metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­methyl­phen­yl(quinoline-2-carboxyl­ato-κ2N,O)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 July 2010; accepted 12 July 2010; online 17 July 2010)

The Sn atom in the title compound, [Sn(CH3)(C6H5)(C10H6NO2)Cl], shows a distorted C2SnNOCl trigonal-bipyramidal coordination; the apical sites are occupied by the N and Cl atoms.

Related literature

For chloridodimeth­yl(quinoline-2-carboxyl­ato)tin(IV), see: Wang et al. (2007[Wang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m3059.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)(C6H5)(C10H6NO2)Cl]

  • Mr = 418.43

  • Monoclinic, P 21 /n

  • a = 10.6942 (5) Å

  • b = 13.1463 (6) Å

  • c = 11.2733 (5) Å

  • β = 93.689 (1)°

  • V = 1581.6 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.616, Tmax = 0.841

  • 14187 measured reflections

  • 3613 independent reflections

  • 3433 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.40

  • 3613 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.117 (3)
Sn1—C2 2.122 (2)
Sn1—N1 2.369 (2)
Sn1—O1 2.062 (2)
Sn1—Cl1 2.4414 (7)
C1—Sn1—C2 138.58 (9)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The tin atom in chlorodimethyl(quinoline-2-carboxylate)tin shows cis-C2SnNOCl trigonal bipyramidal coordination, with the C2Sn skeleton being bent at 131.8 (2) ° (Wang et al., 2007). Replacing one of the methyl groups by a bulkier phenyl group in the title analog (Scheme I, Fig. 1) leads to only a marginal opening of the angle 138.6 (1) °; the trans angle is also marginally increased.

Related literature top

For chloridodimethyl(quinoline-2-carboxylato)tin, see: Wang et al. (2007).

Experimental top

Sodium quinoline-2-carboxylate was synthesized by reacting sodium hydroxide and quinoline-2-carboxylic acid in toluene in a Dean-Start apparatus. The compound (0.20 g, 1 mmol) was then stirred with methylphenyltin dichloride (0.35 g, 1 mmol) in toluene; no heat was applied. The precipitate that formed was recrystallized from methanol.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The final difference Fourier map had a peak (1.741eÅ-3) at 0.78 Å from Sn1.

Structure description top

The tin atom in chlorodimethyl(quinoline-2-carboxylate)tin shows cis-C2SnNOCl trigonal bipyramidal coordination, with the C2Sn skeleton being bent at 131.8 (2) ° (Wang et al., 2007). Replacing one of the methyl groups by a bulkier phenyl group in the title analog (Scheme I, Fig. 1) leads to only a marginal opening of the angle 138.6 (1) °; the trans angle is also marginally increased.

For chloridodimethyl(quinoline-2-carboxylato)tin, see: Wang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl(CH3)(C6H5)(C10H6NO2) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Chloridomethylphenyl(quinoline-2-carboxylato-κ2N,O)tin(IV) top
Crystal data top
[Sn(CH3)(C6H5)(C10H6NO2)Cl]F(000) = 824
Mr = 418.43Dx = 1.757 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9943 reflections
a = 10.6942 (5) Åθ = 2.4–28.3°
b = 13.1463 (6) ŵ = 1.79 mm1
c = 11.2733 (5) ÅT = 100 K
β = 93.689 (1)°Prism, colorless
V = 1581.6 (1) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.616, Tmax = 0.841k = 1717
14187 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1663P]
where P = (Fo2 + 2Fc2)/3
S = 1.40(Δ/σ)max = 0.001
3613 reflectionsΔρmax = 1.74 e Å3
201 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0280 (15)
Crystal data top
[Sn(CH3)(C6H5)(C10H6NO2)Cl]V = 1581.6 (1) Å3
Mr = 418.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6942 (5) ŵ = 1.79 mm1
b = 13.1463 (6) ÅT = 100 K
c = 11.2733 (5) Å0.30 × 0.20 × 0.10 mm
β = 93.689 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3433 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.841Rint = 0.039
14187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.40Δρmax = 1.74 e Å3
3613 reflectionsΔρmin = 0.94 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.813061 (14)0.776948 (11)0.733408 (14)0.01396 (11)
Cl11.02998 (6)0.75394 (6)0.68330 (7)0.02452 (16)
O10.77940 (15)0.62981 (12)0.67664 (15)0.0176 (3)
O20.64876 (17)0.49885 (13)0.64587 (16)0.0217 (4)
C10.8465 (3)0.77556 (17)0.9205 (3)0.0226 (6)
H1A0.77420.80460.95750.034*
H1B0.92130.81600.94280.034*
H1C0.85960.70540.94790.034*
C20.7644 (2)0.88296 (16)0.59620 (19)0.0139 (4)
C30.6502 (2)0.87698 (17)0.52921 (19)0.0161 (4)
H30.59310.82360.54350.019*
C40.6195 (2)0.94912 (19)0.4413 (2)0.0193 (5)
H40.54270.94380.39450.023*
C50.7010 (2)1.02855 (18)0.4224 (2)0.0203 (5)
H50.67851.07910.36470.024*
C60.8157 (2)1.03451 (17)0.4877 (2)0.0197 (5)
H60.87191.08870.47420.024*
C70.8479 (2)0.96066 (17)0.5731 (2)0.0167 (4)
H70.92740.96340.61580.020*
C80.6698 (2)0.58635 (18)0.6779 (2)0.0163 (4)
C90.5661 (2)0.65049 (17)0.72434 (19)0.0146 (4)
C100.4453 (2)0.61082 (18)0.7341 (2)0.0178 (4)
H100.42550.54350.70890.021*
C110.3567 (2)0.67171 (19)0.7810 (2)0.0187 (5)
H110.27470.64620.78980.022*
C120.3874 (3)0.77218 (16)0.8162 (2)0.0158 (5)
C130.3008 (2)0.83899 (19)0.8662 (2)0.0193 (5)
H130.21940.81530.88130.023*
C140.3339 (2)0.9378 (2)0.8929 (2)0.0207 (5)
H140.27590.98190.92710.025*
C150.4546 (2)0.97368 (18)0.86940 (19)0.0186 (5)
H150.47541.04290.88450.022*
C160.5418 (2)0.91036 (18)0.82531 (19)0.0172 (4)
H160.62340.93510.81260.021*
C170.5105 (2)0.80846 (18)0.79870 (19)0.0140 (4)
N10.5977 (2)0.74461 (18)0.75477 (18)0.0139 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01151 (15)0.01373 (15)0.01635 (15)0.00098 (4)0.00142 (8)0.00397 (4)
Cl10.0122 (3)0.0219 (3)0.0395 (4)0.0004 (3)0.0017 (2)0.0078 (3)
O10.0146 (8)0.0141 (8)0.0244 (9)0.0003 (6)0.0028 (6)0.0009 (6)
O20.0208 (9)0.0156 (8)0.0286 (9)0.0014 (7)0.0008 (7)0.0046 (7)
C10.0274 (15)0.0217 (13)0.0179 (13)0.0011 (9)0.0052 (11)0.0035 (8)
C20.0152 (10)0.0134 (10)0.0133 (9)0.0019 (8)0.0027 (8)0.0011 (8)
C30.0148 (11)0.0176 (11)0.0162 (10)0.0009 (8)0.0020 (8)0.0006 (8)
C40.0192 (11)0.0236 (12)0.0152 (10)0.0072 (9)0.0004 (8)0.0009 (9)
C50.0302 (13)0.0177 (12)0.0134 (10)0.0090 (10)0.0054 (9)0.0024 (8)
C60.0268 (12)0.0135 (10)0.0198 (11)0.0006 (9)0.0088 (9)0.0020 (8)
C70.0179 (11)0.0145 (10)0.0178 (10)0.0005 (8)0.0021 (8)0.0007 (8)
C80.0174 (11)0.0164 (11)0.0151 (10)0.0006 (8)0.0011 (8)0.0020 (8)
C90.0139 (11)0.0154 (11)0.0142 (10)0.0005 (8)0.0007 (8)0.0022 (8)
C100.0166 (11)0.0143 (10)0.0223 (11)0.0033 (8)0.0002 (9)0.0030 (8)
C110.0142 (11)0.0196 (12)0.0223 (11)0.0028 (9)0.0013 (9)0.0067 (9)
C120.0133 (12)0.0207 (13)0.0135 (11)0.0010 (8)0.0012 (9)0.0060 (7)
C130.0170 (11)0.0253 (12)0.0157 (10)0.0016 (9)0.0022 (8)0.0041 (8)
C140.0218 (12)0.0257 (13)0.0146 (10)0.0059 (10)0.0011 (9)0.0002 (9)
C150.0245 (12)0.0174 (11)0.0135 (10)0.0005 (9)0.0023 (9)0.0012 (8)
C160.0193 (11)0.0176 (11)0.0147 (10)0.0016 (8)0.0002 (8)0.0017 (8)
C170.0144 (11)0.0163 (11)0.0113 (9)0.0004 (9)0.0001 (8)0.0029 (8)
N10.0136 (10)0.0142 (9)0.0139 (9)0.0009 (8)0.0001 (7)0.0025 (8)
Geometric parameters (Å, º) top
Sn1—C12.117 (3)C7—H70.9500
Sn1—C22.122 (2)C8—C91.513 (3)
Sn1—N12.369 (2)C9—N11.322 (3)
Sn1—O12.062 (2)C9—C101.404 (3)
Sn1—Cl12.4414 (7)C10—C111.373 (3)
O1—C81.305 (3)C10—H100.9500
O2—C81.222 (3)C11—C121.412 (4)
C1—H1A0.9800C11—H110.9500
C1—H1B0.9800C12—C131.420 (3)
C1—H1C0.9800C12—C171.426 (3)
C2—C71.392 (3)C13—C141.375 (4)
C2—C31.397 (3)C13—H130.9500
C3—C41.395 (3)C14—C151.415 (4)
C3—H30.9500C14—H140.9500
C4—C51.385 (4)C15—C161.367 (3)
C4—H40.9500C15—H150.9500
C5—C61.392 (4)C16—C171.408 (3)
C5—H50.9500C16—H160.9500
C6—C71.394 (3)C17—N11.371 (3)
C6—H60.9500
O1—Sn1—C1108.43 (8)C6—C7—H7119.8
O1—Sn1—C2111.11 (7)O2—C8—O1123.9 (2)
C1—Sn1—C2138.58 (9)O2—C8—C9120.1 (2)
O1—Sn1—N173.25 (7)O1—C8—C9116.0 (2)
C1—Sn1—N190.02 (10)N1—C9—C10123.3 (2)
C2—Sn1—N189.86 (8)N1—C9—C8115.5 (2)
O1—Sn1—Cl187.79 (5)C10—C9—C8121.2 (2)
C1—Sn1—Cl197.31 (9)C11—C10—C9118.4 (2)
C2—Sn1—Cl196.02 (6)C11—C10—H10120.8
N1—Sn1—Cl1161.00 (7)C9—C10—H10120.8
C8—O1—Sn1123.13 (14)C10—C11—C12120.0 (2)
Sn1—C1—H1A109.5C10—C11—H11120.0
Sn1—C1—H1B109.5C12—C11—H11120.0
H1A—C1—H1B109.5C11—C12—C13123.0 (2)
Sn1—C1—H1C109.5C11—C12—C17118.3 (2)
H1A—C1—H1C109.5C13—C12—C17118.7 (2)
H1B—C1—H1C109.5C14—C13—C12120.4 (2)
C7—C2—C3119.3 (2)C14—C13—H13119.8
C7—C2—Sn1119.21 (16)C12—C13—H13119.8
C3—C2—Sn1121.48 (16)C13—C14—C15120.0 (2)
C4—C3—C2120.2 (2)C13—C14—H14120.0
C4—C3—H3119.9C15—C14—H14120.0
C2—C3—H3119.9C16—C15—C14121.1 (2)
C5—C4—C3120.0 (2)C16—C15—H15119.4
C5—C4—H4120.0C14—C15—H15119.4
C3—C4—H4120.0C15—C16—C17119.9 (2)
C4—C5—C6120.2 (2)C15—C16—H16120.1
C4—C5—H5119.9C17—C16—H16120.1
C6—C5—H5119.9N1—C17—C16120.1 (2)
C5—C6—C7119.7 (2)N1—C17—C12120.1 (2)
C5—C6—H6120.1C16—C17—C12119.8 (2)
C7—C6—H6120.1C9—N1—C17119.9 (2)
C2—C7—C6120.5 (2)C9—N1—Sn1112.07 (16)
C2—C7—H7119.8C17—N1—Sn1127.97 (17)
C1—Sn1—O1—C883.29 (19)C10—C11—C12—C13179.5 (2)
C2—Sn1—O1—C884.14 (18)C10—C11—C12—C171.6 (4)
N1—Sn1—O1—C80.97 (16)C11—C12—C13—C14176.5 (2)
Cl1—Sn1—O1—C8179.74 (16)C17—C12—C13—C142.4 (3)
O1—Sn1—C2—C7133.04 (16)C12—C13—C14—C150.7 (3)
C1—Sn1—C2—C765.2 (2)C13—C14—C15—C163.0 (3)
N1—Sn1—C2—C7155.02 (17)C14—C15—C16—C172.2 (3)
Cl1—Sn1—C2—C743.08 (17)C15—C16—C17—N1179.8 (2)
O1—Sn1—C2—C347.46 (19)C15—C16—C17—C121.0 (3)
C1—Sn1—C2—C3114.4 (2)C11—C12—C17—N13.5 (3)
N1—Sn1—C2—C324.49 (18)C13—C12—C17—N1177.5 (2)
Cl1—Sn1—C2—C3137.41 (17)C11—C12—C17—C16175.8 (2)
C7—C2—C3—C41.0 (3)C13—C12—C17—C163.2 (3)
Sn1—C2—C3—C4178.55 (16)C10—C9—N1—C170.2 (3)
C2—C3—C4—C51.7 (3)C8—C9—N1—C17179.51 (19)
C3—C4—C5—C62.5 (3)C10—C9—N1—Sn1176.98 (17)
C4—C5—C6—C70.5 (3)C8—C9—N1—Sn12.7 (2)
C3—C2—C7—C62.9 (3)C16—C17—N1—C9176.6 (2)
Sn1—C2—C7—C6176.62 (17)C12—C17—N1—C92.6 (3)
C5—C6—C7—C22.2 (3)C16—C17—N1—Sn17.2 (3)
Sn1—O1—C8—O2179.09 (17)C12—C17—N1—Sn1173.62 (16)
Sn1—O1—C8—C90.1 (3)O1—Sn1—N1—C92.05 (15)
O2—C8—C9—N1178.9 (2)C1—Sn1—N1—C9107.22 (17)
O1—C8—C9—N12.1 (3)C2—Sn1—N1—C9114.19 (16)
O2—C8—C9—C101.4 (3)Cl1—Sn1—N1—C95.8 (3)
O1—C8—C9—C10177.6 (2)O1—Sn1—N1—C17178.5 (2)
N1—C9—C10—C112.1 (3)C1—Sn1—N1—C1769.2 (2)
C8—C9—C10—C11177.6 (2)C2—Sn1—N1—C1769.4 (2)
C9—C10—C11—C121.1 (4)Cl1—Sn1—N1—C17177.71 (13)

Experimental details

Crystal data
Chemical formula[Sn(CH3)(C6H5)(C10H6NO2)Cl]
Mr418.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.6942 (5), 13.1463 (6), 11.2733 (5)
β (°) 93.689 (1)
V3)1581.6 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
14187, 3613, 3433
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.40
No. of reflections3613
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 0.94

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—C12.117 (3)Sn1—O12.062 (2)
Sn1—C22.122 (2)Sn1—Cl12.4414 (7)
Sn1—N12.369 (2)
C1—Sn1—C2138.58 (9)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m3059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds