metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Hy­dr­oxy-N′-[(2-oxido-1-naphthyl-κO)methyl­­idene]benzohydrazidato-κ2N′,O}di­methyl­tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 July 2010; accepted 8 July 2010; online 14 July 2010)

Two independent but very similar mol­ecules comprise the asymmetric unit of the title compound, [Sn(CH3)2(C18H12N2O3)]. Each Sn atom is coordinated by two methyl groups and two O atoms and an N atom from the dinegative tridentate ligand. The resultant C2NO2 donor set defines a coordination geometry inter­mediate between square-pyramidal and trigonal-pyramidal, with a small tendency towards the former. Zigzag chains running along the a axis mediated by O—H⋯N hydrogen bonding characterize the crystal packing. These are connected into layers in the ab plane by a combination of C—H⋯N and ππ [centroid–centroid distances = 3.658 (2) and 3.6740 (18) Å] inter­actions. The layers are connected along the c axis via C—H⋯O inter­actions.

Related literature

For related studies on organotin compounds, see: Affan et al. (2009[Affan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031-5037.]); Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.]). For the structure of the dichloro­methane solvate of the title compound, see: Cui et al. (2007[Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, m3138.]). For coordination geometry, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C18H12N2O3)]

  • Mr = 453.05

  • Monoclinic, P 21 /c

  • a = 12.9422 (4) Å

  • b = 16.5264 (5) Å

  • c = 16.9949 (5) Å

  • β = 94.923 (3)°

  • V = 3621.59 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 150 K

  • 0.20 × 0.15 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.863, Tmax = 1.000

  • 12413 measured reflections

  • 6668 independent reflections

  • 5647 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.05

  • 6668 reflections

  • 475 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3i 0.84 1.91 2.749 (3) 178
O6—H6a⋯N1ii 0.84 1.91 2.738 (3) 167
C8—H8⋯O5iii 0.95 2.59 3.477 (4) 155
C21—H21a⋯N1iv 0.98 2.62 3.494 (4) 149
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z-1; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the title compound (I) stems from on-going studies into biological and structural aspects of organotin compounds (Affan et al., 2009; Zukerman-Schpector et al., 2009). Two independent molecules comprise the crystallographic asymmetric unit of (I) with the first molecule, Fig. 1, being virtually superimposable upon the second, Fig. 2, there being only small differences in the relative orientations of aromatic rings in the molecules. The similarity between the molecules is reflected in r.m.s. values for bond distances and angles of 0.0063 Å and 1.128 °, respectively. The Sn atom environment in each case is based on a C2NO2 donor set provided by two methyl groups, and the NO2 atoms of the dinegative, tridentate ligand. The coordination geometry is intermediate between square pyramidal and trigonal bipyramidal with a leaning towards the former. These assignments are based on the values calculated for τ of 0.48 and 0.43 for the Sn1 and Sn2 atoms, respectively, which compare to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984).

The crystal packing is dominated by O–H···N hydrogen bonding between the hydroxyl group and the non-coordinating imine-N atoms, Table 1. These lead to the formation of zigzag supramolecular chains along the a axis, Fig. 3. Chains are consolidated into layers via a combination of C–H···N interactions, Table 1, and ππ contacts, Fig. 4. The latter occur between centrosymmetrically related rings involving both the benzene ring and the fused ring systems, i.e. Cg(C11–C15,C20)···Cg(C35–C40)i = 3.658 (2) Å and Cg(C4–C9)···Cg(C31–C35,C40)ii = 3.6740 (18) Å for i: 2 - x, 1 - y, 1 - z, and ii: 1 - x, 1 - y, 1 - z. Layers thus formed stack along the c axis, being connected by C–H···O contacts, Table 1 and Fig. 5.

The molecular structures in (I) resemble closely that found in the dichloromethane solvate (Cui et al., 2007), which also has an intermediate coordination geometry but slightly distorted to trigonal bipyramidal (τ = 0.51). Interestingly, despite the presence of lattice solvent, the supramolecular zigzag chains mediated by O–H···N hydrogen bonding persist in the literature structure.

Related literature top

For related studies on organotin compounds, see: Affan et al. (2009); Zukerman-Schpector et al. (2009). For the structure of the dichloromethane solvate of the title compound, see: Cui et al. (2007). For coordination geometry, see: Addison et al. (1984).

Experimental top

2-Hydroxy-1-naphthaldehyde-4-hydroxybenzhydrazone (0.612 g, 2 mmol) was dissolved in hot absolute methanol (20 ml) in a Schlenk round bottom flask under purified nitrogen atmosphere. Then, a potassium hydroxide solution (0.224 g, 4 mmol) in absolute methanol (5 ml) was added dropwise and the colour of the resulting solution faded from yellow to light-yellow. The resulting solution was refluxed under a nitrogen atmosphere for 1 h. A solution of dimethyltin(IV) dichloride (0.439 g, 2 mmol) in absolute methanol (5 ml) was added dropwise. The resulting solution was refluxed for 4 h and allowed to cool to room temperature for 30 min. The white precipitate of potassium chloride was removed by filtration. The filtrate was evaporated to dryness using a rotary apparatus under reduced pressure. The yellow crystals obtained were washed with hexane and dried in vacuo over silica gel. Single crystals suitable for X-ray analyses were obtained from the slow evaporation of an ethanol solution at room temperature. Yield: 0.67 g, 53%, and m.pt.540–542 K.

Refinement top

H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Interest in the title compound (I) stems from on-going studies into biological and structural aspects of organotin compounds (Affan et al., 2009; Zukerman-Schpector et al., 2009). Two independent molecules comprise the crystallographic asymmetric unit of (I) with the first molecule, Fig. 1, being virtually superimposable upon the second, Fig. 2, there being only small differences in the relative orientations of aromatic rings in the molecules. The similarity between the molecules is reflected in r.m.s. values for bond distances and angles of 0.0063 Å and 1.128 °, respectively. The Sn atom environment in each case is based on a C2NO2 donor set provided by two methyl groups, and the NO2 atoms of the dinegative, tridentate ligand. The coordination geometry is intermediate between square pyramidal and trigonal bipyramidal with a leaning towards the former. These assignments are based on the values calculated for τ of 0.48 and 0.43 for the Sn1 and Sn2 atoms, respectively, which compare to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984).

The crystal packing is dominated by O–H···N hydrogen bonding between the hydroxyl group and the non-coordinating imine-N atoms, Table 1. These lead to the formation of zigzag supramolecular chains along the a axis, Fig. 3. Chains are consolidated into layers via a combination of C–H···N interactions, Table 1, and ππ contacts, Fig. 4. The latter occur between centrosymmetrically related rings involving both the benzene ring and the fused ring systems, i.e. Cg(C11–C15,C20)···Cg(C35–C40)i = 3.658 (2) Å and Cg(C4–C9)···Cg(C31–C35,C40)ii = 3.6740 (18) Å for i: 2 - x, 1 - y, 1 - z, and ii: 1 - x, 1 - y, 1 - z. Layers thus formed stack along the c axis, being connected by C–H···O contacts, Table 1 and Fig. 5.

The molecular structures in (I) resemble closely that found in the dichloromethane solvate (Cui et al., 2007), which also has an intermediate coordination geometry but slightly distorted to trigonal bipyramidal (τ = 0.51). Interestingly, despite the presence of lattice solvent, the supramolecular zigzag chains mediated by O–H···N hydrogen bonding persist in the literature structure.

For related studies on organotin compounds, see: Affan et al. (2009); Zukerman-Schpector et al. (2009). For the structure of the dichloromethane solvate of the title compound, see: Cui et al. (2007). For coordination geometry, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. A view of the supramolecular chain along the a axis in (I) mediated by O–H···N hydrogen bonding shown as orange dashed lines.
[Figure 4] Fig. 4. A view of the 2-D supramolecular array in the ab plane in (I) with the O–H···N hydrogen bonding, C–H···N and ππ contacts shown as orange, blue and purple dashed lines, respectively.
[Figure 5] Fig. 5. A view in projection down the a axis of (I) showing the stacking of 2-D arrays along the c axis. The C–H···O contacts shown as brown dashed lines.
{4-Hydroxy-N'-[(2-oxido-1-naphthyl- κO)methylidene]benzohydrazidato-κ2N',O}dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C18H12N2O3)]F(000) = 1808
Mr = 453.05Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7047 reflections
a = 12.9422 (4) Åθ = 2.3–27.4°
b = 16.5264 (5) ŵ = 1.43 mm1
c = 16.9949 (5) ÅT = 150 K
β = 94.923 (3)°Prism, pink
V = 3621.59 (19) Å30.20 × 0.15 × 0.06 mm
Z = 8
Data collection top
Oxford Diffraction Gemini E
diffractometer
6668 independent reflections
Radiation source: fine-focus sealed tube5647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 25.5°, θmin = 2.3°
ω scansh = 158
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.863, Tmax = 1.000l = 2019
12413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.8497P]
where P = (Fo2 + 2Fc2)/3
6668 reflections(Δ/σ)max = 0.001
475 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Sn(CH3)2(C18H12N2O3)]V = 3621.59 (19) Å3
Mr = 453.05Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.9422 (4) ŵ = 1.43 mm1
b = 16.5264 (5) ÅT = 150 K
c = 16.9949 (5) Å0.20 × 0.15 × 0.06 mm
β = 94.923 (3)°
Data collection top
Oxford Diffraction Gemini E
diffractometer
6668 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5647 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.027
12413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
6668 reflectionsΔρmin = 0.51 e Å3
475 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.372807 (18)0.439312 (13)0.384468 (13)0.01894 (7)
O10.22567 (17)0.48447 (13)0.33302 (12)0.0229 (5)
O20.51368 (18)0.37879 (14)0.38188 (13)0.0280 (6)
O30.09090 (17)0.69902 (13)0.11649 (13)0.0226 (5)
H30.12390.72170.15080.034*
N10.2992 (2)0.47633 (15)0.21448 (15)0.0159 (6)
N20.3766 (2)0.43266 (15)0.25829 (15)0.0158 (6)
C10.3054 (3)0.3524 (2)0.4554 (2)0.0308 (9)
H1A0.27630.30820.42200.046*
H1B0.25020.37780.48270.046*
H1C0.35850.33080.49440.046*
C20.4287 (3)0.55396 (19)0.4238 (2)0.0271 (8)
H2A0.42040.55970.48030.041*
H2B0.38930.59650.39450.041*
H2C0.50220.55870.41490.041*
C30.2257 (2)0.50146 (18)0.25852 (18)0.0162 (7)
C40.1430 (2)0.55217 (18)0.22049 (18)0.0152 (7)
C50.0645 (2)0.58043 (18)0.26549 (19)0.0171 (7)
H50.06520.56600.31960.021*
C60.0138 (2)0.62907 (19)0.23155 (18)0.0181 (7)
H60.06660.64780.26260.022*
C70.0163 (2)0.65090 (19)0.15242 (19)0.0181 (7)
C80.0604 (2)0.6219 (2)0.10710 (19)0.0215 (8)
H80.05930.63600.05280.026*
C90.1378 (2)0.57307 (19)0.14092 (19)0.0202 (7)
H90.18910.55300.10920.024*
C100.4458 (2)0.39988 (18)0.21694 (18)0.0160 (7)
H100.43390.40550.16130.019*
C110.5367 (2)0.35692 (18)0.24451 (19)0.0169 (7)
C120.5666 (3)0.34850 (19)0.32603 (19)0.0190 (7)
C130.6590 (3)0.30561 (18)0.3504 (2)0.0224 (8)
H130.67880.29950.40520.027*
C140.7193 (3)0.27336 (19)0.2977 (2)0.0226 (8)
H140.78040.24500.31620.027*
C150.6935 (3)0.28078 (18)0.2147 (2)0.0193 (7)
C160.7574 (3)0.24726 (19)0.1600 (2)0.0259 (8)
H160.81830.21870.17890.031*
C170.7338 (3)0.2550 (2)0.0806 (2)0.0334 (9)
H170.77750.23180.04450.040*
C180.6446 (3)0.2973 (2)0.0530 (2)0.0365 (10)
H180.62820.30350.00220.044*
C190.5802 (3)0.3301 (2)0.1050 (2)0.0308 (9)
H190.51940.35810.08490.037*
C200.6022 (3)0.32324 (18)0.18701 (19)0.0188 (7)
Sn20.863063 (17)0.698292 (13)0.901481 (13)0.01777 (7)
O40.72509 (17)0.75323 (13)0.84463 (12)0.0234 (5)
O50.99479 (18)0.62575 (14)0.90442 (13)0.0291 (6)
O60.40545 (17)0.94156 (14)0.60703 (13)0.0240 (5)
H6A0.36540.96120.63840.036*
N30.79687 (19)0.72937 (15)0.72772 (15)0.0150 (6)
N40.8715 (2)0.68727 (14)0.77582 (15)0.0150 (6)
C210.7751 (3)0.6187 (2)0.96517 (19)0.0261 (8)
H21A0.74600.57600.92990.039*
H21B0.71870.64860.98690.039*
H21C0.81960.59441.00840.039*
C220.9403 (3)0.80532 (19)0.9414 (2)0.0290 (9)
H22A0.95400.80340.99900.043*
H22B0.89660.85230.92660.043*
H22C1.00610.80990.91710.043*
C230.7252 (2)0.76115 (18)0.76921 (19)0.0167 (7)
C240.6415 (2)0.80870 (17)0.72659 (18)0.0151 (7)
C250.5548 (2)0.83069 (18)0.76511 (19)0.0166 (7)
H250.55060.81560.81870.020*
C260.4749 (2)0.87418 (18)0.72596 (19)0.0189 (7)
H260.41570.88800.75260.023*
C270.4805 (2)0.89776 (19)0.64805 (19)0.0175 (7)
C280.5677 (2)0.8776 (2)0.60977 (19)0.0210 (8)
H280.57310.89500.55700.025*
C290.6457 (2)0.83292 (19)0.64771 (19)0.0196 (7)
H290.70370.81800.62030.023*
C300.9417 (2)0.65032 (17)0.73749 (19)0.0166 (7)
H300.93190.65280.68150.020*
C311.0306 (2)0.60716 (18)0.76933 (19)0.0165 (7)
C321.0538 (3)0.59785 (19)0.8512 (2)0.0226 (8)
C331.1456 (3)0.55688 (19)0.8799 (2)0.0274 (8)
H331.16090.55050.93530.033*
C341.2119 (3)0.52668 (19)0.8300 (2)0.0278 (9)
H341.27370.50080.85110.033*
C351.1910 (3)0.53289 (18)0.7467 (2)0.0230 (8)
C361.2606 (3)0.49950 (19)0.6957 (2)0.0288 (9)
H361.32210.47350.71710.035*
C371.2394 (3)0.5046 (2)0.6157 (2)0.0359 (10)
H371.28680.48240.58180.043*
C381.1497 (3)0.5418 (2)0.5836 (2)0.0361 (10)
H381.13540.54430.52790.043*
C391.0809 (3)0.5753 (2)0.6322 (2)0.0263 (8)
H391.01950.60050.60920.032*
C401.0997 (2)0.57292 (18)0.7152 (2)0.0186 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02143 (14)0.02241 (13)0.01285 (12)0.00068 (10)0.00070 (10)0.00022 (10)
O10.0201 (13)0.0329 (13)0.0160 (12)0.0038 (11)0.0031 (10)0.0017 (11)
O20.0300 (14)0.0385 (14)0.0150 (12)0.0083 (12)0.0013 (11)0.0023 (11)
O30.0174 (13)0.0313 (13)0.0193 (12)0.0065 (11)0.0023 (10)0.0044 (11)
N10.0128 (14)0.0185 (14)0.0163 (14)0.0014 (12)0.0005 (12)0.0022 (12)
N20.0137 (14)0.0180 (14)0.0151 (14)0.0010 (12)0.0027 (12)0.0009 (12)
C10.042 (2)0.032 (2)0.0191 (19)0.0061 (18)0.0068 (18)0.0007 (16)
C20.034 (2)0.0242 (19)0.0220 (19)0.0000 (16)0.0013 (17)0.0006 (16)
C30.0127 (17)0.0159 (16)0.0196 (18)0.0071 (14)0.0001 (14)0.0061 (14)
C40.0114 (16)0.0177 (16)0.0163 (17)0.0039 (14)0.0009 (13)0.0032 (14)
C50.0163 (17)0.0201 (17)0.0151 (17)0.0038 (14)0.0022 (14)0.0006 (14)
C60.0142 (17)0.0221 (17)0.0190 (18)0.0016 (14)0.0069 (14)0.0031 (15)
C70.0105 (17)0.0215 (18)0.0218 (18)0.0012 (14)0.0015 (14)0.0024 (15)
C80.0175 (18)0.0322 (19)0.0148 (17)0.0054 (16)0.0018 (15)0.0033 (15)
C90.0146 (17)0.0258 (18)0.0206 (18)0.0014 (15)0.0033 (15)0.0063 (15)
C100.0180 (17)0.0166 (16)0.0137 (16)0.0015 (14)0.0026 (14)0.0018 (14)
C110.0172 (18)0.0144 (16)0.0186 (17)0.0019 (14)0.0012 (14)0.0004 (14)
C120.0191 (18)0.0180 (17)0.0197 (18)0.0006 (14)0.0008 (15)0.0003 (14)
C130.0223 (19)0.0219 (18)0.0219 (18)0.0035 (15)0.0053 (16)0.0062 (15)
C140.0185 (19)0.0170 (17)0.031 (2)0.0036 (15)0.0045 (16)0.0066 (16)
C150.0173 (18)0.0120 (16)0.0276 (19)0.0004 (14)0.0037 (15)0.0018 (15)
C160.0186 (19)0.0184 (18)0.040 (2)0.0060 (15)0.0003 (17)0.0025 (17)
C170.032 (2)0.035 (2)0.034 (2)0.0126 (18)0.0064 (19)0.0082 (18)
C180.041 (2)0.050 (2)0.0190 (19)0.019 (2)0.0012 (18)0.0046 (18)
C190.026 (2)0.042 (2)0.024 (2)0.0161 (18)0.0010 (17)0.0065 (18)
C200.0185 (18)0.0159 (17)0.0213 (18)0.0012 (14)0.0020 (15)0.0028 (14)
Sn20.01788 (13)0.02101 (13)0.01475 (12)0.00164 (10)0.00322 (10)0.00117 (10)
O40.0200 (13)0.0354 (14)0.0157 (12)0.0102 (11)0.0067 (10)0.0035 (11)
O50.0279 (14)0.0394 (14)0.0200 (13)0.0163 (12)0.0025 (11)0.0036 (11)
O60.0190 (13)0.0342 (14)0.0188 (12)0.0109 (11)0.0010 (10)0.0031 (11)
N30.0095 (14)0.0184 (14)0.0172 (14)0.0025 (11)0.0012 (11)0.0008 (12)
N40.0137 (14)0.0156 (13)0.0157 (14)0.0007 (11)0.0016 (12)0.0026 (11)
C210.036 (2)0.0276 (19)0.0147 (18)0.0106 (17)0.0039 (16)0.0008 (15)
C220.028 (2)0.028 (2)0.031 (2)0.0085 (17)0.0023 (18)0.0017 (17)
C230.0131 (17)0.0148 (16)0.0232 (18)0.0054 (14)0.0072 (15)0.0013 (14)
C240.0144 (17)0.0118 (15)0.0195 (17)0.0017 (13)0.0037 (14)0.0022 (14)
C250.0155 (17)0.0162 (16)0.0186 (17)0.0018 (14)0.0035 (14)0.0024 (14)
C260.0133 (17)0.0179 (17)0.0263 (19)0.0028 (14)0.0071 (15)0.0053 (15)
C270.0112 (17)0.0197 (17)0.0211 (18)0.0016 (14)0.0022 (14)0.0044 (15)
C280.0192 (18)0.0302 (19)0.0139 (17)0.0025 (16)0.0024 (14)0.0002 (15)
C290.0140 (17)0.0231 (17)0.0225 (18)0.0042 (15)0.0067 (15)0.0061 (15)
C300.0188 (18)0.0137 (16)0.0180 (17)0.0041 (14)0.0048 (15)0.0020 (14)
C310.0101 (16)0.0165 (17)0.0233 (18)0.0013 (13)0.0038 (14)0.0008 (14)
C320.0220 (19)0.0182 (17)0.028 (2)0.0012 (15)0.0057 (16)0.0027 (16)
C330.026 (2)0.027 (2)0.029 (2)0.0046 (16)0.0004 (17)0.0086 (17)
C340.021 (2)0.0175 (17)0.045 (2)0.0058 (15)0.0026 (18)0.0093 (17)
C350.0171 (18)0.0103 (16)0.042 (2)0.0036 (14)0.0062 (17)0.0002 (16)
C360.019 (2)0.0135 (17)0.055 (3)0.0025 (15)0.0099 (19)0.0043 (18)
C370.030 (2)0.028 (2)0.053 (3)0.0003 (18)0.021 (2)0.018 (2)
C380.034 (2)0.040 (2)0.036 (2)0.0026 (19)0.012 (2)0.0114 (19)
C390.0194 (19)0.0294 (19)0.031 (2)0.0020 (16)0.0087 (17)0.0072 (17)
C400.0141 (17)0.0136 (16)0.0286 (19)0.0001 (14)0.0051 (15)0.0024 (15)
Geometric parameters (Å, º) top
Sn1—O22.083 (2)Sn2—O52.081 (2)
Sn1—C12.112 (3)Sn2—C212.099 (3)
Sn1—C22.116 (3)Sn2—C222.115 (3)
Sn1—N22.152 (2)Sn2—N42.155 (2)
Sn1—O12.159 (2)Sn2—O42.157 (2)
O1—C31.297 (4)O4—C231.288 (4)
O2—C121.316 (4)O5—C321.316 (4)
O3—C71.355 (4)O6—C271.355 (4)
O3—H30.8400O6—H6A0.8400
N1—C31.326 (4)N3—C231.321 (4)
N1—N21.397 (3)N3—N41.396 (3)
N2—C101.303 (4)N4—C301.314 (4)
C1—H1A0.9800C21—H21A0.9800
C1—H1B0.9800C21—H21B0.9800
C1—H1C0.9800C21—H21C0.9800
C2—H2A0.9800C22—H22A0.9800
C2—H2B0.9800C22—H22B0.9800
C2—H2C0.9800C22—H22C0.9800
C3—C41.466 (4)C23—C241.477 (4)
C4—C91.392 (4)C24—C251.395 (4)
C4—C51.403 (4)C24—C291.405 (4)
C5—C61.380 (4)C25—C261.382 (4)
C5—H50.9500C25—H250.9500
C6—C71.390 (4)C26—C271.388 (4)
C6—H60.9500C26—H260.9500
C7—C81.393 (4)C27—C281.390 (4)
C8—C91.373 (4)C28—C291.367 (4)
C8—H80.9500C28—H280.9500
C9—H90.9500C29—H290.9500
C10—C111.418 (4)C30—C311.421 (4)
C10—H100.9500C30—H300.9500
C11—C121.413 (4)C31—C321.407 (5)
C11—C201.458 (4)C31—C401.452 (4)
C12—C131.421 (4)C32—C331.417 (5)
C13—C141.347 (4)C33—C341.352 (4)
C13—H130.9500C33—H330.9500
C14—C151.427 (4)C34—C351.423 (5)
C14—H140.9500C34—H340.9500
C15—C161.409 (4)C35—C361.415 (4)
C15—C201.419 (4)C35—C401.418 (5)
C16—C171.364 (5)C36—C371.365 (5)
C16—H160.9500C36—H360.9500
C17—C181.395 (5)C37—C381.384 (5)
C17—H170.9500C37—H370.9500
C18—C191.377 (5)C38—C391.381 (5)
C18—H180.9500C38—H380.9500
C19—C201.402 (5)C39—C401.410 (5)
C19—H190.9500C39—H390.9500
O2—Sn1—C195.19 (12)O5—Sn2—C2196.08 (12)
O2—Sn1—C299.24 (12)O5—Sn2—C2296.34 (12)
C1—Sn1—C2125.14 (13)C21—Sn2—C22128.37 (13)
O2—Sn1—N281.92 (9)O5—Sn2—N482.19 (9)
C1—Sn1—N2125.45 (11)C21—Sn2—N4122.25 (11)
C2—Sn1—N2108.92 (11)C22—Sn2—N4109.01 (12)
O2—Sn1—O1154.21 (8)O5—Sn2—O4153.95 (9)
C1—Sn1—O194.20 (12)C21—Sn2—O491.72 (12)
C2—Sn1—O194.83 (11)C22—Sn2—O498.16 (12)
N2—Sn1—O173.08 (9)N4—Sn2—O472.67 (9)
C3—O1—Sn1113.32 (19)C23—O4—Sn2114.62 (19)
C12—O2—Sn1135.1 (2)C32—O5—Sn2135.1 (2)
C7—O3—H3109.5C27—O6—H6A109.5
C3—N1—N2112.2 (3)C23—N3—N4111.6 (2)
C10—N2—N1115.0 (3)C30—N4—N3114.5 (3)
C10—N2—Sn1129.4 (2)C30—N4—Sn2128.8 (2)
N1—N2—Sn1115.33 (17)N3—N4—Sn2116.53 (17)
Sn1—C1—H1A109.5Sn2—C21—H21A109.5
Sn1—C1—H1B109.5Sn2—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
Sn1—C1—H1C109.5Sn2—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
Sn1—C2—H2A109.5Sn2—C22—H22A109.5
Sn1—C2—H2B109.5Sn2—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
Sn1—C2—H2C109.5Sn2—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
O1—C3—N1122.9 (3)O4—C23—N3123.5 (3)
O1—C3—C4119.5 (3)O4—C23—C24118.6 (3)
N1—C3—C4117.5 (3)N3—C23—C24118.0 (3)
C9—C4—C5118.1 (3)C25—C24—C29118.2 (3)
C9—C4—C3122.9 (3)C25—C24—C23119.6 (3)
C5—C4—C3119.1 (3)C29—C24—C23122.2 (3)
C6—C5—C4120.4 (3)C26—C25—C24120.6 (3)
C6—C5—H5119.8C26—C25—H25119.7
C4—C5—H5119.8C24—C25—H25119.7
C5—C6—C7120.7 (3)C25—C26—C27120.5 (3)
C5—C6—H6119.7C25—C26—H26119.8
C7—C6—H6119.7C27—C26—H26119.8
O3—C7—C6123.0 (3)O6—C27—C26123.1 (3)
O3—C7—C8117.8 (3)O6—C27—C28117.5 (3)
C6—C7—C8119.2 (3)C26—C27—C28119.3 (3)
C9—C8—C7120.0 (3)C29—C28—C27120.3 (3)
C9—C8—H8120.0C29—C28—H28119.8
C7—C8—H8120.0C27—C28—H28119.8
C8—C9—C4121.7 (3)C28—C29—C24121.1 (3)
C8—C9—H9119.2C28—C29—H29119.4
C4—C9—H9119.2C24—C29—H29119.4
N2—C10—C11128.2 (3)N4—C30—C31128.1 (3)
N2—C10—H10115.9N4—C30—H30116.0
C11—C10—H10115.9C31—C30—H30116.0
C12—C11—C10121.5 (3)C32—C31—C30121.9 (3)
C12—C11—C20119.5 (3)C32—C31—C40119.6 (3)
C10—C11—C20118.9 (3)C30—C31—C40118.5 (3)
O2—C12—C11123.6 (3)O5—C32—C31123.6 (3)
O2—C12—C13117.2 (3)O5—C32—C33116.7 (3)
C11—C12—C13119.2 (3)C31—C32—C33119.6 (3)
C14—C13—C12121.7 (3)C34—C33—C32121.2 (3)
C14—C13—H13119.2C34—C33—H33119.4
C12—C13—H13119.2C32—C33—H33119.4
C13—C14—C15121.6 (3)C33—C34—C35121.4 (3)
C13—C14—H14119.2C33—C34—H34119.3
C15—C14—H14119.2C35—C34—H34119.3
C16—C15—C20119.7 (3)C36—C35—C40120.3 (3)
C16—C15—C14121.1 (3)C36—C35—C34120.3 (3)
C20—C15—C14119.1 (3)C40—C35—C34119.4 (3)
C17—C16—C15121.4 (3)C37—C36—C35120.1 (4)
C17—C16—H16119.3C37—C36—H36119.9
C15—C16—H16119.3C35—C36—H36119.9
C16—C17—C18119.2 (3)C36—C37—C38120.6 (3)
C16—C17—H17120.4C36—C37—H37119.7
C18—C17—H17120.4C38—C37—H37119.7
C19—C18—C17120.7 (3)C39—C38—C37120.3 (4)
C19—C18—H18119.7C39—C38—H38119.8
C17—C18—H18119.7C37—C38—H38119.8
C18—C19—C20121.5 (3)C38—C39—C40121.4 (4)
C18—C19—H19119.2C38—C39—H39119.3
C20—C19—H19119.2C40—C39—H39119.3
C19—C20—C15117.5 (3)C39—C40—C35117.2 (3)
C19—C20—C11123.7 (3)C39—C40—C31124.1 (3)
C15—C20—C11118.8 (3)C35—C40—C31118.7 (3)
O2—Sn1—O1—C329.7 (3)O5—Sn2—O4—C2324.6 (3)
C1—Sn1—O1—C3140.9 (2)C21—Sn2—O4—C23132.3 (2)
C2—Sn1—O1—C393.3 (2)C22—Sn2—O4—C2398.6 (2)
N2—Sn1—O1—C315.0 (2)N4—Sn2—O4—C238.9 (2)
C1—Sn1—O2—C12120.3 (3)C21—Sn2—O5—C32128.0 (3)
C2—Sn1—O2—C12112.8 (3)C22—Sn2—O5—C32102.2 (3)
N2—Sn1—O2—C124.8 (3)N4—Sn2—O5—C326.2 (3)
O1—Sn1—O2—C129.4 (4)O4—Sn2—O5—C3221.3 (4)
C3—N1—N2—C10173.8 (3)C23—N3—N4—C30176.3 (2)
C3—N1—N2—Sn112.0 (3)C23—N3—N4—Sn27.9 (3)
O2—Sn1—N2—C101.2 (3)O5—Sn2—N4—C302.8 (2)
C1—Sn1—N2—C1089.4 (3)C21—Sn2—N4—C3095.1 (3)
C2—Sn1—N2—C1098.3 (3)C22—Sn2—N4—C3091.2 (3)
O1—Sn1—N2—C10172.4 (3)O4—Sn2—N4—C30175.9 (3)
O2—Sn1—N2—N1172.0 (2)O5—Sn2—N4—N3177.9 (2)
C1—Sn1—N2—N197.4 (2)C21—Sn2—N4—N389.8 (2)
C2—Sn1—N2—N174.9 (2)C22—Sn2—N4—N383.9 (2)
O1—Sn1—N2—N114.45 (18)O4—Sn2—N4—N38.99 (19)
Sn1—O1—C3—N114.9 (4)Sn2—O4—C23—N38.4 (4)
Sn1—O1—C3—C4163.7 (2)Sn2—O4—C23—C24171.2 (2)
N2—N1—C3—O12.1 (4)N4—N3—C23—O40.4 (4)
N2—N1—C3—C4176.5 (2)N4—N3—C23—C24179.1 (2)
O1—C3—C4—C9179.9 (3)O4—C23—C24—C2512.1 (4)
N1—C3—C4—C91.3 (5)N3—C23—C24—C25168.4 (3)
O1—C3—C4—C50.8 (4)O4—C23—C24—C29168.0 (3)
N1—C3—C4—C5179.4 (3)N3—C23—C24—C2911.5 (4)
C9—C4—C5—C61.5 (5)C29—C24—C25—C260.8 (5)
C3—C4—C5—C6179.3 (3)C23—C24—C25—C26179.1 (3)
C4—C5—C6—C70.0 (5)C24—C25—C26—C271.0 (5)
C5—C6—C7—O3179.4 (3)C25—C26—C27—O6178.9 (3)
C5—C6—C7—C81.1 (5)C25—C26—C27—C280.4 (5)
O3—C7—C8—C9179.9 (3)O6—C27—C28—C29179.4 (3)
C6—C7—C8—C90.6 (5)C26—C27—C28—C292.0 (5)
C7—C8—C9—C40.9 (5)C27—C28—C29—C242.2 (5)
C5—C4—C9—C82.0 (5)C25—C24—C29—C280.8 (5)
C3—C4—C9—C8178.8 (3)C23—C24—C29—C28179.3 (3)
N1—N2—C10—C11175.5 (3)N3—N4—C30—C31175.7 (3)
Sn1—N2—C10—C112.3 (5)Sn2—N4—C30—C310.6 (5)
N2—C10—C11—C123.8 (5)N4—C30—C31—C320.9 (5)
N2—C10—C11—C20178.3 (3)N4—C30—C31—C40178.2 (3)
Sn1—O2—C12—C114.8 (5)Sn2—O5—C32—C316.8 (5)
Sn1—O2—C12—C13175.5 (2)Sn2—O5—C32—C33172.8 (2)
C10—C11—C12—O20.3 (5)C30—C31—C32—O52.0 (5)
C20—C11—C12—O2178.2 (3)C40—C31—C32—O5178.9 (3)
C10—C11—C12—C13179.3 (3)C30—C31—C32—C33177.6 (3)
C20—C11—C12—C131.5 (4)C40—C31—C32—C331.5 (5)
O2—C12—C13—C14179.1 (3)O5—C32—C33—C34179.4 (3)
C11—C12—C13—C140.6 (5)C31—C32—C33—C340.3 (5)
C12—C13—C14—C150.1 (5)C32—C33—C34—C351.6 (5)
C13—C14—C15—C16179.6 (3)C33—C34—C35—C36178.8 (3)
C13—C14—C15—C200.1 (5)C33—C34—C35—C401.2 (5)
C20—C15—C16—C170.3 (5)C40—C35—C36—C371.0 (5)
C14—C15—C16—C17179.2 (3)C34—C35—C36—C37179.1 (3)
C15—C16—C17—C180.3 (6)C35—C36—C37—C380.4 (5)
C16—C17—C18—C190.8 (6)C36—C37—C38—C390.8 (6)
C17—C18—C19—C200.8 (6)C37—C38—C39—C400.2 (6)
C18—C19—C20—C150.2 (5)C38—C39—C40—C351.6 (5)
C18—C19—C20—C11179.9 (3)C38—C39—C40—C31179.8 (3)
C16—C15—C20—C190.3 (5)C36—C35—C40—C391.9 (5)
C14—C15—C20—C19179.2 (3)C34—C35—C40—C39178.1 (3)
C16—C15—C20—C11179.5 (3)C36—C35—C40—C31179.4 (3)
C14—C15—C20—C110.9 (4)C34—C35—C40—C310.6 (4)
C12—C11—C20—C19178.5 (3)C32—C31—C40—C39176.7 (3)
C10—C11—C20—C190.6 (5)C30—C31—C40—C394.2 (5)
C12—C11—C20—C151.6 (4)C32—C31—C40—C351.9 (4)
C10—C11—C20—C15179.5 (3)C30—C31—C40—C35177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.841.912.749 (3)178
O6—H6a···N1ii0.841.912.738 (3)167
C8—H8···O5iii0.952.593.477 (4)155
C21—H21a···N1iv0.982.623.494 (4)149
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y, z1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C18H12N2O3)]
Mr453.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.9422 (4), 16.5264 (5), 16.9949 (5)
β (°) 94.923 (3)
V3)3621.59 (19)
Z8
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini E
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12413, 6668, 5647
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.05
No. of reflections6668
No. of parameters475
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.51

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.841.912.749 (3)178
O6—H6a···N1ii0.841.912.738 (3)167
C8—H8···O5iii0.952.593.477 (4)155
C21—H21a···N1iv0.982.623.494 (4)149
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y, z1; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: maaffan@frst.unimas.my.

Acknowledgements

We thank MOSTI (grant No. 06–01-09-SF0046), Universiti Malaysia Sarawak, and Oxford Diffraction for supporting this study.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAffan, M. A., Foo, S. W., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, m3138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds