metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[rac-2-(1-Amino­eth­yl)phenyl-κ2C1,N](ethyl­endi­amine-κ2N,N′)palladium(II) 3,5-di­methyl­benzoate

aDepartment of Inorganic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, and bInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 6 July 2010; accepted 15 July 2010; online 21 July 2010)

In the title compound, [Pd(C8H10N)(C2H8N2)](C9H9O2), the palladium ion is coordinated in a distorted square-planar fashion by the two N atoms from the chelating ethyl­enediamine group and by the N and a C atom of the deprotonated chiral amine. The resulting cationic complex and the 3,5-dimethyl­benzoate anion are inter­connected by N—H⋯O hydrogen bonds.

Related literature

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002[Calmuschi, B. & Englert, U. (2002). Acta Cryst. C58, m545-m548.], 2005a[Calmuschi, B. & Englert, U. (2005a). Acta Cryst. E61, m164-m165.],b[Calmuschi, B. & Englert, U. (2005b). Acta Cryst. E61, m166-m167.],c[Calmuschi, B. & Englert, U. (2005c). Acta Cryst. E61, m168-m170.]); Calmuschi et al. (2004[Calmuschi, B., Jonas, A. E. & Englert, U. (2004). Acta Cryst. C60, m320-m323.]). For related organopalladium complexes with nitro­gen donor ligands, see: Kalf et al. (2006[Kalf, I., Wang, R. & Englert, U. (2006). J. Organomet. Chem. 691, 2277-2285.], 2008[Kalf, I., Wang, R. & Englert, U. (2008). CrystEngComm, 10, 39-47.]); Şerb et al. (2010[Şerb, M.-D., Kalf, I. & Englert, U. (2010). Acta Cryst. E66, m976.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Etter (1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C8H10N)(C2H8N2)](C9H9O2)

  • Mr = 435.84

  • Monoclinic, P 21 /c

  • a = 7.9624 (9) Å

  • b = 28.615 (3) Å

  • c = 8.5964 (10) Å

  • β = 100.616 (2)°

  • V = 1925.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 110 K

  • 0.19 × 0.17 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (MULABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.836, Tmax = 0.971

  • 17762 measured reflections

  • 4375 independent reflections

  • 3310 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.092

  • S = 0.98

  • 4375 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 1.910 (3)
Pd1—N3 1.941 (3)
Pd1—C3 2.000 (4)
Pd1—N2 2.119 (3)
N1—Pd1—N3 178.30 (14)
N1—Pd1—C3 79.44 (16)
N3—Pd1—C3 102.15 (15)
N1—Pd1—N2 98.49 (14)
N3—Pd1—N2 79.89 (13)
C3—Pd1—N2 176.25 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.92 2.18 3.082 (5) 167
N1—H1B⋯O1i 0.92 2.08 2.946 (5) 156
N2—H2A⋯O1i 0.92 2.06 2.892 (4) 151
N3—H3A⋯O2ii 0.92 2.03 2.937 (5) 168
N3—H3B⋯O2iii 0.92 2.38 3.098 (4) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

The complex cation (Fig. 1) is essentially square planar: the distance of the metal center to the least-squares plane through the coordinating atoms amounts to 0.0331 (3) Å. The bond lengths between palladium and ethylenediamine nitrogen atoms differ significantly: The Pd—N distance trans to carbon is 2.119 (3) Å and hence longer than the bond to the N donor atom trans to the amino group (1.941 (3) Å) (Table 1). This observation is in agreement with the distance pattern observed for related organopalladium complexes with chelating oxygen donor ligands (Calmuschi & Englert, 2002; Calmuschi et al., 2004; Calmuschi & Englert, 2005a; Calmuschi & Englert, 2005b; Calmuschi & Englert, 2005c) and nitrogen donor ligands (Kalf et al., 2006; Kalf et al., 2008). The structure is extended through moderately strong N—H···O hydrogen bonds to give rise to a two-dimensional network. With the exception of H2b (attached to N2 of the ethylendiamine ligand) all potential H donors find an acceptor in reasonable geometry for hydrogen bonding. The intermolecular motifs in the a direction are C22(8); in the c direction C21(4) motifs can be observed.(Etter et al., 1990; Etter, 1991) (Fig. 2). The hydrogen bond parameters are presented in Table 2. The flat cationic complexes form stacks extending in the c direction; the shortest Pd···Pd separation amounts to 4.4819 (7) Å. Figure 3 shows the packing diagram of the title compound. The molecular volume of the title compound (calculated as V/Z) is very similar to the molecular volume of {(rac)-[2-(1-aminoethyl)phenyl-κ2-C1,N] (ethylendiamine)palladium(II)} 3-methylbenzoate hydrate compound reported by Şerb et al., (2010), in which the additional solvent water molecule compensates the smaller size of the anion.

Related literature top

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002, 2005a,b,c); Calmuschi et al. (2004). For related organopalladium complexes with nitrogen donor ligands, see: Kalf et al. (2006, 2008); Şerb et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991).

Experimental top

46 mg (0.76 mmol) ethylenediamine are added to a solution of 200 mg (0.38 mmol) [{Pd(µ-Cl)(C6H4CH-MeNH2)}2] (Calmuschi & Englert, 2002) in 50 ml MeOH at 50 ° C. 196 mg (0.76 mmol) silver-3,5-dimethylbenzoate are added; the suspension is stirred for 30 min and allowed to cool to room temperature, and AgCl is removed by filtration. After evaporation of the solvent in vacuo, the product is obtained in almost quantitative yield. Slow evaporation of the solvent under ambient conditions gives crystals suitable for X-ray diffraction.

Refinement top

H atoms were introduced in their idealized positions with Caryl—H 0.95 Å, Uiso(H) = 1.2Ueq(C); Cmethyl—H 0.98 Å, Uiso(H) = 1.5Ueq(C); Cethylene—H 0.99 Å, Uiso(H) = 1.2Ueq(C) and N—H 0.92 Å, Uiso(H) = 1.2Ueq(N) and refined using a riding model.

Structure description top

The complex cation (Fig. 1) is essentially square planar: the distance of the metal center to the least-squares plane through the coordinating atoms amounts to 0.0331 (3) Å. The bond lengths between palladium and ethylenediamine nitrogen atoms differ significantly: The Pd—N distance trans to carbon is 2.119 (3) Å and hence longer than the bond to the N donor atom trans to the amino group (1.941 (3) Å) (Table 1). This observation is in agreement with the distance pattern observed for related organopalladium complexes with chelating oxygen donor ligands (Calmuschi & Englert, 2002; Calmuschi et al., 2004; Calmuschi & Englert, 2005a; Calmuschi & Englert, 2005b; Calmuschi & Englert, 2005c) and nitrogen donor ligands (Kalf et al., 2006; Kalf et al., 2008). The structure is extended through moderately strong N—H···O hydrogen bonds to give rise to a two-dimensional network. With the exception of H2b (attached to N2 of the ethylendiamine ligand) all potential H donors find an acceptor in reasonable geometry for hydrogen bonding. The intermolecular motifs in the a direction are C22(8); in the c direction C21(4) motifs can be observed.(Etter et al., 1990; Etter, 1991) (Fig. 2). The hydrogen bond parameters are presented in Table 2. The flat cationic complexes form stacks extending in the c direction; the shortest Pd···Pd separation amounts to 4.4819 (7) Å. Figure 3 shows the packing diagram of the title compound. The molecular volume of the title compound (calculated as V/Z) is very similar to the molecular volume of {(rac)-[2-(1-aminoethyl)phenyl-κ2-C1,N] (ethylendiamine)palladium(II)} 3-methylbenzoate hydrate compound reported by Şerb et al., (2010), in which the additional solvent water molecule compensates the smaller size of the anion.

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002, 2005a,b,c); Calmuschi et al. (2004). For related organopalladium complexes with nitrogen donor ligands, see: Kalf et al. (2006, 2008); Şerb et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids at 50% probability; H atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. : Hydrogen-bond motifs. The 3,5-dimethylphenyl group of the anion, the methyl group attached to the cation and H atoms attached to carbon have been omitted for clarity.
[Figure 3] Fig. 3. : Packing diagram of the title compound. The dashed lines indicate the hydrogen bonds. H atoms not involved in H bonding have been omitted for clarity.
[rac-2-(1-Aminoethyl)phenyl-κ2C1,N](ethylendiamine- κ2N,N')palladium(II) 3,5-dimethylbenzoate top
Crystal data top
[Pd(C8H10N)(C2H8N2)](C9H9O2)F(000) = 896
Mr = 435.84Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3595 reflections
a = 7.9624 (9) Åθ = 2.4–24.6°
b = 28.615 (3) ŵ = 0.98 mm1
c = 8.5964 (10) ÅT = 110 K
β = 100.616 (2)°Plate, yellow
V = 1925.1 (4) Å30.19 × 0.17 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4375 independent reflections
Radiation source: fine-focus sealed tube3310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(MULABS; Blessing, 1995; Spek, 2009)
h = 1010
Tmin = 0.836, Tmax = 0.971k = 3733
17762 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
4375 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.65 e Å3
Crystal data top
[Pd(C8H10N)(C2H8N2)](C9H9O2)V = 1925.1 (4) Å3
Mr = 435.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9624 (9) ŵ = 0.98 mm1
b = 28.615 (3) ÅT = 110 K
c = 8.5964 (10) Å0.19 × 0.17 × 0.03 mm
β = 100.616 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4375 independent reflections
Absorption correction: multi-scan
(MULABS; Blessing, 1995; Spek, 2009)
3310 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.971Rint = 0.076
17762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.98Δρmax = 0.73 e Å3
4375 reflectionsΔρmin = 1.65 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.94093 (4)0.227805 (11)0.25811 (4)0.01652 (10)
N10.7080 (4)0.20820 (12)0.2066 (5)0.0234 (9)
H1A0.66860.20260.29900.028*
H1B0.64390.23210.15440.028*
N20.8992 (4)0.30017 (12)0.2865 (4)0.0203 (8)
H2A0.80930.31000.21050.024*
H2B0.87130.30540.38420.024*
N31.1755 (4)0.24963 (12)0.3089 (4)0.0160 (8)
H3A1.23790.23010.38270.019*
H3B1.22330.24890.21930.019*
C10.6809 (5)0.16412 (15)0.1033 (6)0.0252 (11)
H10.66030.17330.01090.030*
C20.8333 (5)0.13607 (15)0.1385 (5)0.0213 (10)
C30.9712 (5)0.15983 (14)0.2170 (5)0.0179 (9)
C41.1143 (5)0.13512 (15)0.2544 (5)0.0235 (11)
H41.21410.14930.31310.028*
C51.1188 (6)0.08822 (16)0.2077 (6)0.0304 (12)
H51.22320.07160.23610.036*
C60.9840 (6)0.06567 (17)0.1253 (6)0.0342 (13)
H60.99110.03410.09290.041*
C70.8403 (6)0.08982 (16)0.0915 (6)0.0291 (12)
H70.74040.07530.03430.035*
C80.5346 (5)0.13765 (17)0.1359 (6)0.0314 (12)
H8A0.50430.11340.05520.047*
H8B0.43720.15870.13380.047*
H8C0.56390.12310.24050.047*
C91.0466 (5)0.32579 (14)0.2732 (5)0.0202 (10)
H9A1.04050.35810.31330.024*
H9B1.06390.32700.16210.024*
C101.1831 (5)0.29881 (14)0.3734 (5)0.0203 (10)
H10A1.16550.29860.48450.024*
H10B1.29600.31290.37040.024*
O10.6039 (3)0.20443 (10)0.5344 (4)0.0207 (7)
O20.3555 (3)0.19477 (10)0.5774 (4)0.0217 (7)
C110.4914 (5)0.17924 (15)0.5705 (5)0.0173 (9)
C120.5283 (5)0.12878 (14)0.6100 (5)0.0169 (9)
C130.4191 (5)0.10026 (15)0.6716 (5)0.0221 (10)
H130.31350.11320.68740.027*
C140.4520 (6)0.05353 (16)0.7128 (6)0.0261 (11)
C150.5963 (6)0.03531 (16)0.6867 (6)0.0279 (11)
H150.62260.00350.71190.033*
C160.7073 (5)0.06234 (16)0.6236 (6)0.0244 (11)
C170.6705 (5)0.10894 (15)0.5866 (5)0.0214 (10)
H170.75060.12700.54310.026*
C180.8671 (6)0.04280 (17)0.6026 (7)0.0401 (14)
H18A0.95160.04670.70020.060*
H18B0.90700.05890.51550.060*
H18C0.85230.00950.57780.060*
C190.3363 (6)0.02328 (17)0.7852 (7)0.0453 (15)
H19A0.34510.00900.74950.068*
H19B0.21840.03420.75330.068*
H19C0.36900.02460.90080.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01214 (14)0.01639 (18)0.02123 (19)0.00006 (14)0.00361 (12)0.00117 (17)
N10.0126 (17)0.025 (2)0.034 (2)0.0002 (15)0.0080 (16)0.0100 (19)
N20.0122 (16)0.020 (2)0.030 (2)0.0036 (14)0.0081 (16)0.0033 (17)
N30.0129 (16)0.0155 (18)0.020 (2)0.0031 (14)0.0037 (15)0.0011 (16)
C10.019 (2)0.023 (3)0.033 (3)0.0045 (19)0.001 (2)0.002 (2)
C20.020 (2)0.017 (2)0.029 (3)0.0051 (18)0.010 (2)0.004 (2)
C30.016 (2)0.020 (2)0.018 (2)0.0017 (17)0.0045 (17)0.0002 (19)
C40.020 (2)0.020 (3)0.030 (3)0.0040 (18)0.004 (2)0.002 (2)
C50.026 (2)0.024 (3)0.041 (3)0.006 (2)0.006 (2)0.000 (2)
C60.038 (3)0.017 (3)0.049 (4)0.004 (2)0.011 (3)0.005 (2)
C70.026 (2)0.023 (3)0.037 (3)0.005 (2)0.004 (2)0.001 (2)
C80.020 (2)0.040 (3)0.032 (3)0.009 (2)0.001 (2)0.002 (2)
C90.017 (2)0.014 (2)0.030 (3)0.0012 (17)0.0064 (19)0.001 (2)
C100.015 (2)0.022 (3)0.023 (3)0.0003 (17)0.0002 (18)0.001 (2)
O10.0110 (13)0.0182 (16)0.033 (2)0.0024 (12)0.0045 (13)0.0022 (14)
O20.0121 (14)0.0216 (17)0.032 (2)0.0077 (12)0.0053 (13)0.0057 (14)
C110.0144 (19)0.021 (2)0.015 (2)0.0016 (17)0.0022 (17)0.0028 (19)
C120.0145 (19)0.015 (2)0.019 (3)0.0016 (16)0.0022 (17)0.0004 (19)
C130.013 (2)0.024 (3)0.029 (3)0.0003 (17)0.0006 (19)0.005 (2)
C140.020 (2)0.023 (3)0.033 (3)0.0034 (19)0.001 (2)0.002 (2)
C150.029 (2)0.018 (3)0.032 (3)0.006 (2)0.006 (2)0.004 (2)
C160.018 (2)0.022 (3)0.031 (3)0.0084 (18)0.002 (2)0.006 (2)
C170.017 (2)0.022 (3)0.025 (3)0.0001 (18)0.0035 (19)0.006 (2)
C180.024 (3)0.036 (3)0.061 (4)0.015 (2)0.008 (3)0.002 (3)
C190.030 (3)0.033 (3)0.072 (5)0.006 (2)0.007 (3)0.014 (3)
Geometric parameters (Å, º) top
Pd1—N11.910 (3)C8—H8B0.9800
Pd1—N31.941 (3)C8—H8C0.9800
Pd1—C32.000 (4)C9—C101.475 (5)
Pd1—N22.119 (3)C9—H9A0.9900
N1—C11.535 (6)C9—H9B0.9900
N1—H1A0.9200C10—H10A0.9900
N1—H1B0.9200C10—H10B0.9900
N2—C91.406 (5)O1—C111.233 (5)
N2—H2A0.9200O2—C111.181 (4)
N2—H2B0.9200C11—C121.500 (6)
N3—C101.510 (5)C12—C171.315 (5)
N3—H3A0.9200C12—C131.368 (6)
N3—H3B0.9200C13—C141.396 (6)
C1—C21.440 (6)C13—H130.9500
C1—C81.459 (6)C14—C151.318 (6)
C1—H11.0000C14—C191.482 (6)
C2—C31.360 (6)C15—C161.361 (6)
C2—C71.388 (6)C15—H150.9500
C3—C41.329 (5)C16—C171.389 (6)
C4—C51.403 (6)C16—C181.432 (6)
C4—H40.9500C17—H170.9500
C5—C61.338 (6)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.323 (6)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C8—H8A0.9800C19—H19C0.9800
N1—Pd1—N3178.30 (14)H8A—C8—H8B109.5
N1—Pd1—C379.44 (16)C1—C8—H8C109.5
N3—Pd1—C3102.15 (15)H8A—C8—H8C109.5
N1—Pd1—N298.49 (14)H8B—C8—H8C109.5
N3—Pd1—N279.89 (13)N2—C9—C10102.5 (3)
C3—Pd1—N2176.25 (16)N2—C9—H9A111.3
C1—N1—Pd1113.7 (2)C10—C9—H9A111.3
C1—N1—H1A108.8N2—C9—H9B111.3
Pd1—N1—H1A108.8C10—C9—H9B111.3
C1—N1—H1B108.8H9A—C9—H9B109.2
Pd1—N1—H1B108.8C9—C10—N3107.3 (3)
H1A—N1—H1B107.7C9—C10—H10A110.2
C9—N2—Pd1110.4 (3)N3—C10—H10A110.2
C9—N2—H2A109.6C9—C10—H10B110.2
Pd1—N2—H2A109.6N3—C10—H10B110.2
C9—N2—H2B109.6H10A—C10—H10B108.5
Pd1—N2—H2B109.6O2—C11—O1120.5 (4)
H2A—N2—H2B108.1O2—C11—C12119.6 (4)
C10—N3—Pd1110.7 (2)O1—C11—C12119.9 (4)
C10—N3—H3A109.5C17—C12—C13115.4 (4)
Pd1—N3—H3A109.5C17—C12—C11121.3 (4)
C10—N3—H3B109.5C13—C12—C11123.3 (4)
Pd1—N3—H3B109.5C12—C13—C14124.5 (4)
H3A—N3—H3B108.1C12—C13—H13117.7
C2—C1—C8110.0 (4)C14—C13—H13117.7
C2—C1—N1108.2 (4)C15—C14—C13117.7 (4)
C8—C1—N1110.3 (4)C15—C14—C19118.0 (5)
C2—C1—H1109.4C13—C14—C19124.3 (4)
C8—C1—H1109.4C14—C15—C16119.6 (4)
N1—C1—H1109.4C14—C15—H15120.2
C3—C2—C7123.3 (4)C16—C15—H15120.2
C3—C2—C1113.4 (4)C15—C16—C17120.8 (4)
C7—C2—C1123.2 (4)C15—C16—C18119.1 (4)
C4—C3—C2115.6 (4)C17—C16—C18120.1 (4)
C4—C3—Pd1126.9 (3)C12—C17—C16122.0 (4)
C2—C3—Pd1117.5 (3)C12—C17—H17119.0
C3—C4—C5120.3 (4)C16—C17—H17119.0
C3—C4—H4119.8C16—C18—H18A109.5
C5—C4—H4119.8C16—C18—H18B109.5
C6—C5—C4123.6 (4)H18A—C18—H18B109.5
C6—C5—H5118.2C16—C18—H18C109.5
C4—C5—H5118.2H18A—C18—H18C109.5
C7—C6—C5116.2 (5)H18B—C18—H18C109.5
C7—C6—H6121.9C14—C19—H19A109.5
C5—C6—H6121.9C14—C19—H19B109.5
C6—C7—C2120.9 (4)H19A—C19—H19B109.5
C6—C7—H7119.6C14—C19—H19C109.5
C2—C7—H7119.6H19A—C19—H19C109.5
C1—C8—H8A109.5H19B—C19—H19C109.5
C1—C8—H8B109.5
N3—Pd1—N1—C1134 (5)Pd1—C3—C4—C5175.4 (3)
C3—Pd1—N1—C124.5 (3)C3—C4—C5—C60.2 (8)
N2—Pd1—N1—C1152.4 (3)C4—C5—C6—C71.5 (8)
N1—Pd1—N2—C9160.2 (3)C5—C6—C7—C20.7 (8)
N3—Pd1—N2—C919.2 (3)C3—C2—C7—C61.8 (8)
C3—Pd1—N2—C9104 (2)C1—C2—C7—C6179.3 (5)
N1—Pd1—N3—C1032 (5)Pd1—N2—C9—C1046.1 (4)
C3—Pd1—N3—C10169.6 (3)N2—C9—C10—N357.7 (4)
N2—Pd1—N3—C1013.6 (3)Pd1—N3—C10—C943.9 (4)
Pd1—N1—C1—C229.6 (4)O2—C11—C12—C17172.2 (4)
Pd1—N1—C1—C8150.0 (3)O1—C11—C12—C179.3 (6)
C8—C1—C2—C3136.7 (4)O2—C11—C12—C137.6 (7)
N1—C1—C2—C316.1 (5)O1—C11—C12—C13170.8 (4)
C8—C1—C2—C745.6 (6)C17—C12—C13—C141.7 (7)
N1—C1—C2—C7166.2 (4)C11—C12—C13—C14178.5 (4)
C7—C2—C3—C43.4 (7)C12—C13—C14—C151.9 (7)
C1—C2—C3—C4178.9 (4)C12—C13—C14—C19177.5 (5)
C7—C2—C3—Pd1174.8 (4)C13—C14—C15—C160.8 (7)
C1—C2—C3—Pd12.9 (5)C19—C14—C15—C16178.6 (5)
N1—Pd1—C3—C4165.9 (4)C14—C15—C16—C170.2 (7)
N3—Pd1—C3—C414.7 (4)C14—C15—C16—C18177.1 (5)
N2—Pd1—C3—C4137 (2)C13—C12—C17—C160.6 (7)
N1—Pd1—C3—C216.1 (3)C11—C12—C17—C16179.5 (4)
N3—Pd1—C3—C2163.2 (3)C15—C16—C17—C120.3 (7)
N2—Pd1—C3—C241 (2)C18—C16—C17—C12177.2 (5)
C2—C3—C4—C52.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.922.183.082 (5)167
N1—H1B···O1i0.922.082.946 (5)156
N2—H2A···O1i0.922.062.892 (4)151
N3—H3A···O2ii0.922.032.937 (5)168
N3—H3B···O2iii0.922.383.098 (4)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Pd(C8H10N)(C2H8N2)](C9H9O2)
Mr435.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)7.9624 (9), 28.615 (3), 8.5964 (10)
β (°) 100.616 (2)
V3)1925.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.19 × 0.17 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(MULABS; Blessing, 1995; Spek, 2009)
Tmin, Tmax0.836, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
17762, 4375, 3310
Rint0.076
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.092, 0.98
No. of reflections4375
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.65

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N11.910 (3)Pd1—C32.000 (4)
Pd1—N31.941 (3)Pd1—N22.119 (3)
N1—Pd1—N3178.30 (14)N1—Pd1—N298.49 (14)
N1—Pd1—C379.44 (16)N3—Pd1—N279.89 (13)
N3—Pd1—C3102.15 (15)C3—Pd1—N2176.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.922.183.082 (5)167
N1—H1B···O1i0.922.082.946 (5)156
N2—H2A···O1i0.922.062.892 (4)151
N3—H3A···O2ii0.922.032.937 (5)168
N3—H3B···O2iii0.922.383.098 (4)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationCalmuschi, B. & Englert, U. (2002). Acta Cryst. C58, m545–m548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005a). Acta Cryst. E61, m164–m165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005b). Acta Cryst. E61, m166–m167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005c). Acta Cryst. E61, m168–m170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B., Jonas, A. E. & Englert, U. (2004). Acta Cryst. C60, m320–m323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKalf, I., Wang, R. & Englert, U. (2006). J. Organomet. Chem. 691, 2277–2285.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalf, I., Wang, R. & Englert, U. (2008). CrystEngComm, 10, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationŞerb, M.-D., Kalf, I. & Englert, U. (2010). Acta Cryst. E66, m976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds