0060 (14)0.0006 (10)0.0005 (13)
C80.0218 (14)0.043 (2)0.0179 (13)0.0039 (14)0.0026 (11)0.0090 (14)
C90.0181 (14)0.0397 (19)0.0237 (14)0.0030 (14)0.0012 (11)0.0050 (14)
Geometric parameters (Å, º) top
O1—C31.347 (3)C3—C41.457 (4)
O1—C21.444 (3)C4—C51.391 (4)
O2—C31.219 (3)C4—C91.405 (3)
N1—C71.372 (3)C5—C61.368 (4)
N1—H110.858 (10)C5—H50.9500
N1—H120.861 (10)C6—C71.405 (4)
C1—C21.503 (4)C6—H60.9500
C1—C2i1.503 (4)C7—C81.389 (4)
C1—H1A0.9900C8—C91.365 (4)
C1—H1B0.9900C8—H80.9500
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900
C3—O1—C2116.39 (19)C5—C4—C9118.1 (2)
C7—N1—H11121 (3)C5—C4—C3119.4 (2)
C7—N1—H12118.1 (19)C9—C4—C3122.4 (2)
H11—N1—H12116 (4)C6—C5—C4121.1 (2)
C2—C1—C2i112.9 (4)C6—C5—H5119.4
C2—C1—H1A109.0C4—C5—H5119.4
C2i—C1—H1A109.0C5—C6—C7120.6 (3)
C2—C1—H1B109.0C5—C6—H6119.7
C2i—C1—H1B109.0C7—C6—H6119.7
H1A—C1—H1B107.8N1—C7—C8121.7 (2)
O1—C2—C1105.94 (18)N1—C7—C6120.0 (3)
O1—C2—H2A110.5C8—C7—C6118.2 (2)
C1—C2—H2A110.5C9—C8—C7121.2 (3)
O1—C2—H2B110.5C9—C8—H8119.4
C1—C2—H2B110.5C7—C8—H8119.4
H2A—C2—H2B108.7C8—C9—C4120.7 (3)
O2—C3—O1121.5 (2)C8—C9—H9119.7
O2—C3—C4125.4 (3)C4—C9—H9119.7
O1—C3—C4113.1 (2)
C3—O1—C2—C1176.5 (2)C3—C4—C5—C6177.4 (3)
C2i—C1—C2—O171.92 (18)C4—C5—C6—C71.1 (4)
C2—O1—C3—O23.8 (4)C5—C6—C7—N1178.2 (3)
C2—O1—C3—C4176.2 (2)C5—C6—C7—C80.6 (4)
O2—C3—C4—C52.2 (4)N1—C7—C8—C9177.6 (3)
O1—C3—C4—C5177.8 (3)C6—C7—C8—C90.1 (5)
O2—C3—C4—C9176.1 (3)C7—C8—C9—C40.1 (5)
O1—C3—C4—C94.0 (4)C5—C4—C9—C80.3 (4)
C9—C4—C5—C60.9 (4)C3—C4—C9—C8177.9 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2ii0.86 (1)2.15 (2)2.958 (3)157 (5)
N1—H12···N1iii0.86 (1)2.25 (1)3.104 (3)169 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)23.725 (5), 4.5109 (9), 8.2171 (17)
β (°) 107.173 (3)
V3)840.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.35 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3936, 1082, 788
Rint0.090
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 0.96
No. of reflections1082
No. of parameters113
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.86 (1)2.15 (2)2.958 (3)157 (5)
N1—H12···N1ii0.86 (1)2.25 (1)3.104 (3)169 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPérez, S. & Brisse, F. (1977). Acta Cryst. B33, 3259–3262.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds