metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,4,7,10-Tetra­aza­cyclo­do­decane-κ4N1,N4,N7,N10)(tetra­oxidomolybdato-κO)copper(II) monohydrate

aInstitut für Chemie, Naturwisssenchaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 11 June 2010; accepted 1 July 2010; online 7 July 2010)

In the title compound, [CuMoO4(C8H20N4)]·H2O, the CuII atom is coordinated by four N atoms of the 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) ligand and one O atom of the molybdate unit in a distorted square-pyramidal environment. The water mol­ecules are linked to the complex unit to form centrosymmetric dimers [R44(12) and R44(16)] and discrete D32(9), D33(11) and D33(13) chains by O—H⋯O and N—H⋯O inter­actions. Additionally, the complex mol­ecules are linked into C44(18) chain motifs by N—H⋯O inter­actions. As a result [(cyclen)CuMoO4] units and water molecules are linked to layers that are oriented parallel to the ac plane. The stacking of the layers in the b-axis direction is supported by weak C—H⋯O hydrogen bridges.

Related literature

For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see, for example: Rarig et al. (2002[Rarig, R. S., Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L., Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124-2133.]); Hagrman et al. (1998[Hagrman, D., Warren, C. J., Haushalter, R. C., Seip, C., O'Connor, C. J., Rarig, R. S., Johnson, K. M., LaDuca, R. L. & Zubieta, J. (1998). Chem. Mater. 10, 3294-3297.]). For copper complexes with the cyclen ligand, see: Clay et al. (1979[Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894-1895.]); Lu et al. (1997[Lu, T.-H., Lin, J.-L., Lan, W.-J. & Chung, C.-S. (1997). Acta Cryst. C53, 1598-1600.]); Yeung et al. (2000[Yeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629-631.]); Guo et al. (2008[Guo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158-163.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Choi et al. (2004[Choi, K.-Y., Whang, M.-A., Lee, H.-H., Lee, K.-C. & Kim, M.-J. (2004). Transition Met. Chem. 29, 792-796.]).

[Scheme 1]

Experimental

Crystal data
  • [CuMoO4(C8H20N4)]·H2O

  • Mr = 413.78

  • Triclinic, [P \overline 1]

  • a = 8.6985 (6) Å

  • b = 8.9784 (6) Å

  • c = 9.0055 (6) Å

  • α = 90.358 (6)°

  • β = 91.949 (6)°

  • γ = 100.742 (5)°

  • V = 690.54 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 200 K

  • 0.22 × 0.21 × 0.13 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.612, Tmax = 0.737

  • 9700 measured reflections

  • 3017 independent reflections

  • 2788 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.04

  • 3017 reflections

  • 196 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.83 (2) 1.95 (2) 2.770 (2) 169 (3)
N1—H1⋯O5ii 0.86 (2) 2.35 (2) 3.156 (3) 156 (3)
N2—H2⋯O1ii 0.89 (2) 2.19 (2) 2.949 (2) 143 (3)
N3—H3⋯O4i 0.88 (2) 2.28 (3) 2.955 (3) 133 (3)
N4—H4⋯O5iii 0.88 (2) 2.10 (2) 2.928 (3) 157 (3)
O5—H6⋯O2iv 0.84 (2) 1.85 (2) 2.666 (3) 163 (4)
C3—H3B⋯O3v 0.99 2.36 3.345 (3) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y, z+1; (iv) x, y, z-1; (v) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound (I) the central copper atom is coordinated by four nitrogen atoms of the cyclen ligand and one oxygen atom of the molydate group. This leads to a distorted square pyramidal coordination environment with the four N atoms in the basal positions and the molybdate oxygen atom at the apex. The arrangement of the four nitrogen atoms is nearly co-planar within a maximum deviation of 0.015 Å and the copper atom lies 0.569 Å above this plane. The Cu—N distances ranging from 2.033 (2) to 2.049 (2) Å which is comparable to the Cu—N bond lengths oberserved in other cyclen copper complexes, like [(cyclen)Cu(NO3)]NO3 (Clay et al., 1979), [(cyclen)Cu(SCN)]2[Ca(NCS)6] H2O (Lu et al., 1997), [(cyclen)Cu(Ag(CN)2)][Ag(CN)2] (Yeung et al., 2000) and [(cyclen)Cu(MnN(CN)5)] (Guo et al., 2008). The molybdate unit coordinates as a monodentate ligand with a Cu—O distance of 2.104 (2) Å. The Mo—O distances ranging from 1.749 to 1.765 Å for the terminal oxygen atoms. In the case of the µ-bridging O atom O1 the Mo—O distance is slightly enlarged to 1.796 (2) Å. A similar monodentate coordination of molybdate has been observed in the copper complex [LCuMoO4]2 5H2O (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane with Cu—O distances of 2.320 (12) and 2.418 (11) Å and Mo—O distances ranging from 1.621 to 1.849 Å (Choi et al., 2004).

Compound (I) contains a water molecule which is involved into two strong hydrogen bonds to the molybdate O2 and O4 oxygen atoms . This leads to [(cyclen)CuMoO4]2(H2O)2 dimers containing a centrosymmetric Mo2O6H4 ring of the type R44(12) (Fig. 2) (Bernstein et al., 1995). Additionally the NH groups of the cyclen ligand are also involved in hydrogen bonds either to water molecules (N1H1 and N4H4) or to molybdate groups (N2H2 and N3H3). As a resuslt of these hydrogen bonds [(cyclen)CuMoO4] units and water are interlinked to layers which are oriented parallel to the crystallographic a-c plane. The stacking of the layers in direction of the crystallographic b axis is supported by weak C—H···O hydrogen bonds (C···O 3.35 Å) between cyclen ligands and molydate units.

Related literature top

For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see for example: Rarig et al. (2002); Hagrman et al. (1998). For copper complexes with the cyclen ligand, see: Clay et al. (1979); Lu et al. (1997); Yeung et al. (2000); Guo et al. (2008). For related literature, see: Bernstein et al. (1995); Choi et al. (2004).

Experimental top

To a stirred suspension of 0.440 mg (2.0 mmol) CuMoO4 in 70 ml of aqueous methanol (90%) 0.350 mg (2.0 mmol) cyclen was added. After four hours the blue suspension was filtered and the filtrate evaporated to dryness.Yield. 420 mg (50%). The residue was dissolved in 3 ml of methanol and then the solution was layered with 2-propanol. After one week single crystals of (I) were formed at the methanol/2-propanol interface. IR(cm-1): 3172(s), 2960(w), 2937(w), 2920(w), 2869(w), 1631(w), 1592(w), 824(s); Elemental Analysis [Cu(cyclen)MoO4] H2O (413.78), C 23.0 (calc. 23.2), H 5.4 (5.4), N 13.1 (13.5) %.

Refinement top

C-bound H atoms of the cyclen ligand were positioned geometrically and refinded using a riding model with Uiso(H) = 1.2 Ueq(C) [(C-H) = 0.99 Å]. H atoms attached to N and O were located from difference fourier maps and refined with N-H distances fixed in a range of 0.87 (2) to 0.89 (2) Å and O-H distances fixed at 0.83 (2) and 0.84 (2) Å. The corresponding Uiso(H) were refined freely.

Structure description top

In the title compound (I) the central copper atom is coordinated by four nitrogen atoms of the cyclen ligand and one oxygen atom of the molydate group. This leads to a distorted square pyramidal coordination environment with the four N atoms in the basal positions and the molybdate oxygen atom at the apex. The arrangement of the four nitrogen atoms is nearly co-planar within a maximum deviation of 0.015 Å and the copper atom lies 0.569 Å above this plane. The Cu—N distances ranging from 2.033 (2) to 2.049 (2) Å which is comparable to the Cu—N bond lengths oberserved in other cyclen copper complexes, like [(cyclen)Cu(NO3)]NO3 (Clay et al., 1979), [(cyclen)Cu(SCN)]2[Ca(NCS)6] H2O (Lu et al., 1997), [(cyclen)Cu(Ag(CN)2)][Ag(CN)2] (Yeung et al., 2000) and [(cyclen)Cu(MnN(CN)5)] (Guo et al., 2008). The molybdate unit coordinates as a monodentate ligand with a Cu—O distance of 2.104 (2) Å. The Mo—O distances ranging from 1.749 to 1.765 Å for the terminal oxygen atoms. In the case of the µ-bridging O atom O1 the Mo—O distance is slightly enlarged to 1.796 (2) Å. A similar monodentate coordination of molybdate has been observed in the copper complex [LCuMoO4]2 5H2O (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane with Cu—O distances of 2.320 (12) and 2.418 (11) Å and Mo—O distances ranging from 1.621 to 1.849 Å (Choi et al., 2004).

Compound (I) contains a water molecule which is involved into two strong hydrogen bonds to the molybdate O2 and O4 oxygen atoms . This leads to [(cyclen)CuMoO4]2(H2O)2 dimers containing a centrosymmetric Mo2O6H4 ring of the type R44(12) (Fig. 2) (Bernstein et al., 1995). Additionally the NH groups of the cyclen ligand are also involved in hydrogen bonds either to water molecules (N1H1 and N4H4) or to molybdate groups (N2H2 and N3H3). As a resuslt of these hydrogen bonds [(cyclen)CuMoO4] units and water are interlinked to layers which are oriented parallel to the crystallographic a-c plane. The stacking of the layers in direction of the crystallographic b axis is supported by weak C—H···O hydrogen bonds (C···O 3.35 Å) between cyclen ligands and molydate units.

For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see for example: Rarig et al. (2002); Hagrman et al. (1998). For copper complexes with the cyclen ligand, see: Clay et al. (1979); Lu et al. (1997); Yeung et al. (2000); Guo et al. (2008). For related literature, see: Bernstein et al. (1995); Choi et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the [(cyclen)CuMoO4] unit. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. [(cyclen)CuMoO4]2(H2O)2 dimers formed by hydrogen bonds. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (iv) x, y, -1 + z
[Figure 3] Fig. 3. N—H···O hydrogen bonds around the [(cyclen)CuMoO4] unit. Symmetry codes (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, 1 + z
[Figure 4] Fig. 4. Stacking of the [(cyclen)CuMoO4]H2O layers along the crystallographic b axis.
(1,4,7,10-Tetraazacyclododecane- κ4N1,N4,N7,N10)(tetraoxidomolybdato- κO)copper(II) monohydrate top
Crystal data top
[CuMoO4(C8H20N4)]·H2OZ = 2
Mr = 413.78F(000) = 418
Triclinic, P1Dx = 1.990 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6985 (6) ÅCell parameters from 16326 reflections
b = 8.9784 (6) Åθ = 3.0–29.6°
c = 9.0055 (6) ŵ = 2.47 mm1
α = 90.358 (6)°T = 200 K
β = 91.949 (6)°Plate, blue
γ = 100.742 (5)°0.22 × 0.21 × 0.13 mm
V = 690.54 (8) Å3
Data collection top
Stoe IPDS 2T
diffractometer
3017 independent reflections
Radiation source: fine-focus sealed tube2788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 3.0°
rotation method scansh = 1111
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009)
k = 1111
Tmin = 0.612, Tmax = 0.737l = 1110
9700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2037P]
where P = (Fo2 + 2Fc2)/3
3017 reflections(Δ/σ)max = 0.002
196 parametersΔρmax = 0.48 e Å3
6 restraintsΔρmin = 1.05 e Å3
0 constraints
Crystal data top
[CuMoO4(C8H20N4)]·H2Oγ = 100.742 (5)°
Mr = 413.78V = 690.54 (8) Å3
Triclinic, P1Z = 2
a = 8.6985 (6) ÅMo Kα radiation
b = 8.9784 (6) ŵ = 2.47 mm1
c = 9.0055 (6) ÅT = 200 K
α = 90.358 (6)°0.22 × 0.21 × 0.13 mm
β = 91.949 (6)°
Data collection top
Stoe IPDS 2T
diffractometer
3017 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009)
2788 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.737Rint = 0.037
9700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
3017 reflectionsΔρmin = 1.05 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0572 (3)0.1738 (3)0.7826 (3)0.0250 (4)
H1B0.97960.07940.76360.030*
H1A1.14630.14850.84220.030*
C21.1135 (3)0.2435 (3)0.6371 (3)0.0262 (5)
H2B1.20080.33000.65650.031*
H2A1.15230.16750.57570.031*
C30.8796 (3)0.1769 (2)0.4653 (2)0.0226 (4)
H3B0.84880.08450.52480.027*
H3A0.93490.15040.37750.027*
C40.7365 (3)0.2401 (3)0.4169 (3)0.0264 (5)
H4B0.76720.32730.35060.032*
H4A0.66100.16140.36150.032*
C50.5518 (3)0.1652 (2)0.6197 (3)0.0227 (4)
H5B0.59890.07320.62750.027*
H5A0.45390.14030.55790.027*
C60.5167 (3)0.2183 (3)0.7734 (3)0.0246 (5)
H6B0.45710.30190.76450.030*
H6A0.45210.13380.82610.030*
C70.7290 (3)0.1527 (3)0.9414 (3)0.0272 (5)
H7B0.72840.06350.87610.033*
H7A0.66400.11981.02770.033*
C80.8955 (3)0.2202 (3)0.9938 (3)0.0289 (5)
H8B0.89450.30041.06950.035*
H8A0.94600.14051.03930.035*
N10.9846 (2)0.2852 (2)0.8642 (2)0.0224 (4)
H11.060 (3)0.356 (3)0.895 (3)0.027 (7)*
N20.9827 (2)0.2966 (2)0.5561 (2)0.0214 (4)
H21.023 (3)0.370 (3)0.494 (3)0.028 (7)*
N30.6625 (2)0.2895 (2)0.5510 (2)0.0216 (4)
H30.616 (3)0.365 (3)0.526 (4)0.036 (8)*
N40.6657 (2)0.2715 (2)0.8587 (2)0.0218 (4)
H40.650 (4)0.339 (3)0.924 (3)0.032 (8)*
O10.86208 (19)0.58802 (17)0.7174 (2)0.0254 (3)
O20.6912 (2)0.7196 (2)0.9423 (2)0.0353 (4)
O30.7520 (2)0.87043 (18)0.6678 (2)0.0310 (4)
O40.5312 (2)0.58763 (19)0.6764 (2)0.0290 (4)
Cu0.83378 (3)0.35012 (3)0.71091 (3)0.01771 (8)
Mo0.70937 (2)0.692556 (18)0.750742 (19)0.01796 (7)
O50.6967 (2)0.4797 (2)0.1142 (2)0.0292 (4)
H50.621 (3)0.452 (3)0.168 (3)0.033 (8)*
H60.678 (5)0.556 (3)0.069 (4)0.058 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0261 (11)0.0227 (10)0.0282 (11)0.0109 (9)0.0037 (9)0.0040 (9)
C20.0220 (11)0.0245 (11)0.0330 (12)0.0070 (9)0.0008 (9)0.0045 (9)
C30.0269 (11)0.0193 (10)0.0219 (10)0.0044 (8)0.0027 (8)0.0037 (8)
C40.0320 (12)0.0280 (11)0.0195 (10)0.0068 (9)0.0017 (9)0.0009 (8)
C50.0204 (10)0.0188 (10)0.0281 (11)0.0021 (8)0.0020 (9)0.0031 (8)
C60.0189 (10)0.0226 (10)0.0319 (12)0.0029 (8)0.0021 (9)0.0027 (9)
C70.0331 (13)0.0239 (11)0.0247 (11)0.0047 (9)0.0038 (9)0.0039 (9)
C80.0357 (13)0.0306 (12)0.0215 (11)0.0099 (10)0.0027 (9)0.0001 (9)
N10.0219 (9)0.0202 (9)0.0251 (9)0.0053 (7)0.0039 (7)0.0042 (7)
N20.0231 (9)0.0162 (8)0.0247 (9)0.0028 (7)0.0027 (7)0.0005 (7)
N30.0233 (9)0.0183 (8)0.0245 (9)0.0078 (7)0.0026 (7)0.0005 (7)
N40.0255 (9)0.0164 (8)0.0238 (9)0.0048 (7)0.0005 (7)0.0032 (7)
O10.0254 (8)0.0135 (7)0.0378 (9)0.0048 (6)0.0036 (7)0.0007 (6)
O20.0475 (11)0.0360 (10)0.0237 (9)0.0112 (8)0.0024 (8)0.0024 (7)
O30.0388 (10)0.0194 (8)0.0370 (10)0.0095 (7)0.0086 (8)0.0038 (7)
O40.0268 (9)0.0279 (8)0.0325 (9)0.0062 (7)0.0039 (7)0.0001 (7)
Cu0.01851 (14)0.01362 (13)0.02126 (14)0.00388 (10)0.00018 (10)0.00115 (10)
Mo0.02191 (11)0.01353 (10)0.01901 (11)0.00478 (7)0.00084 (7)0.00004 (7)
O50.0301 (9)0.0259 (8)0.0324 (9)0.0067 (7)0.0048 (7)0.0017 (7)
Geometric parameters (Å, º) top
C1—N11.482 (3)C7—C81.520 (4)
C1—C21.513 (3)C7—H7B0.9900
C1—H1B0.9900C7—H7A0.9900
C1—H1A0.9900C8—N11.484 (3)
C2—N21.484 (3)C8—H8B0.9900
C2—H2B0.9900C8—H8A0.9900
C2—H2A0.9900N1—Cu2.034 (2)
C3—N21.486 (3)N1—H10.864 (17)
C3—C41.513 (3)N2—Cu2.0493 (19)
C3—H3B0.9900N2—H20.890 (17)
C3—H3A0.9900N3—Cu2.033 (2)
C4—N31.491 (3)N3—H30.881 (18)
C4—H4B0.9900N4—Cu2.0413 (19)
C4—H4A0.9900N4—H40.875 (17)
C5—N31.485 (3)O1—Mo1.7955 (16)
C5—C61.520 (3)O1—Cu2.1043 (15)
C5—H5B0.9900O2—Mo1.7571 (18)
C5—H5A0.9900O3—Mo1.7490 (16)
C6—N41.482 (3)O4—Mo1.7652 (17)
C6—H6B0.9900O5—H50.829 (18)
C6—H6A0.9900O5—H60.838 (19)
C7—N41.482 (3)
N1—C1—C2108.15 (18)N1—C8—H8A109.9
N1—C1—H1B110.1C7—C8—H8A109.9
C2—C1—H1B110.1H8B—C8—H8A108.3
N1—C1—H1A110.1C1—N1—C8113.52 (18)
C2—C1—H1A110.1C1—N1—Cu103.80 (14)
H1B—C1—H1A108.4C8—N1—Cu109.08 (15)
N2—C2—C1109.64 (18)C1—N1—H1107 (2)
N2—C2—H2B109.7C8—N1—H1109 (2)
C1—C2—H2B109.7Cu—N1—H1115 (2)
N2—C2—H2A109.7C2—N2—C3114.06 (17)
C1—C2—H2A109.7C2—N2—Cu107.64 (14)
H2B—C2—H2A108.2C3—N2—Cu102.43 (13)
N2—C3—C4107.08 (18)C2—N2—H2108.6 (19)
N2—C3—H3B110.3C3—N2—H2107.2 (19)
C4—C3—H3B110.3Cu—N2—H2117 (2)
N2—C3—H3A110.3C5—N3—C4113.35 (17)
C4—C3—H3A110.3C5—N3—Cu103.78 (14)
H3B—C3—H3A108.6C4—N3—Cu107.78 (14)
N3—C4—C3109.07 (18)C5—N3—H3111 (2)
N3—C4—H4B109.9C4—N3—H3109 (2)
C3—C4—H4B109.9Cu—N3—H3112 (2)
N3—C4—H4A109.9C6—N4—C7115.36 (18)
C3—C4—H4A109.9C6—N4—Cu107.91 (14)
H4B—C4—H4A108.3C7—N4—Cu104.25 (14)
N3—C5—C6108.09 (17)C6—N4—H4108 (2)
N3—C5—H5B110.1C7—N4—H4107 (2)
C6—C5—H5B110.1Cu—N4—H4114.3 (19)
N3—C5—H5A110.1Mo—O1—Cu125.18 (8)
C6—C5—H5A110.1N3—Cu—N1148.36 (7)
H5B—C5—H5A108.4N3—Cu—N485.93 (8)
N4—C6—C5109.38 (18)N1—Cu—N484.96 (8)
N4—C6—H6B109.8N3—Cu—N285.57 (8)
C5—C6—H6B109.8N1—Cu—N285.70 (8)
N4—C6—H6A109.8N4—Cu—N2146.84 (7)
C5—C6—H6A109.8N3—Cu—O1102.97 (7)
H6B—C6—H6A108.2N1—Cu—O1108.66 (7)
N4—C7—C8107.65 (18)N4—Cu—O1106.23 (7)
N4—C7—H7B110.2N2—Cu—O1106.91 (7)
C8—C7—H7B110.2O3—Mo—O2108.43 (9)
N4—C7—H7A110.2O3—Mo—O4110.51 (9)
C8—C7—H7A110.2O2—Mo—O4108.75 (9)
H7B—C7—H7A108.5O3—Mo—O1110.04 (8)
N1—C8—C7108.83 (19)O2—Mo—O1110.65 (9)
N1—C8—H8B109.9O4—Mo—O1108.45 (8)
C7—C8—H8B109.9H5—O5—H6106 (4)
N1—C1—C2—N253.5 (2)C1—N1—Cu—N4121.02 (14)
N2—C3—C4—N355.8 (2)C8—N1—Cu—N40.30 (15)
N3—C5—C6—N453.4 (2)C1—N1—Cu—N227.13 (14)
N4—C7—C8—N153.0 (2)C8—N1—Cu—N2148.44 (15)
C2—C1—N1—C8168.05 (19)C1—N1—Cu—O1133.53 (13)
C2—C1—N1—Cu49.76 (19)C8—N1—Cu—O1105.15 (15)
C7—C8—N1—C187.1 (2)C6—N4—Cu—N31.03 (14)
C7—C8—N1—Cu28.1 (2)C7—N4—Cu—N3122.10 (15)
C1—C2—N2—C384.7 (2)C6—N4—Cu—N1150.70 (15)
C1—C2—N2—Cu28.2 (2)C7—N4—Cu—N127.57 (14)
C4—C3—N2—C2168.62 (18)C6—N4—Cu—N276.5 (2)
C4—C3—N2—Cu52.62 (18)C7—N4—Cu—N246.6 (2)
C6—C5—N3—C4165.92 (19)C6—N4—Cu—O1101.31 (14)
C6—C5—N3—Cu49.29 (19)C7—N4—Cu—O1135.56 (14)
C3—C4—N3—C585.7 (2)C2—N2—Cu—N3150.00 (14)
C3—C4—N3—Cu28.5 (2)C3—N2—Cu—N329.46 (13)
C5—C6—N4—C787.4 (2)C2—N2—Cu—N10.44 (13)
C5—C6—N4—Cu28.7 (2)C3—N2—Cu—N1120.10 (14)
C8—C7—N4—C6168.22 (19)C2—N2—Cu—N474.40 (19)
C8—C7—N4—Cu50.08 (19)C3—N2—Cu—N446.1 (2)
C5—N3—Cu—N146.9 (2)C2—N2—Cu—O1107.77 (13)
C4—N3—Cu—N173.6 (2)C3—N2—Cu—O1131.69 (13)
C5—N3—Cu—N426.66 (13)Mo—O1—Cu—N356.76 (13)
C4—N3—Cu—N4147.15 (14)Mo—O1—Cu—N1122.84 (11)
C5—N3—Cu—N2121.25 (14)Mo—O1—Cu—N432.74 (13)
C4—N3—Cu—N20.77 (14)Mo—O1—Cu—N2146.02 (11)
C5—N3—Cu—O1132.40 (13)Cu—O1—Mo—O3153.37 (11)
C4—N3—Cu—O1107.12 (14)Cu—O1—Mo—O286.82 (12)
C1—N1—Cu—N347.2 (2)Cu—O1—Mo—O432.38 (13)
C8—N1—Cu—N374.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.83 (2)1.95 (2)2.770 (2)169 (3)
N1—H1···O5ii0.86 (2)2.35 (2)3.156 (3)156 (3)
N2—H2···O1ii0.89 (2)2.19 (2)2.949 (2)143 (3)
N3—H3···O4i0.88 (2)2.28 (3)2.955 (3)133 (3)
N4—H4···O5iii0.88 (2)2.10 (2)2.928 (3)157 (3)
O5—H6···O2iv0.84 (2)1.85 (2)2.666 (3)163 (4)
C3—H3B···O3v0.992.363.345 (3)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[CuMoO4(C8H20N4)]·H2O
Mr413.78
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.6985 (6), 8.9784 (6), 9.0055 (6)
α, β, γ (°)90.358 (6), 91.949 (6), 100.742 (5)
V3)690.54 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.22 × 0.21 × 0.13
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2009)
Tmin, Tmax0.612, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
9700, 3017, 2788
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.04
No. of reflections3017
No. of parameters196
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 1.05

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.829 (18)1.952 (19)2.770 (2)169 (3)
N1—H1···O5ii0.864 (17)2.35 (2)3.156 (3)156 (3)
N2—H2···O1ii0.890 (17)2.19 (2)2.949 (2)143 (3)
N3—H3···O4i0.881 (18)2.28 (3)2.955 (3)133 (3)
N4—H4···O5iii0.875 (17)2.10 (2)2.928 (3)157 (3)
O5—H6···O2iv0.838 (19)1.85 (2)2.666 (3)163 (4)
C3—H3B···O3v0.992.363.345 (3)174.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x, y1, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, K.-Y., Whang, M.-A., Lee, H.-H., Lee, K.-C. & Kim, M.-J. (2004). Transition Met. Chem. 29, 792–796.  Web of Science CSD CrossRef CAS Google Scholar
First citationClay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGuo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158–163.  Web of Science CSD CrossRef Google Scholar
First citationHagrman, D., Warren, C. J., Haushalter, R. C., Seip, C., O'Connor, C. J., Rarig, R. S., Johnson, K. M., LaDuca, R. L. & Zubieta, J. (1998). Chem. Mater. 10, 3294–3297.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, T.-H., Lin, J.-L., Lan, W.-J. & Chung, C.-S. (1997). Acta Cryst. C53, 1598–1600.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRarig, R. S., Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L., Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124–2133.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629–631.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds