organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Meth­­oxy­pheneth­yl)-3-methyl-1H-1,2,4-triazol-5(4H)-one

aSamsun Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cDepartment of Chemistry, Karadeniz Technical University, TR-61080 Trabzon, Turkey
*Correspondence e-mail: yavuzk@omu.edu.tr

(Received 19 July 2010; accepted 26 July 2010; online 31 July 2010)

The dihedral angle between the two rings in the title compound, C12H15N3O2, is 49.03 (1)°. The crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds and ππ stacking inter­actions between the triazole rings with a centroid–centroid distance of 3.394 Å.

Related literature

For related literature on triazole compounds, see: Tanak et al. (2010[Tanak, H., Köysal, Y., Ünver, Y., Yavuz, M., Işık, Ş. & Sancak, K. (2010). Mol. Phys. 108, 127-139.]); Ünver et al. (2008[Ünver, Y., Düğdü, E., Sancak, K., Er, M. & Altay Karaoğlu, Ş. (2008). Turk. J. Chem. 32, 441-455.]); Ünver, Düğdü et al. (2009[Ünver, Y., Düğdü, E., Sancak, K., Er, M. & Altay Karaoğlu, Ş. (2009). Turk. J. Chem. 33, 135-147.]); Ünver, Sancak et al. (2009[Ünver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işık, Ş. (2009). J. Mol. Struct. 936, 46-55.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O2

  • Mr = 233.27

  • Monoclinic, P 21 /c

  • a = 14.7736 (9) Å

  • b = 5.6986 (2) Å

  • c = 15.2478 (9) Å

  • β = 110.726 (5)°

  • V = 1200.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.80 × 0.40 × 0.13 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.955, Tmax = 0.987

  • 8004 measured reflections

  • 3000 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 0.90

  • 3000 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2i 0.969 (17) 1.847 (18) 2.8068 (18) 170.2 (14)
C8—H8B⋯O2ii 0.97 2.57 3.3260 (18) 135
Symmetry codes: (i) -x, -y+3, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2,4-Triazoles are an important class of heterocycles, and have been the subject of great interest due to their pharmacological properties (Ünver et al., 2008; Ünver, Düǧet al., 2009; Ünver, Sancak et al., 2009). 1,2,4-Triazole and 1,2,4- triazol-3-one are reported to exhibit a broad spectrum of biological activities such as antifungal, antimicrobial, hypoglycemic, antihypertensive, antidepressant, plant growth regulator anticoagulant, analgesic, antiparasitic, antiviral, anti-inflammatory, antitumor and anti-HIV properties (Tanak et al., 2010).

In the title compound, triazol ring is oriented with respect to the methoxyphenethyl ring at dihedral angles of 49.03 (1)°, that shows, whole molecule is not planar. Triazol ring system is almost planar with the maximum deviation of -0.005 (1)Å for atom C11. The double bond distance in the triazol group is good agreement with our previous report,5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one (Tanak et al., 2010).

Structurally, the title compound contains intermolecular N—H···O and C—H···O type hydrogen bonds, namely N3—H3···O2 (symmetry code:-x,3 - y,-z) which generates eight-membered ring, producing a R22(8) motif (Bernstein et al., 1995) and C8—H8B···O2 (symmetry code:-x,y - 1/2,-z + 1/2) which generates twelve-membered ring, producing a R22(12) motif (Bernstein et al., 1995) where atom O2 accepts hyrogen bonds from different donors. There is also π-π stacking interaction between the parallel triazol systems. The closest perpendicular distance is 3.394Å between the ring centroids at (x,y,z) and that at (-x,2 - y,-z). The details of the hydrogen bond is shown in Table 1.

Related literature top

For related literature on triazole compounds, see: Tanak et al. (2010); Ünver et al. (2008); Ünver, Düǧet al. (2009); Ünver, Sancak et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

Ethyl 2-[1-ethoxy-2-(phenyl)ethylidene]hydrazine carboxylate (10 mmol) together with 2-(4 -methoxyphenyl)ethylamin (10 mmol) were heated without solvent in a sealed tube for 2 h at 423- 433°K. Then, the mixture was cooled to r.t. and a solid cure formed. The crude product was recrystallized using ethyl acetate/petroleum ether (1:1) to afford the desired compound. Yield: 185 mg (82%). Mp: 416°K

Refinement top

The H atom bonded to N was refined isotropically. Other H atoms were refined using a riding model, with C—H distances ranging from 0.93–0.97 Å and U(H) set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

1,2,4-Triazoles are an important class of heterocycles, and have been the subject of great interest due to their pharmacological properties (Ünver et al., 2008; Ünver, Düǧet al., 2009; Ünver, Sancak et al., 2009). 1,2,4-Triazole and 1,2,4- triazol-3-one are reported to exhibit a broad spectrum of biological activities such as antifungal, antimicrobial, hypoglycemic, antihypertensive, antidepressant, plant growth regulator anticoagulant, analgesic, antiparasitic, antiviral, anti-inflammatory, antitumor and anti-HIV properties (Tanak et al., 2010).

In the title compound, triazol ring is oriented with respect to the methoxyphenethyl ring at dihedral angles of 49.03 (1)°, that shows, whole molecule is not planar. Triazol ring system is almost planar with the maximum deviation of -0.005 (1)Å for atom C11. The double bond distance in the triazol group is good agreement with our previous report,5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one (Tanak et al., 2010).

Structurally, the title compound contains intermolecular N—H···O and C—H···O type hydrogen bonds, namely N3—H3···O2 (symmetry code:-x,3 - y,-z) which generates eight-membered ring, producing a R22(8) motif (Bernstein et al., 1995) and C8—H8B···O2 (symmetry code:-x,y - 1/2,-z + 1/2) which generates twelve-membered ring, producing a R22(12) motif (Bernstein et al., 1995) where atom O2 accepts hyrogen bonds from different donors. There is also π-π stacking interaction between the parallel triazol systems. The closest perpendicular distance is 3.394Å between the ring centroids at (x,y,z) and that at (-x,2 - y,-z). The details of the hydrogen bond is shown in Table 1.

For related literature on triazole compounds, see: Tanak et al. (2010); Ünver et al. (2008); Ünver, Düǧet al. (2009); Ünver, Sancak et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing view of (I).
4-(4-Methoxyphenethyl)-3-methyl-1H-1,2,4-triazol-5(4H)-one top
Crystal data top
C12H15N3O2F(000) = 496
Mr = 233.27Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5937 reflections
a = 14.7736 (9) Åθ = 1.5–28.7°
b = 5.6986 (2) ŵ = 0.09 mm1
c = 15.2478 (9) ÅT = 293 K
β = 110.726 (5)°PRISM., colourless
V = 1200.62 (11) Å30.80 × 0.40 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 28.4°, θmin = 1.5°
rotation method scansh = 1919
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 76
Tmin = 0.955, Tmax = 0.987l = 2020
8004 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3000 reflectionsΔρmax = 0.10 e Å3
160 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C12H15N3O2V = 1200.62 (11) Å3
Mr = 233.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7736 (9) ŵ = 0.09 mm1
b = 5.6986 (2) ÅT = 293 K
c = 15.2478 (9) Å0.80 × 0.40 × 0.13 mm
β = 110.726 (5)°
Data collection top
Stoe IPDS 2
diffractometer
3000 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1699 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.987Rint = 0.038
8004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.10 e Å3
3000 reflectionsΔρmin = 0.10 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.00721 (8)1.3809 (2)0.11587 (7)0.0781 (3)
C120.22054 (12)0.7523 (3)0.10928 (12)0.0800 (5)
H12A0.24100.70900.05830.120*
H12B0.18620.62380.12370.120*
H12C0.27620.78950.16340.120*
H30.0546 (12)1.377 (3)0.0366 (12)0.083 (5)*
O10.56139 (8)0.9311 (2)0.37786 (7)0.0809 (3)
N10.10666 (8)1.0519 (2)0.13533 (7)0.0607 (3)
N20.14153 (9)1.0787 (2)0.00638 (8)0.0685 (3)
N30.07981 (9)1.2572 (3)0.01078 (8)0.0676 (3)
C100.15659 (10)0.9585 (3)0.08233 (10)0.0631 (3)
C30.26905 (10)1.0401 (3)0.32804 (8)0.0626 (4)
C60.46536 (10)0.9552 (3)0.36347 (9)0.0614 (4)
C40.32447 (11)1.1936 (3)0.29816 (9)0.0680 (4)
H40.29581.32840.26580.082*
C50.42110 (12)1.1528 (3)0.31485 (9)0.0681 (4)
H50.45651.25860.29330.082*
C20.31463 (11)0.8424 (3)0.37550 (10)0.0689 (4)
H20.27890.73510.39590.083*
C110.05789 (9)1.2457 (3)0.08940 (9)0.0626 (4)
C10.41146 (11)0.7983 (3)0.39378 (10)0.0669 (4)
H10.44020.66370.42630.080*
C90.09688 (11)0.9628 (3)0.22112 (10)0.0720 (4)
H9A0.11070.79590.22590.086*
H9B0.03050.98350.21740.086*
C80.16332 (12)1.0831 (3)0.30847 (10)0.0790 (4)
H8A0.15131.25070.30230.095*
H8B0.14761.02920.36170.095*
C70.61047 (13)0.7352 (4)0.43098 (13)0.0942 (5)
H7A0.67710.73820.43590.141*
H7B0.58070.59300.40040.141*
H7C0.60680.74170.49250.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0736 (7)0.0959 (8)0.0722 (6)0.0141 (6)0.0348 (5)0.0035 (5)
C120.0804 (11)0.0778 (10)0.0872 (10)0.0004 (9)0.0364 (9)0.0069 (9)
O10.0652 (7)0.1013 (8)0.0781 (6)0.0007 (6)0.0277 (5)0.0057 (6)
N10.0515 (6)0.0738 (7)0.0575 (6)0.0071 (6)0.0203 (5)0.0038 (6)
N20.0627 (7)0.0826 (9)0.0634 (7)0.0042 (6)0.0262 (6)0.0073 (6)
N30.0612 (7)0.0832 (9)0.0598 (6)0.0005 (6)0.0234 (5)0.0000 (6)
C100.0552 (7)0.0703 (9)0.0651 (8)0.0129 (7)0.0229 (6)0.0105 (7)
C30.0690 (9)0.0723 (9)0.0469 (6)0.0027 (7)0.0210 (6)0.0041 (6)
C60.0626 (8)0.0706 (9)0.0509 (6)0.0029 (7)0.0202 (6)0.0092 (7)
C40.0789 (10)0.0640 (9)0.0562 (7)0.0023 (8)0.0179 (7)0.0030 (6)
C50.0757 (10)0.0693 (9)0.0589 (7)0.0114 (8)0.0232 (7)0.0026 (7)
C20.0744 (10)0.0740 (9)0.0622 (8)0.0060 (8)0.0290 (7)0.0044 (7)
C110.0503 (7)0.0789 (10)0.0575 (7)0.0076 (7)0.0177 (6)0.0055 (7)
C10.0740 (9)0.0626 (9)0.0637 (8)0.0061 (7)0.0241 (7)0.0086 (7)
C90.0621 (8)0.0899 (10)0.0692 (8)0.0047 (8)0.0297 (7)0.0048 (8)
C80.0740 (10)0.1048 (12)0.0621 (8)0.0107 (9)0.0288 (7)0.0021 (8)
C70.0691 (10)0.1120 (14)0.0903 (11)0.0166 (10)0.0146 (9)0.0142 (11)
Geometric parameters (Å, º) top
O2—C111.2373 (16)C6—C51.379 (2)
C12—C101.472 (2)C6—C11.381 (2)
C12—H12A0.9600C4—C51.378 (2)
C12—H12B0.9600C4—H40.9300
C12—H12C0.9600C5—H50.9300
O1—C61.3636 (17)C2—C11.380 (2)
O1—C71.419 (2)C2—H20.9300
N1—C111.3686 (19)C1—H10.9300
N1—C101.3790 (17)C9—C81.511 (2)
N1—C91.4571 (16)C9—H9A0.9700
N2—C101.2951 (18)C9—H9B0.9700
N2—N31.3833 (17)C8—H8A0.9700
N3—C111.3494 (17)C8—H8B0.9700
N3—H30.969 (17)C7—H7A0.9600
C3—C21.379 (2)C7—H7B0.9600
C3—C41.381 (2)C7—H7C0.9600
C3—C81.503 (2)
C10—C12—H12A109.5C6—C5—H5120.0
C10—C12—H12B109.5C3—C2—C1122.24 (13)
H12A—C12—H12B109.5C3—C2—H2118.9
C10—C12—H12C109.5C1—C2—H2118.9
H12A—C12—H12C109.5O2—C11—N3128.53 (14)
H12B—C12—H12C109.5O2—C11—N1127.27 (12)
C6—O1—C7117.61 (13)N3—C11—N1104.19 (12)
C11—N1—C10107.78 (11)C2—C1—C6119.57 (14)
C11—N1—C9122.61 (11)C2—C1—H1120.2
C10—N1—C9129.44 (13)C6—C1—H1120.2
C10—N2—N3104.65 (11)N1—C9—C8113.18 (12)
C11—N3—N2112.16 (13)N1—C9—H9A108.9
C11—N3—H3123.1 (10)C8—C9—H9A108.9
N2—N3—H3124.7 (10)N1—C9—H9B108.9
N2—C10—N1111.21 (13)C8—C9—H9B108.9
N2—C10—C12124.18 (13)H9A—C9—H9B107.8
N1—C10—C12124.59 (13)C3—C8—C9113.98 (12)
C2—C3—C4117.02 (14)C3—C8—H8A108.8
C2—C3—C8121.17 (14)C9—C8—H8A108.8
C4—C3—C8121.80 (14)C3—C8—H8B108.8
O1—C6—C5115.91 (13)C9—C8—H8B108.8
O1—C6—C1124.82 (14)H8A—C8—H8B107.7
C5—C6—C1119.26 (14)O1—C7—H7A109.5
C5—C4—C3121.91 (14)O1—C7—H7B109.5
C5—C4—H4119.0H7A—C7—H7B109.5
C3—C4—H4119.0O1—C7—H7C109.5
C4—C5—C6119.99 (14)H7A—C7—H7C109.5
C4—C5—H5120.0H7B—C7—H7C109.5
C10—N2—N3—C110.27 (15)C8—C3—C2—C1179.58 (13)
N3—N2—C10—N10.27 (15)N2—N3—C11—O2177.88 (14)
N3—N2—C10—C12178.45 (13)N2—N3—C11—N10.69 (15)
C11—N1—C10—N20.71 (15)C10—N1—C11—O2177.77 (14)
C9—N1—C10—N2174.62 (12)C9—N1—C11—O26.5 (2)
C11—N1—C10—C12178.01 (13)C10—N1—C11—N30.82 (14)
C9—N1—C10—C126.7 (2)C9—N1—C11—N3174.90 (12)
C7—O1—C6—C5177.44 (12)C3—C2—C1—C60.4 (2)
C7—O1—C6—C12.57 (19)O1—C6—C1—C2179.58 (12)
C2—C3—C4—C50.1 (2)C5—C6—C1—C20.4 (2)
C8—C3—C4—C5179.05 (13)C11—N1—C9—C885.03 (16)
C3—C4—C5—C60.7 (2)C10—N1—C9—C8100.24 (17)
O1—C6—C5—C4179.08 (13)C2—C3—C8—C984.57 (17)
C1—C6—C5—C40.9 (2)C4—C3—C8—C994.32 (18)
C4—C3—C2—C10.6 (2)N1—C9—C8—C365.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.969 (17)1.847 (18)2.8068 (18)170.2 (14)
C8—H8B···O2ii0.972.573.3260 (18)135
Symmetry codes: (i) x, y+3, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H15N3O2
Mr233.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.7736 (9), 5.6986 (2), 15.2478 (9)
β (°) 110.726 (5)
V3)1200.62 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.80 × 0.40 × 0.13
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.955, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8004, 3000, 1699
Rint0.038
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 0.90
No. of reflections3000
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.969 (17)1.847 (18)2.8068 (18)170.2 (14)
C8—H8B···O2ii0.972.573.3260 (18)134.6
Symmetry codes: (i) x, y+3, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Köysal, Y., Ünver, Y., Yavuz, M., Işık, Ş. & Sancak, K. (2010). Mol. Phys. 108, 127–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationÜnver, Y., Düğdü, E., Sancak, K., Er, M. & Altay Karaoğlu, Ş. (2008). Turk. J. Chem. 32, 441–455.  Google Scholar
First citationÜnver, Y., Düğdü, E., Sancak, K., Er, M. & Altay Karaoğlu, Ş. (2009). Turk. J. Chem. 33, 135–147.  Google Scholar
First citationÜnver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işık, Ş. (2009). J. Mol. Struct. 936, 46–55.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds