metal-organic compounds
(1,4,7,10-Tetraazacyclododecane-κ4N1,N4,N7,N10)(tetraoxidomolybdato-κO)copper(II) monohydrate
aInstitut für Chemie, Naturwisssenchaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
In the title compound, [CuMoO4(C8H20N4)]·H2O, the CuII atom is coordinated by four N atoms of the 1,4,7,10-tetraazacyclododecane (cyclen) ligand and one O atom of the molybdate unit in a distorted square-pyramidal environment. The water molecules are linked to the complex unit to form centrosymmetric dimers [R44(12) and R44(16)] and discrete D32(9), D33(11) and D33(13) chains by O—H⋯O and N—H⋯O interactions. Additionally, the complex molecules are linked into C44(18) chain motifs by N—H⋯O interactions. As a result [(cyclen)CuMoO4] units and water molecules are linked to layers that are oriented parallel to the ac plane. The stacking of the layers in the b-axis direction is supported by weak C—H⋯O hydrogen bridges.
Related literature
For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see, for example: Rarig et al. (2002); Hagrman et al. (1998). For copper complexes with the cyclen ligand, see: Clay et al. (1979); Lu et al. (1997); Yeung et al. (2000); Guo et al. (2008). For related literature, see: Bernstein et al. (1995); Choi et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810026000/bx2287sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810026000/bx2287Isup2.hkl
To a stirred suspension of 0.440 mg (2.0 mmol) CuMoO4 in 70 ml of aqueous methanol (90%) 0.350 mg (2.0 mmol) cyclen was added. After four hours the blue suspension was filtered and the filtrate evaporated to dryness.Yield. 420 mg (50%). The residue was dissolved in 3 ml of methanol and then the solution was layered with 2-propanol. After one week single crystals of (I) were formed at the methanol/2-propanol interface. IR(cm-1): 3172(s), 2960(w), 2937(w), 2920(w), 2869(w), 1631(w), 1592(w), 824(s); Elemental Analysis [Cu(cyclen)MoO4] H2O (413.78), C 23.0 (calc. 23.2), H 5.4 (5.4), N 13.1 (13.5) %.
C-bound H atoms of the cyclen ligand were positioned geometrically and refinded using a riding model with Uiso(H) = 1.2 Ueq(C) [(C-H) = 0.99 Å]. H atoms attached to N and O were located from difference fourier maps and refined with N-H distances fixed in a range of 0.87 (2) to 0.89 (2) Å and O-H distances fixed at 0.83 (2) and 0.84 (2) Å. The corresponding Uiso(H) were refined freely.
In the title compound (I) the central copper atom is coordinated by four nitrogen atoms of the cyclen ligand and one oxygen atom of the molydate group. This leads to a distorted square pyramidal coordination environment with the four N atoms in the basal positions and the molybdate oxygen atom at the apex. The arrangement of the four nitrogen atoms is nearly co-planar within a maximum deviation of 0.015 Å and the copper atom lies 0.569 Å above this plane. The Cu—N distances ranging from 2.033 (2) to 2.049 (2) Å which is comparable to the Cu—N bond lengths oberserved in other cyclen copper complexes, like [(cyclen)Cu(NO3)]NO3 (Clay et al., 1979), [(cyclen)Cu(SCN)]2[Ca(NCS)6] H2O (Lu et al., 1997), [(cyclen)Cu(Ag(CN)2)][Ag(CN)2] (Yeung et al., 2000) and [(cyclen)Cu(MnN(CN)5)] (Guo et al., 2008). The molybdate unit coordinates as a monodentate ligand with a Cu—O distance of 2.104 (2) Å. The Mo—O distances ranging from 1.749 to 1.765 Å for the terminal oxygen atoms. In the case of the µ-bridging O atom O1 the Mo—O distance is slightly enlarged to 1.796 (2) Å. A similar monodentate coordination of molybdate has been observed in the copper complex [LCuMoO4]2 5H2O (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane with Cu—O distances of 2.320 (12) and 2.418 (11) Å and Mo—O distances ranging from 1.621 to 1.849 Å (Choi et al., 2004).
Compound (I) contains a water molecule which is involved into two strong hydrogen bonds to the molybdate O2 and O4 oxygen atoms . This leads to [(cyclen)CuMoO4]2(H2O)2 dimers containing a centrosymmetric Mo2O6H4 ring of the type R44(12) (Fig. 2) (Bernstein et al., 1995). Additionally the NH groups of the cyclen ligand are also involved in hydrogen bonds either to water molecules (N1H1 and N4H4) or to molybdate groups (N2H2 and N3H3). As a resuslt of these hydrogen bonds [(cyclen)CuMoO4] units and water are interlinked to layers which are oriented parallel to the crystallographic a-c plane. The stacking of the layers in direction of the crystallographic b axis is supported by weak C—H···O hydrogen bonds (C···O 3.35 Å) between cyclen ligands and molydate units.
For inorganic–organic hybrid materials based on copper complexes with bridging molybdate ligands, see for example: Rarig et al. (2002); Hagrman et al. (1998). For copper complexes with the cyclen ligand, see: Clay et al. (1979); Lu et al. (1997); Yeung et al. (2000); Guo et al. (2008). For related literature, see: Bernstein et al. (1995); Choi et al. (2004).
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the [(cyclen)CuMoO4] unit. Thermal ellipsoids are drawn at the 50% probability level. | |
Fig. 2. [(cyclen)CuMoO4]2(H2O)2 dimers formed by hydrogen bonds. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (iv) x, y, -1 + z | |
Fig. 3. N—H···O hydrogen bonds around the [(cyclen)CuMoO4] unit. Symmetry codes (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, 1 + z | |
Fig. 4. Stacking of the [(cyclen)CuMoO4]H2O layers along the crystallographic b axis. |
[CuMoO4(C8H20N4)]·H2O | Z = 2 |
Mr = 413.78 | F(000) = 418 |
Triclinic, P1 | Dx = 1.990 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6985 (6) Å | Cell parameters from 16326 reflections |
b = 8.9784 (6) Å | θ = 3.0–29.6° |
c = 9.0055 (6) Å | µ = 2.47 mm−1 |
α = 90.358 (6)° | T = 200 K |
β = 91.949 (6)° | Plate, blue |
γ = 100.742 (5)° | 0.22 × 0.21 × 0.13 mm |
V = 690.54 (8) Å3 |
Stoe IPDS 2T diffractometer | 3017 independent reflections |
Radiation source: fine-focus sealed tube | 2788 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
rotation method scans | h = −11→11 |
Absorption correction: numerical (X-RED; Stoe & Cie, 2009) | k = −11→11 |
Tmin = 0.612, Tmax = 0.737 | l = −11→10 |
9700 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2037P] where P = (Fo2 + 2Fc2)/3 |
3017 reflections | (Δ/σ)max = 0.002 |
196 parameters | Δρmax = 0.48 e Å−3 |
6 restraints | Δρmin = −1.05 e Å−3 |
0 constraints |
[CuMoO4(C8H20N4)]·H2O | γ = 100.742 (5)° |
Mr = 413.78 | V = 690.54 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6985 (6) Å | Mo Kα radiation |
b = 8.9784 (6) Å | µ = 2.47 mm−1 |
c = 9.0055 (6) Å | T = 200 K |
α = 90.358 (6)° | 0.22 × 0.21 × 0.13 mm |
β = 91.949 (6)° |
Stoe IPDS 2T diffractometer | 3017 independent reflections |
Absorption correction: numerical (X-RED; Stoe & Cie, 2009) | 2788 reflections with I > 2σ(I) |
Tmin = 0.612, Tmax = 0.737 | Rint = 0.037 |
9700 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 6 restraints |
wR(F2) = 0.063 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.48 e Å−3 |
3017 reflections | Δρmin = −1.05 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0572 (3) | 0.1738 (3) | 0.7826 (3) | 0.0250 (4) | |
H1B | 0.9796 | 0.0794 | 0.7636 | 0.030* | |
H1A | 1.1463 | 0.1485 | 0.8422 | 0.030* | |
C2 | 1.1135 (3) | 0.2435 (3) | 0.6371 (3) | 0.0262 (5) | |
H2B | 1.2008 | 0.3300 | 0.6565 | 0.031* | |
H2A | 1.1523 | 0.1675 | 0.5757 | 0.031* | |
C3 | 0.8796 (3) | 0.1769 (2) | 0.4653 (2) | 0.0226 (4) | |
H3B | 0.8488 | 0.0845 | 0.5248 | 0.027* | |
H3A | 0.9349 | 0.1504 | 0.3775 | 0.027* | |
C4 | 0.7365 (3) | 0.2401 (3) | 0.4169 (3) | 0.0264 (5) | |
H4B | 0.7672 | 0.3273 | 0.3506 | 0.032* | |
H4A | 0.6610 | 0.1614 | 0.3615 | 0.032* | |
C5 | 0.5518 (3) | 0.1652 (2) | 0.6197 (3) | 0.0227 (4) | |
H5B | 0.5989 | 0.0732 | 0.6275 | 0.027* | |
H5A | 0.4539 | 0.1403 | 0.5579 | 0.027* | |
C6 | 0.5167 (3) | 0.2183 (3) | 0.7734 (3) | 0.0246 (5) | |
H6B | 0.4571 | 0.3019 | 0.7645 | 0.030* | |
H6A | 0.4521 | 0.1338 | 0.8261 | 0.030* | |
C7 | 0.7290 (3) | 0.1527 (3) | 0.9414 (3) | 0.0272 (5) | |
H7B | 0.7284 | 0.0635 | 0.8761 | 0.033* | |
H7A | 0.6640 | 0.1198 | 1.0277 | 0.033* | |
C8 | 0.8955 (3) | 0.2202 (3) | 0.9938 (3) | 0.0289 (5) | |
H8B | 0.8945 | 0.3004 | 1.0695 | 0.035* | |
H8A | 0.9460 | 0.1405 | 1.0393 | 0.035* | |
N1 | 0.9846 (2) | 0.2852 (2) | 0.8642 (2) | 0.0224 (4) | |
H1 | 1.060 (3) | 0.356 (3) | 0.895 (3) | 0.027 (7)* | |
N2 | 0.9827 (2) | 0.2966 (2) | 0.5561 (2) | 0.0214 (4) | |
H2 | 1.023 (3) | 0.370 (3) | 0.494 (3) | 0.028 (7)* | |
N3 | 0.6625 (2) | 0.2895 (2) | 0.5510 (2) | 0.0216 (4) | |
H3 | 0.616 (3) | 0.365 (3) | 0.526 (4) | 0.036 (8)* | |
N4 | 0.6657 (2) | 0.2715 (2) | 0.8587 (2) | 0.0218 (4) | |
H4 | 0.650 (4) | 0.339 (3) | 0.924 (3) | 0.032 (8)* | |
O1 | 0.86208 (19) | 0.58802 (17) | 0.7174 (2) | 0.0254 (3) | |
O2 | 0.6912 (2) | 0.7196 (2) | 0.9423 (2) | 0.0353 (4) | |
O3 | 0.7520 (2) | 0.87043 (18) | 0.6678 (2) | 0.0310 (4) | |
O4 | 0.5312 (2) | 0.58763 (19) | 0.6764 (2) | 0.0290 (4) | |
Cu | 0.83378 (3) | 0.35012 (3) | 0.71091 (3) | 0.01771 (8) | |
Mo | 0.70937 (2) | 0.692556 (18) | 0.750742 (19) | 0.01796 (7) | |
O5 | 0.6967 (2) | 0.4797 (2) | 0.1142 (2) | 0.0292 (4) | |
H5 | 0.621 (3) | 0.452 (3) | 0.168 (3) | 0.033 (8)* | |
H6 | 0.678 (5) | 0.556 (3) | 0.069 (4) | 0.058 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0261 (11) | 0.0227 (10) | 0.0282 (11) | 0.0109 (9) | −0.0037 (9) | −0.0040 (9) |
C2 | 0.0220 (11) | 0.0245 (11) | 0.0330 (12) | 0.0070 (9) | 0.0008 (9) | −0.0045 (9) |
C3 | 0.0269 (11) | 0.0193 (10) | 0.0219 (10) | 0.0044 (8) | 0.0027 (8) | −0.0037 (8) |
C4 | 0.0320 (12) | 0.0280 (11) | 0.0195 (10) | 0.0068 (9) | −0.0017 (9) | −0.0009 (8) |
C5 | 0.0204 (10) | 0.0188 (10) | 0.0281 (11) | 0.0021 (8) | −0.0020 (9) | −0.0031 (8) |
C6 | 0.0189 (10) | 0.0226 (10) | 0.0319 (12) | 0.0029 (8) | 0.0021 (9) | −0.0027 (9) |
C7 | 0.0331 (13) | 0.0239 (11) | 0.0247 (11) | 0.0047 (9) | 0.0038 (9) | 0.0039 (9) |
C8 | 0.0357 (13) | 0.0306 (12) | 0.0215 (11) | 0.0099 (10) | −0.0027 (9) | −0.0001 (9) |
N1 | 0.0219 (9) | 0.0202 (9) | 0.0251 (9) | 0.0053 (7) | −0.0039 (7) | −0.0042 (7) |
N2 | 0.0231 (9) | 0.0162 (8) | 0.0247 (9) | 0.0028 (7) | 0.0027 (7) | −0.0005 (7) |
N3 | 0.0233 (9) | 0.0183 (8) | 0.0245 (9) | 0.0078 (7) | −0.0026 (7) | 0.0005 (7) |
N4 | 0.0255 (9) | 0.0164 (8) | 0.0238 (9) | 0.0048 (7) | 0.0005 (7) | −0.0032 (7) |
O1 | 0.0254 (8) | 0.0135 (7) | 0.0378 (9) | 0.0048 (6) | 0.0036 (7) | 0.0007 (6) |
O2 | 0.0475 (11) | 0.0360 (10) | 0.0237 (9) | 0.0112 (8) | 0.0024 (8) | −0.0024 (7) |
O3 | 0.0388 (10) | 0.0194 (8) | 0.0370 (10) | 0.0095 (7) | 0.0086 (8) | 0.0038 (7) |
O4 | 0.0268 (9) | 0.0279 (8) | 0.0325 (9) | 0.0062 (7) | −0.0039 (7) | −0.0001 (7) |
Cu | 0.01851 (14) | 0.01362 (13) | 0.02126 (14) | 0.00388 (10) | −0.00018 (10) | −0.00115 (10) |
Mo | 0.02191 (11) | 0.01353 (10) | 0.01901 (11) | 0.00478 (7) | 0.00084 (7) | 0.00004 (7) |
O5 | 0.0301 (9) | 0.0259 (8) | 0.0324 (9) | 0.0067 (7) | 0.0048 (7) | −0.0017 (7) |
C1—N1 | 1.482 (3) | C7—C8 | 1.520 (4) |
C1—C2 | 1.513 (3) | C7—H7B | 0.9900 |
C1—H1B | 0.9900 | C7—H7A | 0.9900 |
C1—H1A | 0.9900 | C8—N1 | 1.484 (3) |
C2—N2 | 1.484 (3) | C8—H8B | 0.9900 |
C2—H2B | 0.9900 | C8—H8A | 0.9900 |
C2—H2A | 0.9900 | N1—Cu | 2.034 (2) |
C3—N2 | 1.486 (3) | N1—H1 | 0.864 (17) |
C3—C4 | 1.513 (3) | N2—Cu | 2.0493 (19) |
C3—H3B | 0.9900 | N2—H2 | 0.890 (17) |
C3—H3A | 0.9900 | N3—Cu | 2.033 (2) |
C4—N3 | 1.491 (3) | N3—H3 | 0.881 (18) |
C4—H4B | 0.9900 | N4—Cu | 2.0413 (19) |
C4—H4A | 0.9900 | N4—H4 | 0.875 (17) |
C5—N3 | 1.485 (3) | O1—Mo | 1.7955 (16) |
C5—C6 | 1.520 (3) | O1—Cu | 2.1043 (15) |
C5—H5B | 0.9900 | O2—Mo | 1.7571 (18) |
C5—H5A | 0.9900 | O3—Mo | 1.7490 (16) |
C6—N4 | 1.482 (3) | O4—Mo | 1.7652 (17) |
C6—H6B | 0.9900 | O5—H5 | 0.829 (18) |
C6—H6A | 0.9900 | O5—H6 | 0.838 (19) |
C7—N4 | 1.482 (3) | ||
N1—C1—C2 | 108.15 (18) | N1—C8—H8A | 109.9 |
N1—C1—H1B | 110.1 | C7—C8—H8A | 109.9 |
C2—C1—H1B | 110.1 | H8B—C8—H8A | 108.3 |
N1—C1—H1A | 110.1 | C1—N1—C8 | 113.52 (18) |
C2—C1—H1A | 110.1 | C1—N1—Cu | 103.80 (14) |
H1B—C1—H1A | 108.4 | C8—N1—Cu | 109.08 (15) |
N2—C2—C1 | 109.64 (18) | C1—N1—H1 | 107 (2) |
N2—C2—H2B | 109.7 | C8—N1—H1 | 109 (2) |
C1—C2—H2B | 109.7 | Cu—N1—H1 | 115 (2) |
N2—C2—H2A | 109.7 | C2—N2—C3 | 114.06 (17) |
C1—C2—H2A | 109.7 | C2—N2—Cu | 107.64 (14) |
H2B—C2—H2A | 108.2 | C3—N2—Cu | 102.43 (13) |
N2—C3—C4 | 107.08 (18) | C2—N2—H2 | 108.6 (19) |
N2—C3—H3B | 110.3 | C3—N2—H2 | 107.2 (19) |
C4—C3—H3B | 110.3 | Cu—N2—H2 | 117 (2) |
N2—C3—H3A | 110.3 | C5—N3—C4 | 113.35 (17) |
C4—C3—H3A | 110.3 | C5—N3—Cu | 103.78 (14) |
H3B—C3—H3A | 108.6 | C4—N3—Cu | 107.78 (14) |
N3—C4—C3 | 109.07 (18) | C5—N3—H3 | 111 (2) |
N3—C4—H4B | 109.9 | C4—N3—H3 | 109 (2) |
C3—C4—H4B | 109.9 | Cu—N3—H3 | 112 (2) |
N3—C4—H4A | 109.9 | C6—N4—C7 | 115.36 (18) |
C3—C4—H4A | 109.9 | C6—N4—Cu | 107.91 (14) |
H4B—C4—H4A | 108.3 | C7—N4—Cu | 104.25 (14) |
N3—C5—C6 | 108.09 (17) | C6—N4—H4 | 108 (2) |
N3—C5—H5B | 110.1 | C7—N4—H4 | 107 (2) |
C6—C5—H5B | 110.1 | Cu—N4—H4 | 114.3 (19) |
N3—C5—H5A | 110.1 | Mo—O1—Cu | 125.18 (8) |
C6—C5—H5A | 110.1 | N3—Cu—N1 | 148.36 (7) |
H5B—C5—H5A | 108.4 | N3—Cu—N4 | 85.93 (8) |
N4—C6—C5 | 109.38 (18) | N1—Cu—N4 | 84.96 (8) |
N4—C6—H6B | 109.8 | N3—Cu—N2 | 85.57 (8) |
C5—C6—H6B | 109.8 | N1—Cu—N2 | 85.70 (8) |
N4—C6—H6A | 109.8 | N4—Cu—N2 | 146.84 (7) |
C5—C6—H6A | 109.8 | N3—Cu—O1 | 102.97 (7) |
H6B—C6—H6A | 108.2 | N1—Cu—O1 | 108.66 (7) |
N4—C7—C8 | 107.65 (18) | N4—Cu—O1 | 106.23 (7) |
N4—C7—H7B | 110.2 | N2—Cu—O1 | 106.91 (7) |
C8—C7—H7B | 110.2 | O3—Mo—O2 | 108.43 (9) |
N4—C7—H7A | 110.2 | O3—Mo—O4 | 110.51 (9) |
C8—C7—H7A | 110.2 | O2—Mo—O4 | 108.75 (9) |
H7B—C7—H7A | 108.5 | O3—Mo—O1 | 110.04 (8) |
N1—C8—C7 | 108.83 (19) | O2—Mo—O1 | 110.65 (9) |
N1—C8—H8B | 109.9 | O4—Mo—O1 | 108.45 (8) |
C7—C8—H8B | 109.9 | H5—O5—H6 | 106 (4) |
N1—C1—C2—N2 | −53.5 (2) | C1—N1—Cu—N4 | 121.02 (14) |
N2—C3—C4—N3 | −55.8 (2) | C8—N1—Cu—N4 | −0.30 (15) |
N3—C5—C6—N4 | −53.4 (2) | C1—N1—Cu—N2 | −27.13 (14) |
N4—C7—C8—N1 | −53.0 (2) | C8—N1—Cu—N2 | −148.44 (15) |
C2—C1—N1—C8 | 168.05 (19) | C1—N1—Cu—O1 | −133.53 (13) |
C2—C1—N1—Cu | 49.76 (19) | C8—N1—Cu—O1 | 105.15 (15) |
C7—C8—N1—C1 | −87.1 (2) | C6—N4—Cu—N3 | −1.03 (14) |
C7—C8—N1—Cu | 28.1 (2) | C7—N4—Cu—N3 | 122.10 (15) |
C1—C2—N2—C3 | −84.7 (2) | C6—N4—Cu—N1 | −150.70 (15) |
C1—C2—N2—Cu | 28.2 (2) | C7—N4—Cu—N1 | −27.57 (14) |
C4—C3—N2—C2 | 168.62 (18) | C6—N4—Cu—N2 | −76.5 (2) |
C4—C3—N2—Cu | 52.62 (18) | C7—N4—Cu—N2 | 46.6 (2) |
C6—C5—N3—C4 | 165.92 (19) | C6—N4—Cu—O1 | 101.31 (14) |
C6—C5—N3—Cu | 49.29 (19) | C7—N4—Cu—O1 | −135.56 (14) |
C3—C4—N3—C5 | −85.7 (2) | C2—N2—Cu—N3 | −150.00 (14) |
C3—C4—N3—Cu | 28.5 (2) | C3—N2—Cu—N3 | −29.46 (13) |
C5—C6—N4—C7 | −87.4 (2) | C2—N2—Cu—N1 | −0.44 (13) |
C5—C6—N4—Cu | 28.7 (2) | C3—N2—Cu—N1 | 120.10 (14) |
C8—C7—N4—C6 | 168.22 (19) | C2—N2—Cu—N4 | −74.40 (19) |
C8—C7—N4—Cu | 50.08 (19) | C3—N2—Cu—N4 | 46.1 (2) |
C5—N3—Cu—N1 | 46.9 (2) | C2—N2—Cu—O1 | 107.77 (13) |
C4—N3—Cu—N1 | −73.6 (2) | C3—N2—Cu—O1 | −131.69 (13) |
C5—N3—Cu—N4 | −26.66 (13) | Mo—O1—Cu—N3 | 56.76 (13) |
C4—N3—Cu—N4 | −147.15 (14) | Mo—O1—Cu—N1 | −122.84 (11) |
C5—N3—Cu—N2 | 121.25 (14) | Mo—O1—Cu—N4 | −32.74 (13) |
C4—N3—Cu—N2 | 0.77 (14) | Mo—O1—Cu—N2 | 146.02 (11) |
C5—N3—Cu—O1 | −132.40 (13) | Cu—O1—Mo—O3 | −153.37 (11) |
C4—N3—Cu—O1 | 107.12 (14) | Cu—O1—Mo—O2 | 86.82 (12) |
C1—N1—Cu—N3 | 47.2 (2) | Cu—O1—Mo—O4 | −32.38 (13) |
C8—N1—Cu—N3 | −74.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4i | 0.83 (2) | 1.95 (2) | 2.770 (2) | 169 (3) |
N1—H1···O5ii | 0.86 (2) | 2.35 (2) | 3.156 (3) | 156 (3) |
N2—H2···O1ii | 0.89 (2) | 2.19 (2) | 2.949 (2) | 143 (3) |
N3—H3···O4i | 0.88 (2) | 2.28 (3) | 2.955 (3) | 133 (3) |
N4—H4···O5iii | 0.88 (2) | 2.10 (2) | 2.928 (3) | 157 (3) |
O5—H6···O2iv | 0.84 (2) | 1.85 (2) | 2.666 (3) | 163 (4) |
C3—H3B···O3v | 0.99 | 2.36 | 3.345 (3) | 175 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) x, y, z−1; (v) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [CuMoO4(C8H20N4)]·H2O |
Mr | 413.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 8.6985 (6), 8.9784 (6), 9.0055 (6) |
α, β, γ (°) | 90.358 (6), 91.949 (6), 100.742 (5) |
V (Å3) | 690.54 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.47 |
Crystal size (mm) | 0.22 × 0.21 × 0.13 |
Data collection | |
Diffractometer | Stoe IPDS 2T |
Absorption correction | Numerical (X-RED; Stoe & Cie, 2009) |
Tmin, Tmax | 0.612, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9700, 3017, 2788 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.063, 1.04 |
No. of reflections | 3017 |
No. of parameters | 196 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −1.05 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4i | 0.829 (18) | 1.952 (19) | 2.770 (2) | 169 (3) |
N1—H1···O5ii | 0.864 (17) | 2.35 (2) | 3.156 (3) | 156 (3) |
N2—H2···O1ii | 0.890 (17) | 2.19 (2) | 2.949 (2) | 143 (3) |
N3—H3···O4i | 0.881 (18) | 2.28 (3) | 2.955 (3) | 133 (3) |
N4—H4···O5iii | 0.875 (17) | 2.10 (2) | 2.928 (3) | 157 (3) |
O5—H6···O2iv | 0.838 (19) | 1.85 (2) | 2.666 (3) | 163 (4) |
C3—H3B···O3v | 0.99 | 2.36 | 3.345 (3) | 174.6 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) x, y, z−1; (v) x, y−1, z. |
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Choi, K.-Y., Whang, M.-A., Lee, H.-H., Lee, K.-C. & Kim, M.-J. (2004). Transition Met. Chem. 29, 792–796. Web of Science CSD CrossRef CAS Google Scholar
Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Guo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158–163. Web of Science CSD CrossRef Google Scholar
Hagrman, D., Warren, C. J., Haushalter, R. C., Seip, C., O'Connor, C. J., Rarig, R. S., Johnson, K. M., LaDuca, R. L. & Zubieta, J. (1998). Chem. Mater. 10, 3294–3297. Web of Science CSD CrossRef CAS Google Scholar
Lu, T.-H., Lin, J.-L., Lan, W.-J. & Chung, C.-S. (1997). Acta Cryst. C53, 1598–1600. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rarig, R. S., Lam, R., Zavalij, P. Y., Ngala, J. K., LaDuca, R. L., Greedan, J. E. & Zubieta, J. (2002). Inorg. Chem. 41, 2124–2133. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yeung, W.-F., Wong, W.-T., Zuo, J.-L. & Lau, T.-C. (2000). J. Chem. Soc. Dalton Trans. pp. 629–631. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the title compound (I) the central copper atom is coordinated by four nitrogen atoms of the cyclen ligand and one oxygen atom of the molydate group. This leads to a distorted square pyramidal coordination environment with the four N atoms in the basal positions and the molybdate oxygen atom at the apex. The arrangement of the four nitrogen atoms is nearly co-planar within a maximum deviation of 0.015 Å and the copper atom lies 0.569 Å above this plane. The Cu—N distances ranging from 2.033 (2) to 2.049 (2) Å which is comparable to the Cu—N bond lengths oberserved in other cyclen copper complexes, like [(cyclen)Cu(NO3)]NO3 (Clay et al., 1979), [(cyclen)Cu(SCN)]2[Ca(NCS)6] H2O (Lu et al., 1997), [(cyclen)Cu(Ag(CN)2)][Ag(CN)2] (Yeung et al., 2000) and [(cyclen)Cu(MnN(CN)5)] (Guo et al., 2008). The molybdate unit coordinates as a monodentate ligand with a Cu—O distance of 2.104 (2) Å. The Mo—O distances ranging from 1.749 to 1.765 Å for the terminal oxygen atoms. In the case of the µ-bridging O atom O1 the Mo—O distance is slightly enlarged to 1.796 (2) Å. A similar monodentate coordination of molybdate has been observed in the copper complex [LCuMoO4]2 5H2O (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane with Cu—O distances of 2.320 (12) and 2.418 (11) Å and Mo—O distances ranging from 1.621 to 1.849 Å (Choi et al., 2004).
Compound (I) contains a water molecule which is involved into two strong hydrogen bonds to the molybdate O2 and O4 oxygen atoms . This leads to [(cyclen)CuMoO4]2(H2O)2 dimers containing a centrosymmetric Mo2O6H4 ring of the type R44(12) (Fig. 2) (Bernstein et al., 1995). Additionally the NH groups of the cyclen ligand are also involved in hydrogen bonds either to water molecules (N1H1 and N4H4) or to molybdate groups (N2H2 and N3H3). As a resuslt of these hydrogen bonds [(cyclen)CuMoO4] units and water are interlinked to layers which are oriented parallel to the crystallographic a-c plane. The stacking of the layers in direction of the crystallographic b axis is supported by weak C—H···O hydrogen bonds (C···O 3.35 Å) between cyclen ligands and molydate units.