metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(2-chloro­benz­yl)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 July 2010; accepted 14 July 2010; online 17 July 2010)

Mol­ecules of the title compound, [Sn(C7H6Cl)2Cl2], lie on a twofold rotation axis which passes through the Sn atom. The SnIV atom exists in a distorted tetra­hedral geometry. Adjacent mol­ecules are linked by weak Sn⋯Cl contacts [3.703 (1) Å], forming a linear chain motif extending along the b axis.

Related literature

For the synthesis of the title compound, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]). For the crystal structure of dichloridobis(2-fluoro­benz­yl)tin(IV), see: Yin & Gao (2006[Yin, H.-D. & Gao, Z.-J. (2006). Huaxue Shiji, 28, 39-40.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H6Cl)2Cl2]

  • Mr = 440.73

  • Monoclinic, C 2/c

  • a = 26.0750 (13) Å

  • b = 4.7757 (2) Å

  • c = 13.3389 (7) Å

  • β = 112.1538 (5)°

  • V = 1538.42 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.455, Tmax = 0.800

  • 8736 measured reflections

  • 1767 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.07

  • 1767 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 2.12 e Å−3

  • Δρmin = −1.03 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diorganotin(IV) dichlorides have the tin centres in a tetrahedral environment but the coordination number can raise by tin–chlorine bridging; the bridging interaction can be regarded as a formal coordination bond if the distance is sufficiently short. In di(2-chlorobenzyl)tin dichloride (Scheme I, Fig. 1), as the interaction is 3.703 (1) Å, the geometry is better interpreted as being tetrahedral. The compound is isostructural with the fluorine analog (Yin & Gao, 2006).

Related literature top

For the synthesis of the title compound, see: Sisido et al. (1961). For the crystal structure of dichloridobis(2-fluorobenzyl)tin, see: Yin & Gao (2006).

Experimental top

The compound was synthesized by the reaction of metallic tin with 2-benzyl chloride (Sisido et al., 1961), and crystals were obtained by recrystallization from chloroform.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.99 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). In the final difference Fouier map there is a peak (2.122e/Å3) at 0.96Å from Sn1 and a hole (-1.027e/Å3) at 0.79Å from Sn1.

Structure description top

Diorganotin(IV) dichlorides have the tin centres in a tetrahedral environment but the coordination number can raise by tin–chlorine bridging; the bridging interaction can be regarded as a formal coordination bond if the distance is sufficiently short. In di(2-chlorobenzyl)tin dichloride (Scheme I, Fig. 1), as the interaction is 3.703 (1) Å, the geometry is better interpreted as being tetrahedral. The compound is isostructural with the fluorine analog (Yin & Gao, 2006).

For the synthesis of the title compound, see: Sisido et al. (1961). For the crystal structure of dichloridobis(2-fluorobenzyl)tin, see: Yin & Gao (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(C7H6Cl)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichloridobis(2-chlorobenzyl)tin(IV) top
Crystal data top
[Sn(C7H6Cl)2Cl2]F(000) = 856
Mr = 440.73Dx = 1.903 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7518 reflections
a = 26.0750 (13) Åθ = 3.1–28.3°
b = 4.7757 (2) ŵ = 2.34 mm1
c = 13.3389 (7) ÅT = 100 K
β = 112.1538 (5)°Block, colorless
V = 1538.42 (13) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1767 independent reflections
Radiation source: fine-focus sealed tube1674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3333
Tmin = 0.455, Tmax = 0.800k = 66
8736 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0414P)2 + 6.0977P]
where P = (Fo2 + 2Fc2)/3
1767 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 2.12 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Sn(C7H6Cl)2Cl2]V = 1538.42 (13) Å3
Mr = 440.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.0750 (13) ŵ = 2.34 mm1
b = 4.7757 (2) ÅT = 100 K
c = 13.3389 (7) Å0.40 × 0.10 × 0.10 mm
β = 112.1538 (5)°
Data collection top
Bruker SMART APEX
diffractometer
1767 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1674 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.800Rint = 0.029
8736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.07Δρmax = 2.12 e Å3
1767 reflectionsΔρmin = 1.03 e Å3
87 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.53623 (5)0.75000.01430 (10)
Cl10.53371 (3)0.85923 (15)0.89559 (5)0.02030 (16)
Cl20.33923 (3)0.48153 (16)0.55119 (6)0.02400 (17)
C10.42929 (11)0.3670 (6)0.7750 (2)0.0181 (5)
H1A0.41210.22020.72020.022*
H1B0.44170.27830.84730.022*
C20.38724 (11)0.5857 (6)0.7673 (2)0.0161 (5)
C30.38871 (11)0.7290 (6)0.8594 (2)0.0192 (5)
H30.41710.68660.92730.023*
C40.34985 (13)0.9316 (7)0.8546 (3)0.0237 (6)
H40.35161.02490.91870.028*
C50.30839 (13)0.9987 (6)0.7564 (3)0.0249 (6)
H50.28201.13900.75310.030*
C60.30554 (12)0.8602 (7)0.6627 (3)0.0232 (6)
H60.27720.90500.59500.028*
C70.34455 (11)0.6557 (6)0.6692 (2)0.0186 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01278 (15)0.01420 (15)0.01702 (15)0.0000.00688 (10)0.000
Cl10.0189 (3)0.0207 (4)0.0207 (3)0.0001 (2)0.0067 (2)0.0046 (2)
Cl20.0218 (3)0.0308 (4)0.0187 (3)0.0035 (3)0.0068 (3)0.0029 (3)
C10.0158 (12)0.0176 (13)0.0233 (13)0.0000 (10)0.0100 (10)0.0018 (10)
C20.0138 (12)0.0148 (12)0.0212 (13)0.0009 (9)0.0084 (10)0.0020 (10)
C30.0188 (12)0.0217 (14)0.0198 (13)0.0020 (10)0.0104 (10)0.0023 (11)
C40.0258 (15)0.0219 (15)0.0304 (15)0.0041 (11)0.0185 (13)0.0043 (12)
C50.0184 (14)0.0220 (14)0.0406 (18)0.0019 (10)0.0182 (13)0.0013 (12)
C60.0148 (12)0.0244 (15)0.0298 (15)0.0001 (11)0.0077 (11)0.0055 (12)
C70.0162 (12)0.0213 (14)0.0205 (13)0.0025 (10)0.0093 (10)0.0002 (10)
Geometric parameters (Å, º) top
Sn1—C1i2.151 (3)C2—C71.401 (4)
Sn1—C12.151 (3)C3—C41.385 (4)
Sn1—Cl12.3740 (7)C3—H30.9500
Sn1—Cl1i2.3740 (7)C4—C51.385 (5)
Cl2—C71.739 (3)C4—H40.9500
C1—C21.489 (4)C5—C61.391 (5)
C1—H1A0.9900C5—H50.9500
C1—H1B0.9900C6—C71.389 (4)
C2—C31.395 (4)C6—H60.9500
C1i—Sn1—C1135.86 (16)C4—C3—C2121.7 (3)
C1i—Sn1—Cl1107.23 (8)C4—C3—H3119.2
C1—Sn1—Cl1101.07 (8)C2—C3—H3119.2
C1i—Sn1—Cl1i101.07 (8)C5—C4—C3120.2 (3)
C1—Sn1—Cl1i107.23 (8)C5—C4—H4119.9
Cl1—Sn1—Cl1i98.96 (4)C3—C4—H4119.9
C2—C1—Sn1112.17 (18)C4—C5—C6119.8 (3)
C2—C1—H1A109.2C4—C5—H5120.1
Sn1—C1—H1A109.2C6—C5—H5120.1
C2—C1—H1B109.2C7—C6—C5119.2 (3)
Sn1—C1—H1B109.2C7—C6—H6120.4
H1A—C1—H1B107.9C5—C6—H6120.4
C3—C2—C7117.0 (3)C6—C7—C2122.1 (3)
C3—C2—C1120.5 (2)C6—C7—Cl2118.2 (2)
C7—C2—C1122.5 (3)C2—C7—Cl2119.7 (2)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C7H6Cl)2Cl2]
Mr440.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)26.0750 (13), 4.7757 (2), 13.3389 (7)
β (°) 112.1538 (5)
V3)1538.42 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.455, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
8736, 1767, 1674
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.07
No. of reflections1767
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.12, 1.03

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, H.-D. & Gao, Z.-J. (2006). Huaxue Shiji, 28, 39–40.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds