metal-organic compounds
(S)-1,2,4-Trimethylpiperazine-1,4-diium tetrachloridozincate(II)
aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayrzl@yahoo.com.cn
In the title compound, (C7H18N2)[ZnCl4], the Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the the cations and anions are linked by intermolecular N—H⋯Cl hydrogen bonds into a chain along [001].
Related literature
For the ferroelectric behavior of chiral coordination compounds, see: Fu et al. (2007). For non-linear optical second harmonic generation of chiral coordination compounds, see: Qu et al. (2003). For transition-metal complexes of (S)-2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810028631/bx2289sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028631/bx2289Isup2.hkl
A mixture of (S)-1,2,4-trimethylpiperazine quinine (1 mmol, 0.128 g), ZnCl2(1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 363 K (15 min) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 8 days.
All H atoms were placed in calculated positions, with C—H = 0.93–0.98Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C,N) or 1.5 Ueq(C) for methyl H atoms.
The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (S)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the
of the title compoundThe θ = 1.8 (3)° , φ= 67 (10)°. In the cations and anions are linked by intermolecular N—H···Cl hydrogen bonds into a one-dimensional chain viewed along the c-axis with set graph-motif C22 (9) (Bernstein, et al., 1995) (Fig.2).
of the title compound, (C7H18N2)[ZnCl4] (Fig.1), consists of one 1,2,4-trimethylpiperazinium cation and one ZnCl42- anion. The Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation with Cremer & Pople (1975) puckering parameters : QT =0.5673 (3)Å,For the ferroelectric behavior, see: Fu et al. (2007). For non-linear optical second harmonic generation, see: Qu et al. (2003). For transition-metal complexes of (S)-2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C7H18N2)[ZnCl4] | F(000) = 688 |
Mr = 337.40 | Dx = 1.593 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2802 reflections |
a = 8.5197 (17) Å | θ = 3.2–27.5° |
b = 9.7036 (19) Å | µ = 2.48 mm−1 |
c = 17.013 (3) Å | T = 293 K |
V = 1406.5 (5) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.28 × 0.26 mm |
Rigaku SCXmini diffractometer | 3217 independent reflections |
Radiation source: fine-focus sealed tube | 2802 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | k = −12→12 |
Tmin = 0.80, Tmax = 0.90 | l = −22→22 |
14785 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0257P)2 + 0.2767P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3217 reflections | Δρmax = 0.36 e Å−3 |
138 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1355 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.046 (14) |
(C7H18N2)[ZnCl4] | V = 1406.5 (5) Å3 |
Mr = 337.40 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.5197 (17) Å | µ = 2.48 mm−1 |
b = 9.7036 (19) Å | T = 293 K |
c = 17.013 (3) Å | 0.30 × 0.28 × 0.26 mm |
Rigaku SCXmini diffractometer | 3217 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) | 2802 reflections with I > 2σ(I) |
Tmin = 0.80, Tmax = 0.90 | Rint = 0.038 |
14785 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | Δρmax = 0.36 e Å−3 |
S = 1.08 | Δρmin = −0.36 e Å−3 |
3217 reflections | Absolute structure: Flack (1983), 1355 Friedel pairs |
138 parameters | Absolute structure parameter: 0.046 (14) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.59768 (3) | 0.49854 (3) | 0.125016 (17) | 0.03377 (9) | |
C1 | 0.2131 (4) | 0.8709 (3) | 0.14589 (17) | 0.0359 (7) | |
H1 | 0.2576 | 0.8595 | 0.1986 | 0.043* | |
C2 | 0.3442 (3) | 0.8994 (3) | 0.08782 (17) | 0.0368 (7) | |
H2A | 0.4167 | 0.8223 | 0.0882 | 0.044* | |
H2B | 0.3000 | 0.9060 | 0.0354 | 0.044* | |
C3 | 0.3220 (4) | 1.1457 (3) | 0.10626 (19) | 0.0481 (9) | |
H3A | 0.2799 | 1.1599 | 0.0539 | 0.058* | |
H3B | 0.3791 | 1.2281 | 0.1212 | 0.058* | |
C4 | 0.1875 (4) | 1.1231 (3) | 0.16346 (19) | 0.0449 (8) | |
H4A | 0.2283 | 1.1194 | 0.2166 | 0.054* | |
H4B | 0.1151 | 1.2000 | 0.1602 | 0.054* | |
C5 | −0.0354 (4) | 0.9767 (4) | 0.19972 (18) | 0.0491 (8) | |
H5A | 0.0010 | 0.9678 | 0.2529 | 0.074* | |
H5B | −0.0935 | 0.8958 | 0.1853 | 0.074* | |
H5C | −0.1019 | 1.0562 | 0.1955 | 0.074* | |
C6 | 0.5641 (4) | 1.0490 (4) | 0.0483 (2) | 0.0628 (11) | |
H6A | 0.6305 | 0.9691 | 0.0477 | 0.094* | |
H6B | 0.6241 | 1.1279 | 0.0643 | 0.094* | |
H6C | 0.5224 | 1.0643 | −0.0034 | 0.094* | |
C7 | 0.1282 (4) | 0.7396 (3) | 0.1223 (2) | 0.0580 (9) | |
H7A | 0.0840 | 0.7508 | 0.0708 | 0.087* | |
H7B | 0.0458 | 0.7209 | 0.1593 | 0.087* | |
H7C | 0.2011 | 0.6642 | 0.1219 | 0.087* | |
Cl1 | 0.44725 (9) | 0.46036 (8) | 0.01637 (4) | 0.0479 (2) | |
Cl2 | 0.42671 (10) | 0.48120 (12) | 0.22655 (4) | 0.0642 (3) | |
Cl3 | 0.70714 (11) | 0.70748 (9) | 0.11735 (6) | 0.0600 (2) | |
Cl4 | 0.79167 (12) | 0.34029 (10) | 0.13266 (5) | 0.0606 (2) | |
N1 | 0.1024 (2) | 0.9929 (3) | 0.14575 (12) | 0.0334 (5) | |
N2 | 0.4314 (3) | 1.0266 (3) | 0.10512 (14) | 0.0390 (6) | |
H1A | 0.054 (3) | 1.003 (3) | 0.0967 (16) | 0.033 (7)* | |
H2C | 0.477 (4) | 1.023 (3) | 0.1532 (18) | 0.046 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03299 (15) | 0.04154 (17) | 0.02676 (15) | −0.00188 (15) | −0.00155 (14) | −0.00045 (16) |
C1 | 0.0323 (14) | 0.0395 (17) | 0.0359 (16) | 0.0029 (14) | −0.0043 (14) | 0.0082 (12) |
C2 | 0.0345 (16) | 0.0368 (17) | 0.0390 (15) | 0.0024 (13) | 0.0001 (13) | −0.0014 (13) |
C3 | 0.055 (2) | 0.0371 (18) | 0.052 (2) | −0.0065 (15) | 0.0007 (17) | 0.0019 (14) |
C4 | 0.048 (2) | 0.0392 (19) | 0.0472 (17) | −0.0059 (15) | −0.0009 (17) | −0.0108 (14) |
C5 | 0.0387 (16) | 0.064 (2) | 0.0445 (17) | 0.0051 (17) | 0.0090 (14) | 0.0016 (15) |
C6 | 0.045 (2) | 0.084 (3) | 0.059 (2) | −0.0144 (19) | 0.0148 (18) | 0.0118 (19) |
C7 | 0.0445 (18) | 0.0365 (17) | 0.093 (3) | −0.0038 (13) | 0.009 (2) | 0.008 (2) |
Cl1 | 0.0417 (4) | 0.0762 (6) | 0.0259 (3) | −0.0185 (4) | −0.0051 (3) | 0.0063 (3) |
Cl2 | 0.0424 (4) | 0.1219 (9) | 0.0283 (4) | −0.0064 (6) | 0.0046 (3) | 0.0013 (4) |
Cl3 | 0.0541 (4) | 0.0453 (5) | 0.0806 (6) | −0.0143 (4) | −0.0084 (6) | −0.0038 (5) |
Cl4 | 0.0641 (5) | 0.0642 (6) | 0.0536 (5) | 0.0256 (5) | −0.0113 (5) | −0.0086 (4) |
N1 | 0.0325 (11) | 0.0402 (13) | 0.0274 (11) | 0.0026 (14) | −0.0013 (9) | 0.0007 (10) |
N2 | 0.0331 (13) | 0.0481 (17) | 0.0357 (13) | −0.0095 (11) | −0.0032 (10) | 0.0030 (10) |
Zn1—Cl3 | 2.2355 (9) | C4—H4A | 0.9700 |
Zn1—Cl4 | 2.2597 (9) | C4—H4B | 0.9700 |
Zn1—Cl2 | 2.2658 (8) | C5—N1 | 1.499 (3) |
Zn1—Cl1 | 2.2795 (8) | C5—H5A | 0.9600 |
C1—N1 | 1.513 (4) | C5—H5B | 0.9600 |
C1—C2 | 1.517 (4) | C5—H5C | 0.9600 |
C1—C7 | 1.519 (4) | C6—N2 | 1.504 (4) |
C1—H1 | 0.9800 | C6—H6A | 0.9600 |
C2—N2 | 1.470 (4) | C6—H6B | 0.9600 |
C2—H2A | 0.9700 | C6—H6C | 0.9600 |
C2—H2B | 0.9700 | C7—H7A | 0.9600 |
C3—N2 | 1.485 (4) | C7—H7B | 0.9600 |
C3—C4 | 1.519 (5) | C7—H7C | 0.9600 |
C3—H3A | 0.9700 | N1—H1A | 0.93 (3) |
C3—H3B | 0.9700 | N2—H2C | 0.91 (3) |
C4—N1 | 1.487 (4) | ||
Cl3—Zn1—Cl4 | 108.34 (5) | N1—C5—H5A | 109.5 |
Cl3—Zn1—Cl2 | 112.33 (4) | N1—C5—H5B | 109.5 |
Cl4—Zn1—Cl2 | 112.08 (4) | H5A—C5—H5B | 109.5 |
Cl3—Zn1—Cl1 | 109.55 (3) | N1—C5—H5C | 109.5 |
Cl4—Zn1—Cl1 | 110.33 (4) | H5A—C5—H5C | 109.5 |
Cl2—Zn1—Cl1 | 104.16 (3) | H5B—C5—H5C | 109.5 |
N1—C1—C2 | 108.4 (2) | N2—C6—H6A | 109.5 |
N1—C1—C7 | 111.1 (3) | N2—C6—H6B | 109.5 |
C2—C1—C7 | 109.3 (3) | H6A—C6—H6B | 109.5 |
N1—C1—H1 | 109.3 | N2—C6—H6C | 109.5 |
C2—C1—H1 | 109.3 | H6A—C6—H6C | 109.5 |
C7—C1—H1 | 109.3 | H6B—C6—H6C | 109.5 |
N2—C2—C1 | 113.2 (2) | C1—C7—H7A | 109.5 |
N2—C2—H2A | 108.9 | C1—C7—H7B | 109.5 |
C1—C2—H2A | 108.9 | H7A—C7—H7B | 109.5 |
N2—C2—H2B | 108.9 | C1—C7—H7C | 109.5 |
C1—C2—H2B | 108.9 | H7A—C7—H7C | 109.5 |
H2A—C2—H2B | 107.7 | H7B—C7—H7C | 109.5 |
N2—C3—C4 | 111.7 (3) | C4—N1—C5 | 110.3 (2) |
N2—C3—H3A | 109.3 | C4—N1—C1 | 111.1 (2) |
C4—C3—H3A | 109.3 | C5—N1—C1 | 113.9 (2) |
N2—C3—H3B | 109.3 | C4—N1—H1A | 107.7 (19) |
C4—C3—H3B | 109.3 | C5—N1—H1A | 102.4 (16) |
H3A—C3—H3B | 107.9 | C1—N1—H1A | 111.0 (18) |
N1—C4—C3 | 111.1 (2) | C2—N2—C3 | 109.8 (2) |
N1—C4—H4A | 109.4 | C2—N2—C6 | 111.9 (2) |
C3—C4—H4A | 109.4 | C3—N2—C6 | 111.6 (3) |
N1—C4—H4B | 109.4 | C2—N2—H2C | 111 (2) |
C3—C4—H4B | 109.4 | C3—N2—H2C | 107 (2) |
H4A—C4—H4B | 108.0 | C6—N2—H2C | 105.5 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.93 (3) | 2.16 (3) | 3.092 (2) | 177 (3) |
N2—H2C···Cl2ii | 0.91 (3) | 2.24 (3) | 3.140 (3) | 171 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C7H18N2)[ZnCl4] |
Mr | 337.40 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.5197 (17), 9.7036 (19), 17.013 (3) |
V (Å3) | 1406.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.48 |
Crystal size (mm) | 0.30 × 0.28 × 0.26 |
Data collection | |
Diffractometer | Rigaku SCXmini |
Absorption correction | Multi-scan (CrystalClear; Rigaku/MSC, 2005) |
Tmin, Tmax | 0.80, 0.90 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14785, 3217, 2802 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.067, 1.08 |
No. of reflections | 3217 |
No. of parameters | 138 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.36, −0.36 |
Absolute structure | Flack (1983), 1355 Friedel pairs |
Absolute structure parameter | 0.046 (14) |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.93 (3) | 2.16 (3) | 3.092 (2) | 177 (3) |
N2—H2C···Cl2ii | 0.91 (3) | 2.24 (3) | 3.140 (3) | 171 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by a start-up grant from Anyang Institute of Technology.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710–7712. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (S)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound
The asymmetric unit of the title compound, (C7H18N2)[ZnCl4] (Fig.1), consists of one 1,2,4-trimethylpiperazinium cation and one ZnCl42- anion. The Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation with Cremer & Pople (1975) puckering parameters : QT =0.5673 (3)Å, θ = 1.8 (3)° , φ= 67 (10)°. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl hydrogen bonds into a one-dimensional chain viewed along the c-axis with set graph-motif C22 (9) (Bernstein, et al., 1995) (Fig.2).