organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzoic acid–2,9-di­methyl­phenanthroline (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 20 July 2010; accepted 21 July 2010; online 24 July 2010)

The constituents of the title 1:1 co-crystal, C7H6O2·C14H12N2, are connected into dimeric aggregates by a bifurcated O—H⋯N hydrogen bond; the hydroxyl-H atom is hydrogen bonded to the two N atoms of the 2,9-dimethyl­phenanthroline. The hydrogen-bonded residues are almost orthogonal to each other [dihedral angle = 78.56 (7) °]. In the crystal packing, the aggregates are assembled into layers in the bc plane by ππ inter­actions [ring centroid⋯ring centroid distance = 3.5577 (16) Å] involving the pyridyl rings, and C–H⋯π contacts involving the phenanthroline-H atom and the phenyl ring of the acid.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6O2·C14H12N2

  • Mr = 330.37

  • Monoclinic, P 21 /c

  • a = 13.575 (5) Å

  • b = 11.645 (4) Å

  • c = 11.148 (4) Å

  • β = 104.832 (6)°

  • V = 1703.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 98 K

  • 0.46 × 0.31 × 0.20 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.864, Tmax = 1

  • 13167 measured reflections

  • 3907 independent reflections

  • 3589 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.156

  • S = 1.09

  • 3907 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 2.33 (2) 2.973 (2) 134 (2)
O1—H1o⋯N2 0.84 (1) 2.09 (2) 2.788 (2) 141 (2)
C19—H19⋯Cgi 0.95 2.60 3.426 (2) 145
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008), the co-crystallization of 2,9-dimethylphenanthroline and benzoic acid was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The components of (I), Fig. 1, are connected by two O–H···N hydrogen bonds with the primary contact formed with the N2 atom with a weaker interaction to the the N1 atom, Table 1. The bifurcated nature of the O—H atom is responsible for the deviation of the O—H···N angles from 180 °. The carboxylic acid group is effectively co-planar with the benzene ring to which it is attached as seen in the O1—C1—C2—C3 torsion angle of 7.6 (2) °. The dihedral angle formed between the least-squares planes through the benzene ring and the 14 non-hydrogen atoms of the phenanthroline ring (r.m.s. deviation = 0.020 Å) is 78.56 (7) °, indicating an almost orthogonal relationship. The methyl-C8 and C21 atoms lie and 0.081 (2) and -0.032 (2) Å, respectively, out of the plane through the phenanthroline ring. In addition to the hydrogen bonding, π···π and C—H···π interactions are found in the crystal structure of (I). The former occur between centrosymmetrically related N2-pyridyl rings [Cg(N2,C16–C20)···Cg(N2,C16—C20)i = 3.5577 (16) Å for i: 1 - x, 1 - y, 2 - z]. The C–H···π contact occurs between a phenanthroline-H and the benzene ring of the acid, Table 1. The result is the formation of layers that stack along the a axis, Fig. 2.

Related literature top

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008).

Experimental top

Colourless crystals of (I) were isolated from the 1/1 co-crystallization of 2,9-dimethylphenanthroline (ACROS; 0.08 mmol) and benzoic acid (Sigma-Aldrich; 0.07 mmol) in chloroform solution, m. pt. 399–403 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008), the co-crystallization of 2,9-dimethylphenanthroline and benzoic acid was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The components of (I), Fig. 1, are connected by two O–H···N hydrogen bonds with the primary contact formed with the N2 atom with a weaker interaction to the the N1 atom, Table 1. The bifurcated nature of the O—H atom is responsible for the deviation of the O—H···N angles from 180 °. The carboxylic acid group is effectively co-planar with the benzene ring to which it is attached as seen in the O1—C1—C2—C3 torsion angle of 7.6 (2) °. The dihedral angle formed between the least-squares planes through the benzene ring and the 14 non-hydrogen atoms of the phenanthroline ring (r.m.s. deviation = 0.020 Å) is 78.56 (7) °, indicating an almost orthogonal relationship. The methyl-C8 and C21 atoms lie and 0.081 (2) and -0.032 (2) Å, respectively, out of the plane through the phenanthroline ring. In addition to the hydrogen bonding, π···π and C—H···π interactions are found in the crystal structure of (I). The former occur between centrosymmetrically related N2-pyridyl rings [Cg(N2,C16–C20)···Cg(N2,C16—C20)i = 3.5577 (16) Å for i: 1 - x, 1 - y, 2 - z]. The C–H···π contact occurs between a phenanthroline-H and the benzene ring of the acid, Table 1. The result is the formation of layers that stack along the a axis, Fig. 2.

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Stacking of layers along the a axis in (I). The O—H···N (orange), π···π (purple) and C–H···π (brown) contacts are shown as dashed lines.
Benzoic acid–2,9-dimethylphenanthroline (1/1) top
Crystal data top
C7H6O2·C14H12N2F(000) = 696
Mr = 330.37Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6463 reflections
a = 13.575 (5) Åθ = 2.1–40.6°
b = 11.645 (4) ŵ = 0.08 mm1
c = 11.148 (4) ÅT = 98 K
β = 104.832 (6)°Block, colourless
V = 1703.6 (11) Å30.46 × 0.31 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3907 independent reflections
Radiation source: fine-focus sealed tube3589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.864, Tmax = 1k = 1515
13167 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.8352P]
where P = (Fo2 + 2Fc2)/3
3907 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.55 e Å3
Crystal data top
C7H6O2·C14H12N2V = 1703.6 (11) Å3
Mr = 330.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.575 (5) ŵ = 0.08 mm1
b = 11.645 (4) ÅT = 98 K
c = 11.148 (4) Å0.46 × 0.31 × 0.20 mm
β = 104.832 (6)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3907 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3589 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1Rint = 0.035
13167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
3907 reflectionsΔρmin = 0.55 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25983 (16)0.62242 (12)0.73806 (12)0.0586 (5)
H1O0.276 (2)0.5534 (8)0.733 (2)0.088*
O20.22317 (11)0.60724 (11)0.53150 (11)0.0383 (3)
N10.20135 (10)0.37901 (11)0.76126 (12)0.0224 (3)
N20.39950 (10)0.44243 (10)0.79467 (11)0.0203 (3)
C10.22858 (14)0.66340 (14)0.62456 (15)0.0290 (4)
C20.20107 (11)0.78707 (13)0.62330 (14)0.0223 (3)
C30.22051 (12)0.85085 (14)0.73285 (15)0.0252 (3)
H30.24970.81470.81020.030*
C40.19729 (14)0.96692 (15)0.72878 (18)0.0335 (4)
H40.21131.01040.80330.040*
C50.15377 (16)1.01962 (16)0.6164 (2)0.0409 (5)
H50.13761.09910.61380.049*
C60.13392 (15)0.95635 (17)0.50764 (19)0.0388 (4)
H60.10370.99260.43070.047*
C70.15784 (12)0.84071 (15)0.51025 (16)0.0290 (4)
H70.14480.79800.43520.035*
C80.02727 (13)0.41778 (19)0.65105 (17)0.0383 (4)
H8A0.06270.46980.60700.058*
H8B0.01540.46260.69260.058*
H8C0.01560.36480.59160.058*
C90.10420 (12)0.35052 (15)0.74590 (15)0.0270 (3)
C100.07329 (13)0.26372 (16)0.81689 (16)0.0320 (4)
H100.00320.24500.80330.038*
C110.14511 (14)0.20691 (15)0.90530 (16)0.0307 (4)
H110.12520.14830.95350.037*
C120.24909 (12)0.23568 (13)0.92478 (14)0.0241 (3)
C130.27308 (11)0.32317 (12)0.84953 (13)0.0202 (3)
C140.32829 (14)0.18039 (14)1.01699 (14)0.0280 (4)
H140.31160.12101.06680.034*
C150.42676 (13)0.21252 (14)1.03328 (14)0.0278 (4)
H150.47840.17511.09450.033*
C160.45439 (12)0.30185 (13)0.95988 (14)0.0225 (3)
C170.37851 (11)0.35697 (12)0.86771 (13)0.0192 (3)
C180.55556 (12)0.33981 (14)0.97563 (14)0.0260 (3)
H180.60920.30581.03720.031*
C190.57615 (12)0.42575 (14)0.90205 (15)0.0261 (3)
H190.64410.45200.91230.031*
C200.49563 (12)0.47512 (13)0.81070 (14)0.0225 (3)
C210.51601 (14)0.56796 (15)0.72651 (16)0.0315 (4)
H21A0.46830.56030.64450.047*
H21B0.58600.56090.71860.047*
H21C0.50710.64330.76150.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1251 (15)0.0251 (7)0.0210 (6)0.0281 (8)0.0100 (8)0.0043 (5)
O20.0607 (9)0.0301 (7)0.0209 (6)0.0070 (6)0.0049 (6)0.0025 (5)
N10.0235 (6)0.0242 (6)0.0198 (6)0.0004 (5)0.0060 (5)0.0013 (5)
N20.0254 (6)0.0179 (6)0.0175 (6)0.0008 (5)0.0054 (5)0.0013 (4)
C10.0404 (9)0.0242 (8)0.0206 (7)0.0036 (7)0.0046 (7)0.0022 (6)
C20.0206 (7)0.0234 (7)0.0234 (7)0.0014 (5)0.0065 (6)0.0042 (6)
C30.0262 (7)0.0261 (8)0.0251 (8)0.0012 (6)0.0096 (6)0.0023 (6)
C40.0398 (9)0.0256 (8)0.0416 (10)0.0008 (7)0.0221 (8)0.0022 (7)
C50.0503 (11)0.0248 (8)0.0562 (12)0.0117 (8)0.0293 (10)0.0124 (8)
C60.0396 (10)0.0386 (10)0.0408 (10)0.0120 (8)0.0150 (8)0.0197 (8)
C70.0262 (8)0.0337 (9)0.0268 (8)0.0031 (6)0.0063 (6)0.0078 (6)
C80.0252 (8)0.0568 (12)0.0318 (9)0.0056 (8)0.0050 (7)0.0026 (8)
C90.0248 (8)0.0330 (8)0.0235 (8)0.0002 (6)0.0067 (6)0.0058 (6)
C100.0292 (8)0.0389 (10)0.0305 (9)0.0096 (7)0.0124 (7)0.0077 (7)
C110.0391 (9)0.0296 (8)0.0273 (8)0.0099 (7)0.0155 (7)0.0029 (6)
C120.0341 (8)0.0205 (7)0.0193 (7)0.0034 (6)0.0098 (6)0.0022 (6)
C130.0264 (7)0.0184 (7)0.0164 (6)0.0008 (5)0.0066 (6)0.0032 (5)
C140.0424 (9)0.0213 (7)0.0209 (7)0.0022 (6)0.0089 (7)0.0029 (6)
C150.0382 (9)0.0234 (8)0.0199 (7)0.0055 (6)0.0039 (7)0.0036 (6)
C160.0285 (8)0.0210 (7)0.0173 (7)0.0039 (6)0.0046 (6)0.0019 (5)
C170.0254 (7)0.0172 (6)0.0152 (6)0.0009 (5)0.0055 (6)0.0026 (5)
C180.0252 (7)0.0285 (8)0.0220 (7)0.0064 (6)0.0016 (6)0.0020 (6)
C190.0221 (7)0.0302 (8)0.0267 (8)0.0004 (6)0.0073 (6)0.0054 (6)
C200.0274 (7)0.0213 (7)0.0201 (7)0.0012 (6)0.0086 (6)0.0048 (5)
C210.0354 (9)0.0294 (9)0.0315 (9)0.0072 (7)0.0121 (7)0.0008 (7)
Geometric parameters (Å, º) top
O1—C11.317 (2)C9—C101.412 (2)
O1—H1O0.839 (12)C10—C111.367 (3)
O2—C11.213 (2)C10—H100.9500
N1—C91.328 (2)C11—C121.412 (2)
N1—C131.3597 (19)C11—H110.9500
N2—C201.327 (2)C12—C131.410 (2)
N2—C171.3614 (19)C12—C141.436 (2)
C1—C21.487 (2)C13—C171.448 (2)
C2—C71.394 (2)C14—C151.355 (2)
C2—C31.396 (2)C14—H140.9500
C3—C41.386 (2)C15—C161.432 (2)
C3—H30.9500C15—H150.9500
C4—C51.385 (3)C16—C171.410 (2)
C4—H40.9500C16—C181.410 (2)
C5—C61.385 (3)C18—C191.367 (2)
C5—H50.9500C18—H180.9500
C6—C71.384 (3)C19—C201.411 (2)
C6—H60.9500C19—H190.9500
C7—H70.9500C20—C211.503 (2)
C8—C91.502 (2)C21—H21A0.9800
C8—H8A0.9800C21—H21B0.9800
C8—H8B0.9800C21—H21C0.9800
C8—H8C0.9800
C1—O1—H1O108 (2)C10—C11—C12119.76 (15)
C9—N1—C13118.52 (14)C10—C11—H11120.1
C20—N2—C17118.58 (13)C12—C11—H11120.1
O2—C1—O1124.10 (16)C13—C12—C11117.00 (15)
O2—C1—C2123.66 (15)C13—C12—C14120.36 (15)
O1—C1—C2112.24 (14)C11—C12—C14122.64 (15)
C7—C2—C3119.61 (15)N1—C13—C12122.99 (14)
C7—C2—C1119.28 (15)N1—C13—C17118.06 (13)
C3—C2—C1121.09 (14)C12—C13—C17118.94 (14)
C4—C3—C2120.00 (15)C15—C14—C12120.29 (15)
C4—C3—H3120.0C15—C14—H14119.9
C2—C3—H3120.0C12—C14—H14119.9
C5—C4—C3120.17 (17)C14—C15—C16121.19 (15)
C5—C4—H4119.9C14—C15—H15119.4
C3—C4—H4119.9C16—C15—H15119.4
C4—C5—C6119.92 (17)C17—C16—C18117.04 (14)
C4—C5—H5120.0C17—C16—C15119.87 (15)
C6—C5—H5120.0C18—C16—C15123.08 (14)
C7—C6—C5120.49 (17)N2—C17—C16122.89 (14)
C7—C6—H6119.8N2—C17—C13117.76 (13)
C5—C6—H6119.8C16—C17—C13119.34 (13)
C6—C7—C2119.82 (17)C19—C18—C16119.79 (14)
C6—C7—H7120.1C19—C18—H18120.1
C2—C7—H7120.1C16—C18—H18120.1
C9—C8—H8A109.5C18—C19—C20119.44 (15)
C9—C8—H8B109.5C18—C19—H19120.3
H8A—C8—H8B109.5C20—C19—H19120.3
C9—C8—H8C109.5N2—C20—C19122.25 (14)
H8A—C8—H8C109.5N2—C20—C21117.01 (14)
H8B—C8—H8C109.5C19—C20—C21120.74 (14)
N1—C9—C10122.31 (16)C20—C21—H21A109.5
N1—C9—C8116.68 (15)C20—C21—H21B109.5
C10—C9—C8120.99 (15)H21A—C21—H21B109.5
C11—C10—C9119.42 (15)C20—C21—H21C109.5
C11—C10—H10120.3H21A—C21—H21C109.5
C9—C10—H10120.3H21B—C21—H21C109.5
O2—C1—C2—C76.1 (3)C14—C12—C13—C170.6 (2)
O1—C1—C2—C7174.24 (17)C13—C12—C14—C150.6 (2)
O2—C1—C2—C3172.06 (17)C11—C12—C14—C15178.93 (15)
O1—C1—C2—C37.6 (2)C12—C14—C15—C160.1 (2)
C7—C2—C3—C40.3 (2)C14—C15—C16—C170.8 (2)
C1—C2—C3—C4177.84 (15)C14—C15—C16—C18178.49 (15)
C2—C3—C4—C50.7 (3)C20—N2—C17—C160.2 (2)
C3—C4—C5—C60.4 (3)C20—N2—C17—C13179.49 (12)
C4—C5—C6—C70.4 (3)C18—C16—C17—N20.7 (2)
C5—C6—C7—C20.8 (3)C15—C16—C17—N2179.97 (13)
C3—C2—C7—C60.5 (2)C18—C16—C17—C13178.60 (13)
C1—C2—C7—C6178.63 (16)C15—C16—C17—C130.7 (2)
C13—N1—C9—C100.7 (2)N1—C13—C17—N20.3 (2)
C13—N1—C9—C8177.54 (14)C12—C13—C17—N2179.36 (13)
N1—C9—C10—C110.4 (3)N1—C13—C17—C16179.01 (13)
C8—C9—C10—C11177.79 (16)C12—C13—C17—C160.0 (2)
C9—C10—C11—C120.1 (2)C17—C16—C18—C190.6 (2)
C10—C11—C12—C130.3 (2)C15—C16—C18—C19179.93 (15)
C10—C11—C12—C14179.27 (15)C16—C18—C19—C200.3 (2)
C9—N1—C13—C120.6 (2)C17—N2—C20—C191.1 (2)
C9—N1—C13—C17178.42 (13)C17—N2—C20—C21178.74 (13)
C11—C12—C13—N10.1 (2)C18—C19—C20—N21.2 (2)
C14—C12—C13—N1179.61 (14)C18—C19—C20—C21178.67 (14)
C11—C12—C13—C17178.91 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)2.33 (2)2.973 (2)134 (2)
O1—H1o···N20.84 (1)2.09 (2)2.788 (2)141 (2)
C19—H19···Cgi0.952.603.426 (2)145
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H6O2·C14H12N2
Mr330.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)13.575 (5), 11.645 (4), 11.148 (4)
β (°) 104.832 (6)
V3)1703.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.31 × 0.20
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.864, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
13167, 3907, 3589
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.156, 1.09
No. of reflections3907
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.55

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.839 (12)2.327 (16)2.973 (2)134 (2)
O1—H1o···N20.839 (12)2.09 (2)2.788 (2)141 (2)
C19—H19···Cgi0.952.603.426 (2)145
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds