organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(9-Octyl-9H-carbazole-3,6-di­yl)di­ethanone

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 21 June 2010; accepted 20 July 2010; online 24 July 2010)

The central structural element of the title compound, C24H29NO2, is a carbazole unit substituted with two acetyl residues and an octyl chain. The acetyl residues are nearly coplanar [dihedral angles = 5.37 (14) and 1.0 (3)°] with the carbazole unit which is essentially planar (r.m.s. deviation for all non-H atoms = 0.025 Å). The octyl chain adopts an all-trans conformation. The crystal packing is stabilized by C—H⋯O hydrogen bonds.

Related literature

For details of the biological activity of carbazoles, see: Yamashita et al. (1992[Yamashita, Y., Fujii, N., Murkata, C., Ashiawa, T., Okabe, M. & Nakano, H. (1992). Biochemistry, 31, 12069-12074.]). For properties of aromatic carbazolyl groups, see: Law (1992[Law, K. Y. (1992). Chem. Rev. 93, 449-453.]). For the properties and applications of carbazole-containing polymers, see: Strohriegl & Grazulevicius (1997[Strohriegl, P. & Grazulevicius, J. V. (1997). Photoconductive Polymers, edited by H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, Vol. 1, pp. 553-561. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29NO2

  • Mr = 363.48

  • Orthorhombic, P b c a

  • a = 18.746 (2) Å

  • b = 10.3842 (18) Å

  • c = 20.994 (3) Å

  • V = 4086.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.32 × 0.29 × 0.12 mm

Data collection
  • Stow IPDS II diffractometer

  • 8614 measured reflections

  • 3613 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.086

  • S = 0.85

  • 3613 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.59 3.474 (2) 154
C23—H23⋯O2i 0.95 2.39 3.298 (3) 160
C28—H28A⋯O1i 0.98 2.40 3.363 (2) 166
C26—H26⋯O1ii 0.95 2.54 3.484 (2) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbazole and its derivatives have attracted extensive interest because of their biological activity (Yamashita et al. 1992). The carbazole based compounds demonstrate high thermal, morphological, chemical and environmental stability. Two basic properties of the fully aromatic carbazolyl group are the easy oxidizability of nitrogen atom and its ability to transport positive charge centers via the radical cation specie (Law, 1992). Carbazole containing polymers have been extensively studied for different applications due to their good hole transport and electroluminescent properties. (Strohriegl & Grazulevicius 1997). The title compound was prepared in order to study some photophysical properties of carbazole derivatives. It was synthesized by the reaction of carbazole and with octyl bromide in a two phase system of 50% aqueous KOH and benzene in the presence of tetrabutylammonium bromide as phase transfer catalystfollowed by Friedel-Craft acetylation using anhydrous aluminium chloride.

The central structural element of the title compound is a carbazole moiety substituted with two acetyl residues and an octyl-chain. The acetyl residues are coplanar [dihedral angles 5.37 (14)° and 1.0(3°] with the carbazole moiety which is essentially planar (r.m.s. deviation for all non-H atoms 0.025Å). The octyl chain adopts an all trans conformation. The crystal packing is stabilized by C—H···O hydrogen bonds.

Related literature top

For details of the biological activity of carbazoles, see: Yamashita et al. (1992). For properties of aromatic carbazolyl groups, see: Law (1992). For the properties and applicationsof carbazole-containing polymers, see: Strohriegl & Grazulevicius (1997).

Experimental top

Aluminium chloride, 4.0 g (3 mmol) and acetyl chloride, 2.35 g (3 mmol) were added successively to 10 ml of dry chloroform. The mixture was stirred for 10 minutes at 0 C to obtain a clear solution. A solution of 4.46 g (2 mmol) of N-octylcarbazole in 10 ml of dry chloroform was added drop wise to the above solution at 0°C during 15 minutes. The reaction mixture was stirred at room temperature for three hours. After the completion of the reaction (TLC control), the reaction mixture was poured into a stirred solution of 10% HCl (50 ml). The organic layer was separated, washed with distilled water three times and treated with anhydrous NaSO4. The solvent was removed in vacuo to leave a solid which was recrystallized from ethanol to afford title compund (85%) as dull green crystals having bread mold smell. m.p. 145 °C; Anal. calcd. for C16H23NO4: C, 65.51; H, 9.70; N, 4.77%; found: C, 65.58; H, 9.65; N, 4.81%.

Refinement top

H atoms could be located in a difference Fourier map. They were refined using a riding model with isotropic displacement parameters Uiso(H) set to 1.2Ueq(C) and with C—H ranging from 0.95Å to 0.99 or Uiso(H) set to 1.5Ueq(Cmethyl) and with C—H = 0.98 Å. The methyl groups were allowed to rotate but not to tip.

Structure description top

Carbazole and its derivatives have attracted extensive interest because of their biological activity (Yamashita et al. 1992). The carbazole based compounds demonstrate high thermal, morphological, chemical and environmental stability. Two basic properties of the fully aromatic carbazolyl group are the easy oxidizability of nitrogen atom and its ability to transport positive charge centers via the radical cation specie (Law, 1992). Carbazole containing polymers have been extensively studied for different applications due to their good hole transport and electroluminescent properties. (Strohriegl & Grazulevicius 1997). The title compound was prepared in order to study some photophysical properties of carbazole derivatives. It was synthesized by the reaction of carbazole and with octyl bromide in a two phase system of 50% aqueous KOH and benzene in the presence of tetrabutylammonium bromide as phase transfer catalystfollowed by Friedel-Craft acetylation using anhydrous aluminium chloride.

The central structural element of the title compound is a carbazole moiety substituted with two acetyl residues and an octyl-chain. The acetyl residues are coplanar [dihedral angles 5.37 (14)° and 1.0(3°] with the carbazole moiety which is essentially planar (r.m.s. deviation for all non-H atoms 0.025Å). The octyl chain adopts an all trans conformation. The crystal packing is stabilized by C—H···O hydrogen bonds.

For details of the biological activity of carbazoles, see: Yamashita et al. (1992). For properties of aromatic carbazolyl groups, see: Law (1992). For the properties and applicationsof carbazole-containing polymers, see: Strohriegl & Grazulevicius (1997).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
1,1'-(9-Octyl-9H-carbazole-3,6-diyl)diethanone top
Crystal data top
C24H29NO2F(000) = 1568
Mr = 363.48Dx = 1.182 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3794 reflections
a = 18.746 (2) Åθ = 3.6–25.9°
b = 10.3842 (18) ŵ = 0.07 mm1
c = 20.994 (3) ÅT = 173 K
V = 4086.7 (10) Å3Plate, colourless
Z = 80.32 × 0.29 × 0.12 mm
Data collection top
Stow IPDS II two-circle
diffractometer
2024 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 022
8614 measured reflectionsk = 012
3613 independent reflectionsl = 024
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0389P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
3613 reflectionsΔρmax = 0.20 e Å3
248 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Crystal data top
C24H29NO2V = 4086.7 (10) Å3
Mr = 363.48Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.746 (2) ŵ = 0.07 mm1
b = 10.3842 (18) ÅT = 173 K
c = 20.994 (3) Å0.32 × 0.29 × 0.12 mm
Data collection top
Stow IPDS II two-circle
diffractometer
2024 reflections with I > 2σ(I)
8614 measured reflectionsRint = 0.031
3613 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.85Δρmax = 0.20 e Å3
3613 reflectionsΔρmin = 0.20 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70663 (9)0.23596 (8)0.66696 (8)0.0259 (4)
O10.68112 (9)0.13339 (7)0.37076 (7)0.0482 (4)
O20.45645 (10)0.58614 (10)0.56767 (8)0.0579 (5)
C10.75428 (11)0.21735 (9)0.72139 (9)0.0300 (5)
H1A0.77870.13320.71700.036*
H1B0.72550.21470.76090.036*
C20.81004 (11)0.32270 (10)0.72736 (9)0.0340 (5)
H2A0.84160.30230.76380.041*
H2B0.78560.40500.73700.041*
C30.85589 (12)0.34086 (10)0.66809 (10)0.0335 (5)
H3A0.82470.36400.63180.040*
H3B0.87970.25840.65770.040*
C40.91269 (11)0.44553 (10)0.67644 (10)0.0342 (5)
H4A0.88920.52590.69070.041*
H4B0.94630.41860.71030.041*
C50.95472 (12)0.47302 (9)0.61566 (10)0.0358 (5)
H5A0.97700.39210.60070.043*
H5B0.92130.50240.58220.043*
C61.01263 (12)0.57443 (10)0.62449 (10)0.0376 (5)
H6A1.04990.53960.65310.045*
H6B0.99160.65090.64550.045*
C71.04725 (13)0.61615 (10)0.56216 (12)0.0472 (6)
H7A1.00980.64870.53310.057*
H7B1.06950.54020.54180.057*
C81.10405 (14)0.72094 (10)0.57099 (14)0.0696 (9)
H8A1.08120.80060.58550.104*
H8B1.12820.73660.53030.104*
H8C1.13900.69260.60280.104*
C110.71650 (11)0.18471 (9)0.60607 (9)0.0251 (4)
C120.66565 (10)0.23960 (8)0.56417 (9)0.0217 (4)
C130.66665 (11)0.20425 (9)0.49974 (9)0.0249 (4)
H130.63340.24060.47070.030*
C140.71716 (11)0.11499 (9)0.47877 (10)0.0260 (4)
C150.76638 (11)0.06208 (9)0.52180 (10)0.0295 (5)
H150.80030.00130.50680.035*
C160.76684 (11)0.09608 (9)0.58571 (9)0.0290 (5)
H160.80040.05990.61450.035*
C170.72007 (12)0.08031 (9)0.40940 (10)0.0310 (5)
C180.77287 (12)0.01784 (9)0.38732 (9)0.0405 (6)
H18A0.76740.03140.34140.061*
H18B0.76460.09920.40980.061*
H18C0.82130.01270.39630.061*
C210.65132 (10)0.32388 (11)0.66472 (9)0.0240 (4)
C220.62341 (11)0.32930 (10)0.60171 (9)0.0234 (4)
C230.56768 (10)0.41338 (8)0.58793 (9)0.0249 (4)
H230.54860.41820.54610.030*
C240.54038 (10)0.49026 (10)0.63647 (9)0.0249 (4)
C250.56898 (11)0.48308 (11)0.69854 (9)0.0264 (4)
H250.54950.53640.73090.032*
C260.62438 (11)0.40090 (8)0.71366 (9)0.0262 (4)
H260.64340.39690.75560.031*
C270.48115 (12)0.58090 (11)0.62149 (10)0.0320 (5)
C280.44961 (11)0.66343 (9)0.67328 (10)0.0367 (5)
H28A0.41680.72630.65440.055*
H28B0.48790.70880.69570.055*
H28C0.42350.60890.70340.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0267 (9)0.0301 (4)0.0209 (9)0.0028 (7)0.0033 (8)0.0032 (7)
O10.0590 (11)0.0599 (4)0.0255 (9)0.0280 (8)0.0093 (9)0.0055 (6)
O20.0641 (12)0.0820 (6)0.0276 (9)0.0404 (9)0.0134 (9)0.0098 (9)
C10.0336 (12)0.0367 (4)0.0198 (11)0.0043 (9)0.0051 (11)0.0048 (8)
C20.0343 (13)0.0419 (4)0.0258 (12)0.0033 (10)0.0061 (10)0.0030 (9)
C30.0323 (11)0.0375 (4)0.0306 (12)0.0017 (9)0.0050 (11)0.0043 (9)
C40.0329 (11)0.0383 (5)0.0315 (13)0.0030 (9)0.0040 (11)0.0048 (9)
C50.0390 (13)0.0353 (4)0.0330 (13)0.0008 (9)0.0035 (11)0.0015 (7)
C60.0354 (12)0.0404 (4)0.0372 (13)0.0002 (10)0.0037 (11)0.0020 (8)
C70.0437 (15)0.0484 (5)0.0494 (16)0.0020 (10)0.0038 (13)0.0011 (10)
C80.0539 (19)0.0634 (6)0.092 (2)0.0126 (11)0.0141 (18)0.0065 (11)
C110.0276 (11)0.0257 (4)0.0219 (11)0.0021 (9)0.0010 (10)0.0025 (8)
C120.0219 (10)0.0199 (4)0.0233 (11)0.0022 (8)0.0003 (9)0.0009 (7)
C130.0269 (10)0.0267 (4)0.0211 (11)0.0002 (8)0.0018 (10)0.0013 (7)
C140.0292 (10)0.0264 (4)0.0224 (11)0.0011 (8)0.0007 (10)0.0010 (8)
C150.0316 (12)0.0272 (4)0.0298 (12)0.0070 (8)0.0010 (10)0.0001 (8)
C160.0315 (13)0.0287 (4)0.0268 (11)0.0059 (9)0.0055 (10)0.0016 (8)
C170.0344 (12)0.0304 (4)0.0281 (12)0.0030 (9)0.0002 (11)0.0031 (8)
C180.0476 (15)0.0435 (5)0.0303 (13)0.0130 (10)0.0009 (11)0.0073 (7)
C210.0238 (10)0.0266 (4)0.0217 (11)0.0039 (8)0.0013 (9)0.0037 (8)
C220.0228 (10)0.0275 (4)0.0200 (10)0.0014 (9)0.0015 (9)0.0026 (8)
C230.0252 (10)0.0293 (4)0.0202 (10)0.0004 (8)0.0014 (9)0.0009 (7)
C240.0243 (10)0.0305 (5)0.0200 (11)0.0034 (9)0.0012 (10)0.0012 (8)
C250.0273 (10)0.0315 (4)0.0204 (11)0.0002 (9)0.0038 (9)0.0006 (8)
C260.0281 (11)0.0324 (4)0.0180 (10)0.0020 (8)0.0014 (10)0.0013 (7)
C270.0325 (13)0.0384 (5)0.0251 (12)0.0054 (10)0.0012 (10)0.0012 (9)
C280.0377 (14)0.0439 (4)0.0285 (12)0.0140 (9)0.0032 (11)0.0022 (8)
Geometric parameters (Å, º) top
N1—C211.382 (2)C11—C161.386 (2)
N1—C111.397 (2)C11—C121.417 (2)
N1—C11.463 (2)C12—C131.402 (2)
O1—C171.223 (2)C12—C221.455 (2)
O2—C271.222 (3)C13—C141.396 (2)
C1—C21.518 (2)C13—H130.9500
C1—H1A0.9900C14—C151.403 (3)
C1—H1B0.9900C14—C171.501 (3)
C2—C31.524 (3)C15—C161.388 (3)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—H160.9500
C3—C41.532 (2)C17—C181.494 (2)
C3—H3A0.9900C18—H18A0.9800
C3—H3B0.9900C18—H18B0.9800
C4—C51.527 (3)C18—H18C0.9800
C4—H4A0.9900C21—C261.397 (2)
C4—H4B0.9900C21—C221.424 (3)
C5—C61.524 (2)C22—C231.392 (2)
C5—H5A0.9900C23—C241.392 (2)
C5—H5B0.9900C23—H230.9500
C6—C71.524 (3)C24—C251.411 (3)
C6—H6A0.9900C24—C271.489 (2)
C6—H6B0.9900C25—C261.381 (2)
C7—C81.534 (3)C25—H250.9500
C7—H7A0.9900C26—H260.9500
C7—H7B0.9900C27—C281.505 (3)
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
C21—N1—C11108.65 (15)N1—C11—C12109.01 (13)
C21—N1—C1124.87 (15)C13—C12—C11119.00 (14)
C11—N1—C1125.69 (15)C13—C12—C22134.26 (16)
N1—C1—C2112.93 (12)C11—C12—C22106.70 (16)
N1—C1—H1A109.0C14—C13—C12119.16 (17)
C2—C1—H1A109.0C14—C13—H13120.4
N1—C1—H1B109.0C12—C13—H13120.4
C2—C1—H1B109.0C13—C14—C15120.19 (17)
H1A—C1—H1B107.8C13—C14—C17119.33 (17)
C1—C2—C3114.21 (15)C15—C14—C17120.44 (15)
C1—C2—H2A108.7C16—C15—C14121.80 (15)
C3—C2—H2A108.7C16—C15—H15119.1
C1—C2—H2B108.7C14—C15—H15119.1
C3—C2—H2B108.7C11—C16—C15117.59 (17)
H2A—C2—H2B107.6C11—C16—H16121.2
C2—C3—C4112.73 (16)C15—C16—H16121.2
C2—C3—H3A109.0O1—C17—C18119.81 (17)
C4—C3—H3A109.0O1—C17—C14120.92 (15)
C2—C3—H3B109.0C18—C17—C14119.25 (17)
C4—C3—H3B109.0C17—C18—H18A109.5
H3A—C3—H3B107.8C17—C18—H18B109.5
C5—C4—C3113.32 (16)H18A—C18—H18B109.5
C5—C4—H4A108.9C17—C18—H18C109.5
C3—C4—H4A108.9H18A—C18—H18C109.5
C5—C4—H4B108.9H18B—C18—H18C109.5
C3—C4—H4B108.9N1—C21—C26128.64 (17)
H4A—C4—H4B107.7N1—C21—C22109.47 (16)
C6—C5—C4113.28 (17)C26—C21—C22121.87 (16)
C6—C5—H5A108.9C23—C22—C21119.59 (16)
C4—C5—H5A108.9C23—C22—C12134.23 (17)
C6—C5—H5B108.9C21—C22—C12106.15 (15)
C4—C5—H5B108.9C24—C23—C22118.92 (17)
H5A—C5—H5B107.7C24—C23—H23120.5
C5—C6—C7113.29 (18)C22—C23—H23120.5
C5—C6—H6A108.9C23—C24—C25120.40 (16)
C7—C6—H6A108.9C23—C24—C27118.81 (17)
C5—C6—H6B108.9C25—C24—C27120.78 (17)
C7—C6—H6B108.9C26—C25—C24122.04 (16)
H6A—C6—H6B107.7C26—C25—H25119.0
C6—C7—C8113.2 (2)C24—C25—H25119.0
C6—C7—H7A108.9C25—C26—C21117.18 (17)
C8—C7—H7A108.9C25—C26—H26121.4
C6—C7—H7B108.9C21—C26—H26121.4
C8—C7—H7B108.9O2—C27—C24120.39 (18)
H7A—C7—H7B107.8O2—C27—C28119.58 (18)
C7—C8—H8A109.5C24—C27—C28120.00 (18)
C7—C8—H8B109.5C27—C28—H28A109.5
H8A—C8—H8B109.5C27—C28—H28B109.5
C7—C8—H8C109.5H28A—C28—H28B109.5
H8A—C8—H8C109.5C27—C28—H28C109.5
H8B—C8—H8C109.5H28A—C28—H28C109.5
C16—C11—N1128.72 (17)H28B—C28—H28C109.5
C16—C11—C12122.26 (16)
C21—N1—C1—C276.3 (2)C13—C14—C17—C18178.38 (14)
C11—N1—C1—C292.42 (16)C15—C14—C17—C184.0 (2)
N1—C1—C2—C356.0 (2)C11—N1—C21—C26177.94 (14)
C1—C2—C3—C4178.57 (13)C1—N1—C21—C267.6 (2)
C2—C3—C4—C5174.96 (14)C11—N1—C21—C220.98 (17)
C3—C4—C5—C6178.36 (13)C1—N1—C21—C22171.30 (15)
C4—C5—C6—C7171.59 (14)N1—C21—C22—C23179.02 (12)
C5—C6—C7—C8178.39 (15)C26—C21—C22—C230.0 (2)
C21—N1—C11—C16178.24 (14)N1—C21—C22—C120.66 (17)
C1—N1—C11—C168.0 (2)C26—C21—C22—C12178.35 (13)
C21—N1—C11—C120.92 (16)C13—C12—C22—C230.5 (3)
C1—N1—C11—C12171.13 (13)C11—C12—C22—C23178.11 (17)
C16—C11—C12—C130.7 (2)C13—C12—C22—C21177.50 (17)
N1—C11—C12—C13178.53 (14)C11—C12—C22—C210.10 (16)
C16—C11—C12—C22178.73 (13)C21—C22—C23—C240.2 (2)
N1—C11—C12—C220.49 (16)C12—C22—C23—C24177.96 (16)
C11—C12—C13—C140.7 (2)C22—C23—C24—C250.2 (2)
C22—C12—C13—C14178.06 (14)C22—C23—C24—C27179.51 (15)
C12—C13—C14—C150.3 (2)C23—C24—C25—C260.0 (2)
C12—C13—C14—C17177.90 (14)C27—C24—C25—C26179.33 (13)
C13—C14—C15—C160.2 (2)C24—C25—C26—C210.2 (2)
C17—C14—C15—C16177.43 (16)N1—C21—C26—C25178.98 (14)
N1—C11—C16—C15178.79 (15)C22—C21—C26—C250.2 (2)
C12—C11—C16—C150.3 (2)C23—C24—C27—O21.0 (3)
C14—C15—C16—C110.2 (2)C25—C24—C27—O2179.67 (18)
C13—C14—C17—O13.4 (2)C23—C24—C27—C28178.84 (14)
C15—C14—C17—O1174.24 (15)C25—C24—C27—C281.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.593.474 (2)154
C23—H23···O2i0.952.393.298 (3)160
C28—H28A···O1i0.982.403.363 (2)166
C26—H26···O1ii0.952.543.484 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H29NO2
Mr363.48
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)18.746 (2), 10.3842 (18), 20.994 (3)
V3)4086.7 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.29 × 0.12
Data collection
DiffractometerStow IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8614, 3613, 2024
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.086, 0.85
No. of reflections3613
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.593.474 (2)154.3
C23—H23···O2i0.952.393.298 (3)159.7
C28—H28A···O1i0.982.403.363 (2)166.4
C26—H26···O1ii0.952.543.484 (2)172.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

References

First citationLaw, K. Y. (1992). Chem. Rev. 93, 449–453.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrohriegl, P. & Grazulevicius, J. V. (1997). Photoconductive Polymers, edited by H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, Vol. 1, pp. 553–561. New York: Wiley.  Google Scholar
First citationYamashita, Y., Fujii, N., Murkata, C., Ashiawa, T., Okabe, M. & Nakano, H. (1992). Biochemistry, 31, 12069–12074.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds