organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2,5-di­methyl­quinoline

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: d_velu@yahoo.com

(Received 23 June 2010; accepted 28 June 2010; online 14 July 2010)

Mol­ecules of the title compound, C11H10ClN, are essentially planar (r.m.s. deviation for all non-H atoms = 0.009 Å) and are stacked along the a axis with the centroids of the benzene and pyridine rings alternately separated by 3.649 (1) and 3.778 (1) Å.

Related literature

For the biological activity of quinoline derivatives, see: Miyamoto et al. (1995[Miyamoto, H., Yamashita, H., Ueda, H., Tamaoka, H., Ohmori, K. & Nakagawa, K. (1995). Bioorg. Med. Chem. 3, 1699-1706.]); Milner et al. (2010[Milner, E., McCalmont, W., Bhonsle, J., Caridha, D., Cobar, J., Gardner, S., Gerena, L., Goodine, D., Lanteri, C., Melendez, V., Roncal, N., Sousa, J., Wipi, P. & Stuart Dow, G. (2010). Malar. J. 9, 51-61.]); Li et al. (2008[Li, N. K., Tong, C., Chen, G., Brindzei, N. & Orlow, J. S. (2008). Mol. Pharmacol. 74, 1576-1586.]); Musiola et al. (2006[Musiola, R., Jampilekb, J., Buchtac, V., Silvac, L., Niedbalaa, H., Podeszwaa, B., Palkaa, A., Majerz-Manieckad, K., Oleksynd, B. & Polanskia, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Muthumani et al. (2010[Muthumani, P., Venkataraman, S., Meera, R., Govind Nayak, N., Chidambaram, N., Devi, P. & Kameswari, B. (2010). Der Pharma. Chem. 2, 385-396.]). For related chloro­quinoline structures, see: Rizvi et al. (2008[Rizvi, U. F., Siddiqui, H. L., Ahmad, S., Ahmad, M. & Parvez, M. (2008). Acta Cryst. C64, o547-o549.]); Bureau et al. (1999[Bureau, I., Chardon, J., Leclaire, A., Hinschberger, A. & Rault, S. (1999). Acta Cryst. C55, IUC9900022.]); de Souza et al. (2010[Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698-o699.]); Yathirajan et al. (2007[Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763-o765.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClN

  • Mr = 190.66

  • Monoclinic, P 21 /c

  • a = 6.9534 (9) Å

  • b = 13.0762 (14) Å

  • c = 10.4306 (11) Å

  • β = 99.239 (8)°

  • V = 936.09 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.27 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.925

  • 8798 measured reflections

  • 2345 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 1.05

  • 2345 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This paper presents the first crystal structure of meta isomer of chloro-quinoline derivatives. It was reported earlier that the introduction of methyl group at the 5th position of quinoline nucleus enhanced characteristically the antibacterial activity against Gram-positive bacteria, including Streptococcus pneumonia, which is a major pathogen in the respiratory tract infection (Miyamoto et al., 1995). Also quinoline derivatives are well known to have many biological activities such as antimalarial (Milner et al., 2010), inhibition of melanogenesis (Li et al., 2008), antifungal (Musiola et al., 2006), antibacterial activities etc. (Muthumani et al., 2010).

The non-hydrogen atoms of the title molecule are essentially coplanar (r.m.s. deviation 0.009 Å). The molecules are stacked along the a axis with the centroids of quinoline ring systems alternately separated by 3.649 (1) Å and 3.778 (1) Å (Fig.2).

Related literature top

For the biological activity of quinoline derivatives, see: Miyamoto et al. (1995); Milner et al. (2010); Li et al. (2008); Musiola et al. (2006); Muthumani et al. (2010). For related chloroquinoline structures, see: Rizvi et al. (2008); Bureau et al. (1999); de Souza et al. (2010); Yathirajan et al. (2007).

Experimental top

Ethylacetoacetate (0.25 mol) and m-toluidine (0.25 mol) were mixed. 5–10 drops of dilute hydrochloroacid (1:1) was added, the mixture was shaken well and kept inside a vacuum desiccator over concentrated sulfuric acid for 2 d. A deep yellow oily liquid, (E)-Ethyl-3-(m-tolylamino)but-2-enoate, was formed. It was dried over anhydrous sodium sulfate and was added dropwise from a dropping funnel to diphenyl ether (50 ml) kept at reflux in a two necked flask, one fitted with the dropping funnel and the other with an air condenser to distill off the ethanol formed during the reaction. After the addition, the refluxing was continued for further 10 min and the contents were cooled. 50 ml of petroleum ether was added and the precipitated solid was collected, washed with petroleum ether, dried and recrystallized from ethanol to give (E)-ethyl-3-(m-tolylamino)but-2-enoate as a crystalline white powder.

Phosphorous oxy chloride (100 ml) was added to 2,5-dimethylquinolin-4 (1H)-one (0.1 mol) and kept on a water bath for about 1 h and poured into ice water and neutralized with saturated sodium carbonate solution. The formed precipitate was filtered, dried, purified using silica gel column chromatography and eluted with petrolelum ether (100%) to get a white solid. It was recrystallized using methanol.

Refinement top

H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were allowed to ride on their parent atoms, with Uiso = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Structure description top

This paper presents the first crystal structure of meta isomer of chloro-quinoline derivatives. It was reported earlier that the introduction of methyl group at the 5th position of quinoline nucleus enhanced characteristically the antibacterial activity against Gram-positive bacteria, including Streptococcus pneumonia, which is a major pathogen in the respiratory tract infection (Miyamoto et al., 1995). Also quinoline derivatives are well known to have many biological activities such as antimalarial (Milner et al., 2010), inhibition of melanogenesis (Li et al., 2008), antifungal (Musiola et al., 2006), antibacterial activities etc. (Muthumani et al., 2010).

The non-hydrogen atoms of the title molecule are essentially coplanar (r.m.s. deviation 0.009 Å). The molecules are stacked along the a axis with the centroids of quinoline ring systems alternately separated by 3.649 (1) Å and 3.778 (1) Å (Fig.2).

For the biological activity of quinoline derivatives, see: Miyamoto et al. (1995); Milner et al. (2010); Li et al. (2008); Musiola et al. (2006); Muthumani et al. (2010). For related chloroquinoline structures, see: Rizvi et al. (2008); Bureau et al. (1999); de Souza et al. (2010); Yathirajan et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis.
4-Chloro-2,5-dimethylquinoline top
Crystal data top
C11H10ClNF(000) = 400
Mr = 190.66Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2345 reflections
a = 6.9534 (9) Åθ = 2.5–28.5°
b = 13.0762 (14) ŵ = 0.35 mm1
c = 10.4306 (11) ÅT = 293 K
β = 99.239 (8)°Block, colourless
V = 936.09 (19) Å30.27 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2345 independent reflections
Radiation source: fine-focus sealed tube1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.909, Tmax = 0.925k = 1712
8798 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.6973P]
where P = (Fo2 + 2Fc2)/3
2345 reflections(Δ/σ)max = 0.007
120 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H10ClNV = 936.09 (19) Å3
Mr = 190.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9534 (9) ŵ = 0.35 mm1
b = 13.0762 (14) ÅT = 293 K
c = 10.4306 (11) Å0.27 × 0.26 × 0.22 mm
β = 99.239 (8)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1502 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.925Rint = 0.027
8798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2345 reflectionsΔρmin = 0.21 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27505 (13)0.22264 (5)0.06695 (7)0.0680 (3)
N10.2186 (3)0.08447 (15)0.13203 (18)0.0455 (5)
C50.2644 (3)0.01002 (16)0.0758 (2)0.0372 (5)
C80.2282 (4)0.09687 (19)0.1312 (2)0.0461 (6)
H80.22180.15710.17910.055*
C90.2550 (4)0.10065 (17)0.0003 (2)0.0410 (5)
C10.2513 (4)0.17776 (18)0.0632 (2)0.0485 (6)
H10.23790.23740.01400.058*
C60.2455 (3)0.08204 (17)0.0005 (2)0.0383 (5)
C30.2963 (4)0.0945 (2)0.2683 (2)0.0504 (6)
H30.31400.10020.35830.060*
C100.1806 (5)0.0015 (2)0.3412 (2)0.0622 (8)
H10A0.15240.07050.36970.093*
H10B0.29690.02130.37120.093*
H10C0.07380.04200.37600.093*
C40.2913 (4)0.00173 (18)0.2147 (2)0.0426 (5)
C70.2103 (4)0.00246 (19)0.1951 (2)0.0443 (6)
C110.3095 (5)0.0919 (2)0.3066 (2)0.0629 (8)
H11A0.32890.06770.39460.094*
H11B0.19260.13210.29050.094*
H11C0.41860.13320.29310.094*
C20.2761 (4)0.18365 (19)0.1949 (2)0.0529 (7)
H20.27960.24700.23560.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1124 (7)0.0347 (3)0.0570 (4)0.0066 (4)0.0141 (4)0.0037 (3)
N10.0560 (13)0.0426 (11)0.0382 (10)0.0017 (9)0.0092 (9)0.0031 (8)
C50.0383 (12)0.0372 (11)0.0365 (11)0.0000 (10)0.0076 (9)0.0003 (9)
C80.0556 (16)0.0430 (13)0.0403 (13)0.0010 (11)0.0094 (11)0.0077 (10)
C90.0480 (14)0.0338 (11)0.0417 (12)0.0024 (10)0.0082 (10)0.0006 (9)
C10.0601 (17)0.0341 (11)0.0520 (14)0.0037 (11)0.0106 (12)0.0004 (10)
C60.0406 (13)0.0375 (11)0.0370 (11)0.0026 (9)0.0068 (9)0.0004 (9)
C30.0599 (16)0.0566 (15)0.0349 (12)0.0031 (13)0.0086 (11)0.0099 (11)
C100.077 (2)0.0737 (19)0.0356 (13)0.0033 (16)0.0085 (13)0.0012 (12)
C40.0484 (14)0.0439 (12)0.0360 (12)0.0023 (10)0.0085 (10)0.0012 (9)
C70.0497 (15)0.0483 (13)0.0349 (12)0.0005 (11)0.0070 (10)0.0008 (10)
C110.094 (2)0.0591 (16)0.0353 (13)0.0126 (15)0.0096 (13)0.0094 (12)
C20.0654 (18)0.0398 (12)0.0545 (15)0.0082 (12)0.0121 (13)0.0137 (11)
Geometric parameters (Å, º) top
Cl1—C91.737 (2)C3—C41.374 (3)
N1—C71.310 (3)C3—C21.390 (4)
N1—C61.366 (3)C3—H30.93
C5—C91.419 (3)C10—C71.506 (3)
C5—C61.432 (3)C10—H10A0.96
C5—C41.435 (3)C10—H10B0.96
C8—C91.356 (3)C10—H10C0.96
C8—C71.399 (3)C4—C111.512 (3)
C8—H80.93C11—H11A0.96
C1—C21.358 (3)C11—H11B0.96
C1—C61.410 (3)C11—H11C0.96
C1—H10.93C2—H20.93
C7—N1—C6118.4 (2)C7—C10—H10B109.5
C9—C5—C6114.0 (2)H10A—C10—H10B109.5
C9—C5—C4127.6 (2)C7—C10—H10C109.5
C6—C5—C4118.4 (2)H10A—C10—H10C109.5
C9—C8—C7120.1 (2)H10B—C10—H10C109.5
C9—C8—H8120.0C3—C4—C5118.0 (2)
C7—C8—H8120.0C3—C4—C11117.5 (2)
C8—C9—C5121.2 (2)C5—C4—C11124.4 (2)
C8—C9—Cl1115.32 (18)N1—C7—C8122.2 (2)
C5—C9—Cl1123.49 (18)N1—C7—C10117.8 (2)
C2—C1—C6120.6 (2)C8—C7—C10120.0 (2)
C2—C1—H1119.7C4—C11—H11A109.5
C6—C1—H1119.7C4—C11—H11B109.5
N1—C6—C1116.0 (2)H11A—C11—H11B109.5
N1—C6—C5124.1 (2)C4—C11—H11C109.5
C1—C6—C5119.9 (2)H11A—C11—H11C109.5
C4—C3—C2123.4 (2)H11B—C11—H11C109.5
C4—C3—H3118.3C1—C2—C3119.6 (2)
C2—C3—H3118.3C1—C2—H2120.2
C7—C10—H10A109.5C3—C2—H2120.2
C7—C8—C9—C50.3 (4)C4—C5—C6—C10.8 (3)
C7—C8—C9—Cl1180.0 (2)C2—C3—C4—C50.2 (4)
C6—C5—C9—C80.7 (3)C2—C3—C4—C11178.3 (3)
C4—C5—C9—C8179.8 (2)C9—C5—C4—C3179.9 (2)
C6—C5—C9—Cl1179.65 (18)C6—C5—C4—C30.4 (3)
C4—C5—C9—Cl10.1 (4)C9—C5—C4—C111.7 (4)
C7—N1—C6—C1179.4 (2)C6—C5—C4—C11178.8 (2)
C7—N1—C6—C50.4 (3)C6—N1—C7—C80.1 (4)
C2—C1—C6—N1179.6 (2)C6—N1—C7—C10180.0 (2)
C2—C1—C6—C50.5 (4)C9—C8—C7—N10.1 (4)
C9—C5—C6—N10.7 (3)C9—C8—C7—C10180.0 (2)
C4—C5—C6—N1179.7 (2)C6—C1—C2—C30.1 (4)
C9—C5—C6—C1179.7 (2)C4—C3—C2—C10.5 (4)

Experimental details

Crystal data
Chemical formulaC11H10ClN
Mr190.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.9534 (9), 13.0762 (14), 10.4306 (11)
β (°) 99.239 (8)
V3)936.09 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.27 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.909, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
8798, 2345, 1502
Rint0.027
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.05
No. of reflections2345
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

DV acknowledges the Department of Science and Technology (DST) for providing computing facilities under major research projects and for financial support to the Department under the UGC–SAP.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBureau, I., Chardon, J., Leclaire, A., Hinschberger, A. & Rault, S. (1999). Acta Cryst. C55, IUC9900022.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, N. K., Tong, C., Chen, G., Brindzei, N. & Orlow, J. S. (2008). Mol. Pharmacol. 74, 1576–1586.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMilner, E., McCalmont, W., Bhonsle, J., Caridha, D., Cobar, J., Gardner, S., Gerena, L., Goodine, D., Lanteri, C., Melendez, V., Roncal, N., Sousa, J., Wipi, P. & Stuart Dow, G. (2010). Malar. J. 9, 51–61.  Web of Science CrossRef PubMed Google Scholar
First citationMiyamoto, H., Yamashita, H., Ueda, H., Tamaoka, H., Ohmori, K. & Nakagawa, K. (1995). Bioorg. Med. Chem. 3, 1699–1706.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiola, R., Jampilekb, J., Buchtac, V., Silvac, L., Niedbalaa, H., Podeszwaa, B., Palkaa, A., Majerz-Manieckad, K., Oleksynd, B. & Polanskia, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science PubMed Google Scholar
First citationMuthumani, P., Venkataraman, S., Meera, R., Govind Nayak, N., Chidambaram, N., Devi, P. & Kameswari, B. (2010). Der Pharma. Chem. 2, 385–396.  CAS Google Scholar
First citationRizvi, U. F., Siddiqui, H. L., Ahmad, S., Ahmad, M. & Parvez, M. (2008). Acta Cryst. C64, o547–o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Kaiser, C. R. (2010). Acta Cryst. E66, o698–o699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds