metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl sulfoxide)­hydridobis(tri­phenyl­phosphane)cobalt(I)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: marko.hapke@catalysis.de

(Received 22 July 2010; accepted 23 July 2010; online 31 July 2010)

The title compound, [CoH(C18H15P)2(C2H6OS)2], was synthesized by the reaction of chloridotris(triphenyl­phosphane)cobalt(I), [ClCo(PPh3)3], in the presence of one equivalent potassium hydridotris(pyrazol­yl)borate in dimethyl sulfoxide. The structure displays a distorted trigonal-pyramidally coordinated cobalt(I) atom, with two phosphane ligands and one DMSO ligand in the equatorial plane. The coordination is completed by one further DMSO ligand and the anionic hydride in the axial positions.

Related literature

For the hydro­formyl­ation of alkenes, see: Roelen (1938[Roelen, O. (1938). Ger. Patent 949 548.]). Derivatives of the title compound, starting from Co2(CO)8, have been synthesized by reaction with hydrogen, see: Hieber & Leutert (1931[Hieber, W. & Leutert, F. (1931). Naturwissenschaften, 19, 360-361.]). A related compound, [HCo(P(OEt)3)4], obtained by reaction of cobalt halides and sodium borohydride has been reported by Kruse & Atalla (1968[Kruse, W. & Atalla, R. H. (1968). Chem. Commun. pp. 921-922.]). Its mol­ecular structure in the crystal was determined by Choi & Park (2003[Choi, H. & Park, S. (2003). Chem. Mater. 15, 3121-3124.]).

[Scheme 1]

Experimental

Crystal data
  • [CoH(C18H15P)2(C2H6OS)2]

  • Mr = 740.73

  • Monoclinic, P 21 /n

  • a = 10.5625 (2) Å

  • b = 21.4211 (3) Å

  • c = 15.8427 (4) Å

  • β = 93.4988 (18)°

  • V = 3577.88 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 200 K

  • 0.50 × 0.27 × 0.12 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.786, Tmax = 0.918

  • 59344 measured reflections

  • 8221 independent reflections

  • 6773 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 0.96

  • 8221 reflections

  • 432 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The hydroformylation of alkenes was discovered by Roelen (1938). In the hydroformylation reaction, alkenes react with carbon monoxide and hydrogen, in the presence of a transition metal catalyst, to form aldehydes containing an additional carbon atom. The first generation of catalysts was formed in situ by the use of Co2(CO)8 with molecular hydrogen yielding [HCo(CO)4]. The loss of one carbonyl produces the active species [HCo(CO)3], which can enter the catalytic cycle. Since than cobalt hydrides have been in the focus and interest for many synthetic applications. Herein we report the hydrido-bis(triphenylphosphane)-bis(dimethylsulfoxide)cobalt(I) complex which was prepared comparable to an earlier report from Kruse et al. (1968).

The molecular structure of the title compound displays a distorted trigonal bipyramidal coordination geometry at the cobalt(I) centre with two phosphane ligands and one DMSO ligand in the equatorial plane. The cobalt centre lies 0.376 Å out of the P1,P2,S1 plane. The P—Co—P angle consist of 118.73 (2) °. The coordination geometry is completed by one further DMSO ligand and the hydride.

Related literature top

For the hydroformylation of alkenes, see: Roelen (1938). Derivatives of the title compound, starting from Co2(CO)8, have been synthesized by reaction with hydrogen, see: Hieber et al. (1931). A related compound, [HCo(P(OEt)3)4], obtained by reaction of cobalt halides and sodium borohydride has been reported by Kruse et al. (1968). Its molecular structure in the crystal was determined by Choi et al. (2003).

Experimental top

Chloro-tris(triphenylphosphane)cobalt(I) (0.7 g, 0.79 mmol) and potassium hydro-tris(pyrazolyl)borate (0.2 g, 0.79 mmol) were weighted into a Schlenk flask in the glove-box. The reaction flask was connected to a Schlenk line outside the box and 20 ml of dimethylsulfoxide were added. Stirring at room temperature for 20 h resulted in a deep red solution. Extraction with pentane (2 x 15 ml) and concentration of the dimethylsulfoxide phase led to precipitation of red crystals of the title compound (yield < 5%).

Refinement top

The H atom bonded to Co was found from difference Fourier map and refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH. The distances C2-C3 and C3-C4, C20-C21 and C21-C22, C32-C33 and C33-C34 were restrained to be equal within an effective e.s.d. of 0.002Å.

Structure description top

The hydroformylation of alkenes was discovered by Roelen (1938). In the hydroformylation reaction, alkenes react with carbon monoxide and hydrogen, in the presence of a transition metal catalyst, to form aldehydes containing an additional carbon atom. The first generation of catalysts was formed in situ by the use of Co2(CO)8 with molecular hydrogen yielding [HCo(CO)4]. The loss of one carbonyl produces the active species [HCo(CO)3], which can enter the catalytic cycle. Since than cobalt hydrides have been in the focus and interest for many synthetic applications. Herein we report the hydrido-bis(triphenylphosphane)-bis(dimethylsulfoxide)cobalt(I) complex which was prepared comparable to an earlier report from Kruse et al. (1968).

The molecular structure of the title compound displays a distorted trigonal bipyramidal coordination geometry at the cobalt(I) centre with two phosphane ligands and one DMSO ligand in the equatorial plane. The cobalt centre lies 0.376 Å out of the P1,P2,S1 plane. The P—Co—P angle consist of 118.73 (2) °. The coordination geometry is completed by one further DMSO ligand and the hydride.

For the hydroformylation of alkenes, see: Roelen (1938). Derivatives of the title compound, starting from Co2(CO)8, have been synthesized by reaction with hydrogen, see: Hieber et al. (1931). A related compound, [HCo(P(OEt)3)4], obtained by reaction of cobalt halides and sodium borohydride has been reported by Kruse et al. (1968). Its molecular structure in the crystal was determined by Choi et al. (2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
Bis(dimethyl sulfoxide)hydridobis(triphenylphosphane)cobalt(I) top
Crystal data top
[CoH(C18H15P)2(C2H6OS)2]F(000) = 1552
Mr = 740.73Dx = 1.375 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11909 reflections
a = 10.5625 (2) Åθ = 1.6–28.4°
b = 21.4211 (3) ŵ = 0.72 mm1
c = 15.8427 (4) ÅT = 200 K
β = 93.4988 (18)°Prism, orange
V = 3577.88 (13) Å30.50 × 0.27 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
8221 independent reflections
Radiation source: fine-focus sealed tube6773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1313
Tmin = 0.786, Tmax = 0.918k = 2726
59344 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
8221 reflections(Δ/σ)max = 0.001
432 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
[CoH(C18H15P)2(C2H6OS)2]V = 3577.88 (13) Å3
Mr = 740.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5625 (2) ŵ = 0.72 mm1
b = 21.4211 (3) ÅT = 200 K
c = 15.8427 (4) Å0.50 × 0.27 × 0.12 mm
β = 93.4988 (18)°
Data collection top
Stoe IPDS II
diffractometer
8221 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
6773 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.918Rint = 0.032
59344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.37 e Å3
8221 reflectionsΔρmin = 0.25 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84405 (12)0.29130 (6)0.07852 (8)0.0229 (3)
C20.84028 (15)0.28531 (7)0.00879 (9)0.0304 (3)
H2A0.87030.24810.03340.036*
C30.79306 (18)0.33323 (6)0.06027 (10)0.0415 (4)
H3A0.79040.32850.12000.050*
C40.74978 (17)0.38784 (7)0.02578 (11)0.0401 (4)
H4A0.71410.41980.06140.048*
C50.75878 (17)0.39566 (8)0.06092 (11)0.0382 (4)
H5A0.73240.43370.08520.046*
C60.80645 (16)0.34784 (7)0.11226 (10)0.0328 (3)
H6A0.81370.35370.17180.039*
C71.02598 (12)0.26634 (6)0.21005 (8)0.0222 (3)
C81.04236 (13)0.26494 (7)0.29762 (9)0.0258 (3)
H8A0.98090.24450.32920.031*
C91.14670 (15)0.29276 (7)0.33999 (10)0.0316 (3)
H9A1.15530.29210.40000.038*
C101.23767 (15)0.32124 (7)0.29451 (11)0.0348 (3)
H10A1.31110.33870.32300.042*
C111.22190 (14)0.32440 (7)0.20740 (11)0.0324 (3)
H11A1.28380.34480.17620.039*
C121.11604 (14)0.29798 (7)0.16529 (9)0.0271 (3)
H12A1.10470.30140.10550.033*
C130.96617 (13)0.17149 (6)0.08568 (8)0.0228 (3)
C141.09483 (14)0.15752 (7)0.09201 (9)0.0289 (3)
H14A1.15010.18040.13010.035*
C151.14359 (16)0.11037 (8)0.04310 (10)0.0349 (3)
H15A1.23160.10110.04850.042*
C161.06507 (16)0.07706 (7)0.01308 (10)0.0336 (3)
H16A1.09880.04510.04670.040*
C170.93693 (16)0.09046 (7)0.02010 (10)0.0327 (3)
H17A0.88240.06780.05900.039*
C180.88760 (14)0.13677 (7)0.02925 (9)0.0270 (3)
H18A0.79910.14510.02470.032*
C190.91922 (13)0.05062 (7)0.25711 (8)0.0249 (3)
C201.03066 (13)0.08500 (7)0.26426 (10)0.0303 (3)
H20A1.02680.12890.27270.036*
C211.14762 (14)0.05622 (7)0.25922 (10)0.0365 (4)
H21A1.22300.08050.26420.044*
C221.15513 (16)0.00756 (8)0.24693 (10)0.0382 (4)
H22A1.23510.02720.24250.046*
C231.04497 (17)0.04240 (8)0.24121 (11)0.0405 (4)
H23A1.04920.08630.23370.049*
C240.92830 (15)0.01364 (7)0.24641 (10)0.0336 (3)
H24A0.85330.03820.24260.040*
C250.66405 (13)0.02838 (7)0.21015 (9)0.0254 (3)
C260.67228 (14)0.02436 (7)0.12283 (9)0.0295 (3)
H26A0.72270.05360.09480.035*
C270.60789 (15)0.02173 (8)0.07636 (10)0.0344 (3)
H27A0.61620.02450.01710.041*
C280.53165 (16)0.06371 (8)0.11571 (11)0.0391 (4)
H28A0.48610.09480.08360.047*
C290.52226 (16)0.06019 (8)0.20204 (11)0.0385 (4)
H29A0.47000.08900.22940.046*
C300.58849 (14)0.01489 (7)0.24947 (10)0.0313 (3)
H30A0.58220.01340.30900.038*
C310.73647 (14)0.07445 (6)0.37623 (9)0.0254 (3)
C320.83543 (15)0.06171 (7)0.43584 (9)0.0316 (3)
H32A0.91930.05740.41810.038*
C330.81317 (16)0.05521 (8)0.52067 (9)0.0395 (4)
H33A0.88190.04740.56080.047*
C340.69134 (18)0.06003 (8)0.54708 (10)0.0419 (4)
H34A0.67570.05420.60500.050*
C350.59222 (18)0.07343 (8)0.48892 (11)0.0404 (4)
H35A0.50830.07710.50690.049*
C360.61515 (15)0.08156 (8)0.40458 (10)0.0329 (3)
H36A0.54690.09220.36530.040*
C370.6986 (2)0.32495 (8)0.32085 (12)0.0444 (4)
H37A0.66350.34220.26710.067*
H37B0.79060.33140.32550.067*
H37C0.66010.34600.36790.067*
C380.73396 (19)0.23176 (9)0.43020 (10)0.0417 (4)
H38A0.69100.25880.46940.063*
H38B0.82430.24240.43180.063*
H38C0.72420.18810.44690.063*
C390.51716 (16)0.26409 (8)0.12418 (12)0.0420 (4)
H39A0.57860.29180.09930.063*
H39B0.49460.28100.17870.063*
H39C0.44080.26100.08610.063*
C400.44968 (15)0.15096 (9)0.17929 (12)0.0426 (4)
H40A0.37590.15800.13990.064*
H40B0.43320.16860.23460.064*
H40C0.46530.10600.18510.064*
Co10.745804 (16)0.186494 (8)0.230342 (11)0.01983 (5)
O10.52521 (11)0.24091 (7)0.33284 (8)0.0494 (3)
O20.59499 (11)0.16332 (6)0.05273 (7)0.0386 (3)
P10.88875 (3)0.227945 (16)0.15380 (2)0.01951 (7)
P20.76289 (3)0.089222 (16)0.26405 (2)0.02134 (8)
S10.66484 (3)0.242824 (18)0.32462 (2)0.02783 (8)
S20.58576 (3)0.187931 (18)0.13968 (2)0.02729 (8)
H10.8514 (17)0.1820 (8)0.2884 (11)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (6)0.0223 (7)0.0240 (6)0.0013 (5)0.0017 (5)0.0019 (5)
C20.0411 (8)0.0257 (7)0.0238 (7)0.0012 (6)0.0018 (6)0.0012 (6)
C30.0641 (11)0.0329 (9)0.0259 (7)0.0003 (8)0.0092 (7)0.0024 (6)
C40.0504 (10)0.0278 (8)0.0402 (9)0.0013 (7)0.0127 (7)0.0079 (7)
C50.0479 (10)0.0264 (8)0.0403 (9)0.0079 (7)0.0031 (7)0.0019 (7)
C60.0429 (9)0.0286 (8)0.0273 (7)0.0058 (6)0.0052 (6)0.0000 (6)
C70.0208 (6)0.0200 (6)0.0255 (6)0.0012 (5)0.0007 (5)0.0022 (5)
C80.0268 (7)0.0240 (7)0.0264 (7)0.0020 (5)0.0000 (5)0.0014 (5)
C90.0338 (8)0.0287 (8)0.0311 (7)0.0007 (6)0.0079 (6)0.0005 (6)
C100.0261 (7)0.0296 (8)0.0474 (9)0.0040 (6)0.0098 (6)0.0003 (7)
C110.0246 (7)0.0279 (8)0.0451 (9)0.0040 (6)0.0044 (6)0.0013 (6)
C120.0268 (7)0.0263 (7)0.0285 (7)0.0013 (6)0.0041 (5)0.0000 (6)
C130.0277 (7)0.0206 (6)0.0207 (6)0.0002 (5)0.0051 (5)0.0011 (5)
C140.0287 (7)0.0288 (8)0.0295 (7)0.0029 (6)0.0031 (6)0.0024 (6)
C150.0328 (8)0.0348 (9)0.0379 (8)0.0091 (6)0.0083 (6)0.0022 (7)
C160.0464 (9)0.0236 (7)0.0322 (8)0.0047 (6)0.0136 (7)0.0025 (6)
C170.0454 (9)0.0255 (8)0.0275 (7)0.0054 (6)0.0052 (6)0.0037 (6)
C180.0302 (7)0.0250 (7)0.0260 (7)0.0018 (6)0.0047 (5)0.0008 (6)
C190.0265 (7)0.0261 (7)0.0223 (6)0.0034 (5)0.0024 (5)0.0006 (5)
C200.0278 (7)0.0292 (8)0.0337 (8)0.0023 (6)0.0012 (6)0.0042 (6)
C210.0253 (7)0.0457 (10)0.0385 (8)0.0025 (7)0.0015 (6)0.0067 (7)
C220.0328 (8)0.0494 (10)0.0325 (8)0.0174 (7)0.0018 (6)0.0003 (7)
C230.0428 (9)0.0337 (9)0.0443 (9)0.0143 (7)0.0029 (7)0.0081 (7)
C240.0321 (8)0.0277 (8)0.0406 (8)0.0038 (6)0.0007 (6)0.0051 (6)
C250.0250 (6)0.0204 (7)0.0306 (7)0.0001 (5)0.0004 (5)0.0010 (5)
C260.0309 (7)0.0274 (8)0.0301 (7)0.0001 (6)0.0017 (6)0.0010 (6)
C270.0368 (8)0.0326 (8)0.0331 (8)0.0043 (6)0.0039 (6)0.0061 (6)
C280.0367 (8)0.0307 (8)0.0485 (10)0.0040 (7)0.0100 (7)0.0081 (7)
C290.0358 (8)0.0292 (8)0.0502 (10)0.0096 (7)0.0002 (7)0.0005 (7)
C300.0317 (7)0.0280 (8)0.0343 (8)0.0053 (6)0.0022 (6)0.0020 (6)
C310.0322 (7)0.0191 (7)0.0252 (6)0.0012 (5)0.0036 (5)0.0002 (5)
C320.0365 (8)0.0297 (8)0.0285 (7)0.0002 (6)0.0012 (6)0.0015 (6)
C330.0547 (10)0.0365 (9)0.0266 (7)0.0011 (8)0.0033 (7)0.0005 (7)
C340.0655 (12)0.0356 (9)0.0258 (7)0.0020 (8)0.0118 (7)0.0004 (7)
C350.0469 (10)0.0380 (9)0.0383 (9)0.0000 (8)0.0182 (7)0.0003 (7)
C360.0347 (8)0.0332 (8)0.0316 (8)0.0014 (6)0.0072 (6)0.0011 (6)
C370.0690 (12)0.0262 (8)0.0396 (9)0.0034 (8)0.0161 (8)0.0043 (7)
C380.0618 (11)0.0378 (9)0.0260 (7)0.0032 (8)0.0071 (7)0.0050 (7)
C390.0346 (8)0.0396 (10)0.0505 (10)0.0120 (7)0.0082 (7)0.0003 (8)
C400.0218 (7)0.0516 (11)0.0540 (10)0.0054 (7)0.0001 (7)0.0013 (8)
Co10.01897 (9)0.02004 (10)0.02051 (9)0.00010 (7)0.00147 (6)0.00072 (7)
O10.0312 (6)0.0681 (9)0.0503 (7)0.0022 (6)0.0149 (5)0.0158 (6)
O20.0350 (6)0.0497 (7)0.0301 (6)0.0051 (5)0.0059 (4)0.0082 (5)
P10.02040 (15)0.01970 (16)0.01851 (15)0.00003 (12)0.00179 (12)0.00071 (12)
P20.02156 (16)0.01971 (17)0.02289 (16)0.00094 (13)0.00256 (13)0.00041 (13)
S10.02933 (17)0.02839 (19)0.02654 (17)0.00214 (14)0.00784 (13)0.00359 (14)
S20.02106 (16)0.03158 (19)0.02882 (17)0.00215 (13)0.00186 (13)0.00197 (14)
Geometric parameters (Å, º) top
C1—C21.3873 (19)C25—C261.394 (2)
C1—C61.392 (2)C25—C301.395 (2)
C1—P11.8489 (14)C25—P21.8464 (14)
C2—C31.3850 (16)C26—C271.385 (2)
C2—H2A0.9500C26—H26A0.9500
C3—C41.3808 (17)C27—C281.381 (2)
C3—H3A0.9500C27—H27A0.9500
C4—C51.381 (2)C28—C291.379 (3)
C4—H4A0.9500C28—H28A0.9500
C5—C61.384 (2)C29—C301.390 (2)
C5—H5A0.9500C29—H29A0.9500
C6—H6A0.9500C30—H30A0.9500
C7—C81.3879 (19)C31—C361.392 (2)
C7—C121.3963 (19)C31—C321.392 (2)
C7—P11.8477 (13)C31—P21.8431 (14)
C8—C91.389 (2)C32—C331.3853 (16)
C8—H8A0.9500C32—H32A0.9500
C9—C101.378 (2)C33—C341.3811 (18)
C9—H9A0.9500C33—H33A0.9500
C10—C111.382 (2)C34—C351.382 (3)
C10—H10A0.9500C34—H34A0.9500
C11—C121.387 (2)C35—C361.383 (2)
C11—H11A0.9500C35—H35A0.9500
C12—H12A0.9500C36—H36A0.9500
C13—C141.389 (2)C37—S11.7967 (17)
C13—C181.397 (2)C37—H37A0.9800
C13—P11.8449 (14)C37—H37B0.9800
C14—C151.391 (2)C37—H37C0.9800
C14—H14A0.9500C38—S11.7995 (17)
C15—C161.378 (2)C38—H38A0.9800
C15—H15A0.9500C38—H38B0.9800
C16—C171.381 (2)C38—H38C0.9800
C16—H16A0.9500C39—S21.7958 (17)
C17—C181.384 (2)C39—H39A0.9800
C17—H17A0.9500C39—H39B0.9800
C18—H18A0.9500C39—H39C0.9800
C19—C201.387 (2)C40—S21.7881 (17)
C19—C241.391 (2)C40—H40A0.9800
C19—P21.8559 (14)C40—H40B0.9800
C20—C211.3873 (16)C40—H40C0.9800
C20—H20A0.9500Co1—S12.1387 (4)
C21—C221.3831 (17)Co1—S22.1507 (4)
C21—H21A0.9500Co1—P22.1559 (4)
C22—C231.381 (3)Co1—P12.1823 (4)
C22—H22A0.9500Co1—H11.405 (18)
C23—C241.385 (2)O1—S11.4891 (12)
C23—H23A0.9500O2—S21.4837 (11)
C24—H24A0.9500
C2—C1—C6118.17 (13)C27—C28—H28A120.3
C2—C1—P1124.47 (11)C28—C29—C30120.67 (15)
C6—C1—P1117.30 (10)C28—C29—H29A119.7
C3—C2—C1120.40 (14)C30—C29—H29A119.7
C3—C2—H2A119.8C29—C30—C25120.36 (15)
C1—C2—H2A119.8C29—C30—H30A119.8
C4—C3—C2120.72 (15)C25—C30—H30A119.8
C4—C3—H3A119.6C36—C31—C32118.06 (13)
C2—C3—H3A119.6C36—C31—P2119.27 (11)
C3—C4—C5119.47 (14)C32—C31—P2122.42 (11)
C3—C4—H4A120.3C33—C32—C31120.86 (14)
C5—C4—H4A120.3C33—C32—H32A119.6
C4—C5—C6119.69 (15)C31—C32—H32A119.6
C4—C5—H5A120.2C34—C33—C32120.19 (16)
C6—C5—H5A120.2C34—C33—H33A119.9
C5—C6—C1121.37 (14)C32—C33—H33A119.9
C5—C6—H6A119.3C33—C34—C35119.70 (14)
C1—C6—H6A119.3C33—C34—H34A120.1
C8—C7—C12118.10 (13)C35—C34—H34A120.1
C8—C7—P1121.25 (10)C34—C35—C36119.99 (16)
C12—C7—P1120.65 (11)C34—C35—H35A120.0
C7—C8—C9121.37 (13)C36—C35—H35A120.0
C7—C8—H8A119.3C35—C36—C31121.12 (15)
C9—C8—H8A119.3C35—C36—H36A119.4
C10—C9—C8119.69 (14)C31—C36—H36A119.4
C10—C9—H9A120.2S1—C37—H37A109.5
C8—C9—H9A120.2S1—C37—H37B109.5
C9—C10—C11119.89 (14)H37A—C37—H37B109.5
C9—C10—H10A120.1S1—C37—H37C109.5
C11—C10—H10A120.1H37A—C37—H37C109.5
C10—C11—C12120.33 (14)H37B—C37—H37C109.5
C10—C11—H11A119.8S1—C38—H38A109.5
C12—C11—H11A119.8S1—C38—H38B109.5
C11—C12—C7120.52 (14)H38A—C38—H38B109.5
C11—C12—H12A119.7S1—C38—H38C109.5
C7—C12—H12A119.7H38A—C38—H38C109.5
C14—C13—C18118.17 (13)H38B—C38—H38C109.5
C14—C13—P1124.44 (11)S2—C39—H39A109.5
C18—C13—P1117.14 (10)S2—C39—H39B109.5
C13—C14—C15120.67 (14)H39A—C39—H39B109.5
C13—C14—H14A119.7S2—C39—H39C109.5
C15—C14—H14A119.7H39A—C39—H39C109.5
C16—C15—C14120.47 (15)H39B—C39—H39C109.5
C16—C15—H15A119.8S2—C40—H40A109.5
C14—C15—H15A119.8S2—C40—H40B109.5
C15—C16—C17119.50 (14)H40A—C40—H40B109.5
C15—C16—H16A120.2S2—C40—H40C109.5
C17—C16—H16A120.2H40A—C40—H40C109.5
C16—C17—C18120.28 (15)H40B—C40—H40C109.5
C16—C17—H17A119.9S1—Co1—S297.289 (15)
C18—C17—H17A119.9S1—Co1—P2113.785 (15)
C17—C18—C13120.90 (14)S2—Co1—P2103.285 (15)
C17—C18—H18A119.5S1—Co1—P1118.569 (16)
C13—C18—H18A119.5S2—Co1—P199.515 (15)
C20—C19—C24118.09 (13)P2—Co1—P1118.725 (15)
C20—C19—P2120.81 (11)S1—Co1—H185.2 (7)
C24—C19—P2121.09 (11)S2—Co1—H1176.8 (7)
C19—C20—C21120.89 (14)P2—Co1—H173.8 (7)
C19—C20—H20A119.6P1—Co1—H180.9 (7)
C21—C20—H20A119.6C13—P1—C7102.20 (6)
C22—C21—C20120.41 (15)C13—P1—C1102.05 (6)
C22—C21—H21A119.8C7—P1—C198.42 (6)
C20—C21—H21A119.8C13—P1—Co1113.87 (4)
C23—C22—C21119.20 (14)C7—P1—Co1117.52 (4)
C23—C22—H22A120.4C1—P1—Co1119.93 (4)
C21—C22—H22A120.4C31—P2—C25102.13 (7)
C22—C23—C24120.34 (16)C31—P2—C1999.69 (6)
C22—C23—H23A119.8C25—P2—C1997.94 (6)
C24—C23—H23A119.8C31—P2—Co1112.92 (5)
C23—C24—C19121.05 (15)C25—P2—Co1122.09 (5)
C23—C24—H24A119.5C19—P2—Co1118.51 (5)
C19—C24—H24A119.5O1—S1—C37103.26 (9)
C26—C25—C30118.31 (13)O1—S1—C38105.24 (8)
C26—C25—P2115.77 (11)C37—S1—C3895.15 (9)
C30—C25—P2125.83 (11)O1—S1—Co1119.07 (5)
C27—C26—C25120.88 (14)C37—S1—Co1116.15 (6)
C27—C26—H26A119.6C38—S1—Co1114.71 (6)
C25—C26—H26A119.6O2—S2—C40105.56 (8)
C28—C27—C26120.35 (15)O2—S2—C39104.16 (8)
C28—C27—H27A119.8C40—S2—C3997.12 (9)
C26—C27—H27A119.8O2—S2—Co1121.43 (5)
C29—C28—C27119.41 (15)C40—S2—Co1112.03 (6)
C29—C28—H28A120.3C39—S2—Co1113.48 (6)
C6—C1—C2—C33.8 (2)C2—C1—P1—C1315.96 (14)
P1—C1—C2—C3173.25 (13)C6—C1—P1—C13166.97 (12)
C1—C2—C3—C40.4 (3)C2—C1—P1—C7120.44 (13)
C2—C3—C4—C52.8 (3)C6—C1—P1—C762.49 (12)
C3—C4—C5—C62.5 (3)C2—C1—P1—Co1110.94 (12)
C4—C5—C6—C11.0 (3)C6—C1—P1—Co166.13 (12)
C2—C1—C6—C54.1 (2)S1—Co1—P1—C13171.96 (5)
P1—C1—C6—C5173.17 (13)S2—Co1—P1—C1384.28 (5)
C12—C7—C8—C91.6 (2)P2—Co1—P1—C1326.67 (5)
P1—C7—C8—C9178.77 (11)S1—Co1—P1—C752.55 (5)
C7—C8—C9—C101.4 (2)S2—Co1—P1—C7156.30 (5)
C8—C9—C10—C112.9 (2)P2—Co1—P1—C792.75 (5)
C9—C10—C11—C121.2 (2)S1—Co1—P1—C166.82 (5)
C10—C11—C12—C71.8 (2)S2—Co1—P1—C136.93 (5)
C8—C7—C12—C113.2 (2)P2—Co1—P1—C1147.88 (5)
P1—C7—C12—C11177.15 (11)C36—C31—P2—C2563.39 (13)
C18—C13—C14—C150.2 (2)C32—C31—P2—C25122.43 (13)
P1—C13—C14—C15174.30 (12)C36—C31—P2—C19163.76 (12)
C13—C14—C15—C160.6 (2)C32—C31—P2—C1922.06 (14)
C14—C15—C16—C170.5 (2)C36—C31—P2—Co169.52 (13)
C15—C16—C17—C180.4 (2)C32—C31—P2—Co1104.66 (12)
C16—C17—C18—C131.2 (2)C26—C25—P2—C31175.08 (11)
C14—C13—C18—C171.1 (2)C30—C25—P2—C311.57 (14)
P1—C13—C18—C17175.62 (11)C26—C25—P2—C1973.32 (12)
C24—C19—C20—C211.2 (2)C30—C25—P2—C19103.32 (13)
P2—C19—C20—C21179.90 (12)C26—C25—P2—Co157.69 (12)
C19—C20—C21—C220.0 (2)C30—C25—P2—Co1125.66 (12)
C20—C21—C22—C231.1 (2)C20—C19—P2—C3197.04 (12)
C21—C22—C23—C241.0 (3)C24—C19—P2—C3181.58 (13)
C22—C23—C24—C190.2 (3)C20—C19—P2—C25159.12 (12)
C20—C19—C24—C231.4 (2)C24—C19—P2—C2522.25 (13)
P2—C19—C24—C23179.98 (13)C20—C19—P2—Co125.80 (13)
C30—C25—C26—C270.5 (2)C24—C19—P2—Co1155.58 (11)
P2—C25—C26—C27176.40 (12)S1—Co1—P2—C3112.08 (5)
C25—C26—C27—C281.6 (2)S2—Co1—P2—C31116.35 (5)
C26—C27—C28—C291.4 (2)P1—Co1—P2—C31134.80 (5)
C27—C28—C29—C300.1 (3)S1—Co1—P2—C25110.23 (6)
C28—C29—C30—C251.0 (3)S2—Co1—P2—C255.96 (6)
C26—C25—C30—C290.8 (2)P1—Co1—P2—C25102.89 (6)
P2—C25—C30—C29177.34 (12)S1—Co1—P2—C19128.03 (5)
C36—C31—C32—C331.1 (2)S2—Co1—P2—C19127.70 (5)
P2—C31—C32—C33175.39 (12)P1—Co1—P2—C1918.85 (5)
C31—C32—C33—C341.4 (3)S2—Co1—S1—O130.74 (7)
C32—C33—C34—C352.1 (3)P2—Co1—S1—O177.29 (7)
C33—C34—C35—C360.4 (3)P1—Co1—S1—O1135.77 (7)
C34—C35—C36—C312.2 (3)S2—Co1—S1—C3793.69 (8)
C32—C31—C36—C352.9 (2)P2—Co1—S1—C37158.28 (8)
P2—C31—C36—C35177.33 (13)P1—Co1—S1—C3711.35 (8)
C14—C13—P1—C710.10 (14)S2—Co1—S1—C38156.68 (7)
C18—C13—P1—C7175.78 (11)P2—Co1—S1—C3848.64 (7)
C14—C13—P1—C1111.59 (13)P1—Co1—S1—C3898.29 (7)
C18—C13—P1—C174.28 (12)S1—Co1—S2—O2170.37 (6)
C14—C13—P1—Co1117.68 (12)P2—Co1—S2—O273.02 (7)
C18—C13—P1—Co156.44 (12)P1—Co1—S2—O249.69 (7)
C8—C7—P1—C13120.84 (12)S1—Co1—S2—C4063.72 (7)
C12—C7—P1—C1359.52 (12)P2—Co1—S2—C4052.90 (7)
C8—C7—P1—C1134.81 (12)P1—Co1—S2—C40175.60 (7)
C12—C7—P1—C144.83 (12)S1—Co1—S2—C3945.04 (7)
C8—C7—P1—Co14.58 (13)P2—Co1—S2—C39161.66 (7)
C12—C7—P1—Co1175.07 (10)P1—Co1—S2—C3975.64 (7)

Experimental details

Crystal data
Chemical formula[CoH(C18H15P)2(C2H6OS)2]
Mr740.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)10.5625 (2), 21.4211 (3), 15.8427 (4)
β (°) 93.4988 (18)
V3)3577.88 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.50 × 0.27 × 0.12
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.786, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
59344, 8221, 6773
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 0.96
No. of reflections8221
No. of parameters432
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock. MH thanks Professor Uwe Rosenthal for his support.

References

First citationChoi, H. & Park, S. (2003). Chem. Mater. 15, 3121–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationHieber, W. & Leutert, F. (1931). Naturwissenschaften, 19, 360–361.  CrossRef CAS Google Scholar
First citationKruse, W. & Atalla, R. H. (1968). Chem. Commun. pp. 921–922.  Google Scholar
First citationRoelen, O. (1938). Ger. Patent 949 548.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds