organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-hy­dr­oxy-2,6-di­phenyl-1-(2-thio­morpholino­acet­yl)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 23 June 2010; accepted 5 July 2010; online 10 July 2010)

In the title compound, C26H30N2O4S, the thio­morpholine ring adopts a chair conformation whereas the tetra­hydro­pyridine ring is in a half-chair conformation. The dihedral angle between the two phenyl rings is 33.3 (2)°. A strong intra­molecular O—H⋯O hydrogen bond generates an S(6) motif. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, generating a ribbon-like structure propagating along the a axis.

Related literature

For general background to the biological activity of tetra­hydro­pyridine derivatives, see: Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.], 2010[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242-2249.]); Chow et al. (1968[Chow, Y. L., Colon, C. J. & Tam, J. N. S. (1968). Can. J. Chem. 46, 2821-2825.]). For related structures, see: Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]); Aridoss et al. (2009[Aridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009). Acta Cryst. E65, o3180-o3181.]); Parkin et al. (2004[Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219-227.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N2O4S

  • Mr = 466.58

  • Monoclinic, P 21 /n

  • a = 10.9561 (6) Å

  • b = 9.5665 (6) Å

  • c = 22.9011 (12) Å

  • β = 93.575 (3)°

  • V = 2395.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 292 K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.967

  • 21473 measured reflections

  • 5677 independent reflections

  • 3669 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.217

  • S = 1.04

  • 5677 reflections

  • 299 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.92 2.627 (3) 144
C2—H2A⋯O4i 0.97 2.46 3.306 (3) 145
C10—H10⋯O4ii 0.93 2.41 3.339 (4) 178
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of N-chloroacetyl-3-carboxyethyl-2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine obtained from the chloroacetylation of 3-carboxyethyl-2,6-diphenylpiperidin-4-one contains two crystallographically independent molecules wherein the two phenyl groups are oriented axially to avoid the steric repulsion (A1,3 strain; Chow et al., 1968) with coplanar –NCOCH2 group besides adopting the non-chair conformation for the tetrahydropyridine ring (Aridoss et al., 2008). However, it was confirmed by X-ray study that the two phenyl groups take up anti orientation with each other upon replacement of chlorine by morpholine system (Aridoss et al., 2010). In order to study the orientation of phenyl groups and conformation of tetrahydropyridine ring system upon substitution of thiomorpholine instead of morpholine, the current study has been undertaken.

The sum of bond angles around atoms N1 (358.0 (2)°) and N2 (329.5 (2)°) of the tetrahydropyridine and the thiomorpholine rings in the molecule is in accordance with sp2 and sp3 hybridizations. The thiomorpholine ring adopts a chair conformation. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiomorpholine/tetrahydropyridine ring are q2 = 0.021 (3)/0.355 (2) Å, q3 = 0.631 (3)/-0.295 (2) Å; QT = 0.632 (3)/0.461 (2) Å and θ = 1.8 (3)/129.8 (3)°. The dihedral angle between the two phenyl ring is 33.4 (2)°. The thiomorpholine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C18—O3—C19—C20 = 110.8 (6)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O4 as an aceptor. In the crystal structure, the molecules at (x,y,z) and (1 - x,1 - y,-z), (2 - x,1 - y,-z) are linked by C—H···O hydrogen bonds into a ribbon-like structure along the a axis; the ribbons contain R22(12) and R22(16) ring motifs.

Related literature top

For general background to and the and biological activity of tetrahydropyridine derivatives, see: Aridoss et al. (2008, 2010); Chow et al. (1968). For related structures, see: Subha Nandhini et al. (2003); Aridoss et al. (2009); Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a mixture of thiomorpholine (1 equiv.) and dry K2CO3 (2 equiv.) in benzene, N-chloroacetyl-3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) in benzene was added slowly and refluxed until completion (Aridoss et al., 2010). Through a typical work up procedure and purification, pure title compound was achieved, which on further crystallization in ethanol gave diffraction quality crystals.

Refinement top

H atoms were positioned geometrically (O–H = 0.82 Å and C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

The asymmetric unit of N-chloroacetyl-3-carboxyethyl-2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine obtained from the chloroacetylation of 3-carboxyethyl-2,6-diphenylpiperidin-4-one contains two crystallographically independent molecules wherein the two phenyl groups are oriented axially to avoid the steric repulsion (A1,3 strain; Chow et al., 1968) with coplanar –NCOCH2 group besides adopting the non-chair conformation for the tetrahydropyridine ring (Aridoss et al., 2008). However, it was confirmed by X-ray study that the two phenyl groups take up anti orientation with each other upon replacement of chlorine by morpholine system (Aridoss et al., 2010). In order to study the orientation of phenyl groups and conformation of tetrahydropyridine ring system upon substitution of thiomorpholine instead of morpholine, the current study has been undertaken.

The sum of bond angles around atoms N1 (358.0 (2)°) and N2 (329.5 (2)°) of the tetrahydropyridine and the thiomorpholine rings in the molecule is in accordance with sp2 and sp3 hybridizations. The thiomorpholine ring adopts a chair conformation. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiomorpholine/tetrahydropyridine ring are q2 = 0.021 (3)/0.355 (2) Å, q3 = 0.631 (3)/-0.295 (2) Å; QT = 0.632 (3)/0.461 (2) Å and θ = 1.8 (3)/129.8 (3)°. The dihedral angle between the two phenyl ring is 33.4 (2)°. The thiomorpholine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C18—O3—C19—C20 = 110.8 (6)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O4 as an aceptor. In the crystal structure, the molecules at (x,y,z) and (1 - x,1 - y,-z), (2 - x,1 - y,-z) are linked by C—H···O hydrogen bonds into a ribbon-like structure along the a axis; the ribbons contain R22(12) and R22(16) ring motifs.

For general background to and the and biological activity of tetrahydropyridine derivatives, see: Aridoss et al. (2008, 2010); Chow et al. (1968). For related structures, see: Subha Nandhini et al. (2003); Aridoss et al. (2009); Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the b axis. For clarity, H atoms which are not involved in hydrogen bonding are omitted.
Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinoacetyl)-1,2,5,6-tetrahydropyridine- 3-carboxylate top
Crystal data top
C26H30N2O4SF(000) = 992
Mr = 466.58Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1201 reflections
a = 10.9561 (6) Åθ = 1.8–28.2°
b = 9.5665 (6) ŵ = 0.17 mm1
c = 22.9011 (12) ÅT = 292 K
β = 93.575 (3)°Block, colourless
V = 2395.6 (2) Å30.26 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5677 independent reflections
Radiation source: fine-focus sealed tube3669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.957, Tmax = 0.967k = 1112
21473 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1095P)2 + 1.0086P]
where P = (Fo2 + 2Fc2)/3
5677 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.75 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
C26H30N2O4SV = 2395.6 (2) Å3
Mr = 466.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9561 (6) ŵ = 0.17 mm1
b = 9.5665 (6) ÅT = 292 K
c = 22.9011 (12) Å0.26 × 0.23 × 0.20 mm
β = 93.575 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3669 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.967Rint = 0.029
21473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0651 restraint
wR(F2) = 0.217H-atom parameters constrained
S = 1.04Δρmax = 0.75 e Å3
5677 reflectionsΔρmin = 0.56 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4059 (2)0.1850 (2)0.01465 (10)0.0453 (5)
H10.43430.16660.02600.054*
C20.5190 (2)0.2068 (3)0.04884 (11)0.0513 (6)
H2A0.57720.26440.02600.062*
H2B0.55730.11710.05520.062*
C30.4893 (2)0.2748 (3)0.10615 (10)0.0490 (6)
C40.3873 (2)0.3516 (3)0.11724 (10)0.0478 (6)
C50.2932 (2)0.3731 (2)0.07271 (10)0.0444 (5)
H50.28590.47450.06780.053*
C60.1649 (2)0.3208 (3)0.09247 (10)0.0459 (5)
C70.1448 (2)0.2216 (3)0.13558 (11)0.0532 (6)
H70.21130.18040.15220.064*
C80.0270 (3)0.1820 (4)0.15461 (14)0.0680 (8)
H80.01500.11500.18380.082*
C90.0707 (3)0.2415 (4)0.13036 (17)0.0796 (10)
H90.14970.21550.14320.095*
C100.0529 (3)0.3394 (4)0.08723 (18)0.0805 (10)
H100.11980.37920.07050.097*
C110.0651 (3)0.3799 (3)0.06812 (14)0.0634 (7)
H110.07660.44700.03890.076*
C120.3253 (2)0.0626 (2)0.03482 (10)0.0440 (5)
C130.3550 (2)0.0269 (3)0.07933 (11)0.0544 (6)
H130.42310.00850.10040.065*
C140.2841 (3)0.1436 (3)0.09264 (15)0.0699 (8)
H140.30510.20320.12250.084*
C150.1833 (3)0.1722 (3)0.06235 (16)0.0722 (9)
H150.13650.25140.07130.087*
C160.1517 (3)0.0838 (3)0.01875 (15)0.0698 (8)
H160.08270.10230.00170.084*
C170.2222 (2)0.0330 (3)0.00502 (12)0.0563 (6)
H170.20000.09260.02460.068*
C180.3700 (2)0.4250 (3)0.17259 (12)0.0608 (7)
C190.2455 (3)0.5885 (5)0.22699 (16)0.0963 (13)
H19A0.30470.56820.25560.116*
H19B0.24360.68880.22090.116*
C200.1253 (5)0.5390 (10)0.2479 (3)0.210 (4)
H20A0.11950.44040.24090.315*
H20B0.11320.55680.28910.315*
H20C0.06380.58710.22760.315*
C210.3374 (2)0.4067 (3)0.03114 (11)0.0508 (6)
C220.3935 (3)0.3617 (3)0.09078 (11)0.0566 (6)
H22A0.47700.33200.08630.068*
H22B0.39630.44210.11670.068*
C230.2018 (3)0.2891 (4)0.12692 (14)0.0677 (8)
H23A0.16300.31900.08980.081*
H23B0.20170.36770.15360.081*
C240.1283 (3)0.1705 (5)0.15118 (15)0.0811 (10)
H24A0.12920.09150.12460.097*
H24B0.04400.20030.15310.097*
C250.3410 (3)0.0918 (5)0.20431 (15)0.0880 (11)
H25A0.39090.07210.23980.106*
H25B0.34530.01130.17880.106*
C260.3931 (3)0.2171 (4)0.17450 (11)0.0661 (8)
H26A0.38910.29770.20000.079*
H26B0.47850.19960.16820.079*
N10.33686 (18)0.3177 (2)0.01508 (8)0.0449 (5)
N20.32827 (18)0.2491 (2)0.11832 (8)0.0508 (5)
O10.57597 (16)0.2550 (2)0.14448 (8)0.0655 (5)
H1A0.55640.29600.17510.098*
O20.4311 (2)0.4081 (3)0.21421 (9)0.0931 (8)
O30.27914 (19)0.5182 (2)0.17266 (9)0.0733 (6)
O40.2948 (2)0.5239 (2)0.02621 (9)0.0703 (6)
S10.18591 (8)0.11578 (13)0.22245 (4)0.0894 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0494 (13)0.0440 (13)0.0416 (11)0.0044 (10)0.0030 (9)0.0038 (10)
C20.0460 (13)0.0507 (14)0.0563 (14)0.0030 (11)0.0027 (11)0.0048 (11)
C30.0409 (12)0.0581 (15)0.0481 (12)0.0064 (11)0.0041 (10)0.0007 (11)
C40.0444 (12)0.0556 (14)0.0431 (12)0.0040 (11)0.0004 (9)0.0086 (11)
C50.0494 (13)0.0414 (12)0.0422 (11)0.0047 (10)0.0009 (9)0.0064 (10)
C60.0476 (13)0.0462 (13)0.0440 (11)0.0069 (10)0.0036 (10)0.0127 (10)
C70.0455 (13)0.0633 (16)0.0511 (13)0.0012 (11)0.0045 (10)0.0004 (12)
C80.0566 (16)0.079 (2)0.0674 (17)0.0105 (15)0.0065 (13)0.0080 (15)
C90.0430 (15)0.096 (3)0.098 (2)0.0052 (16)0.0040 (15)0.027 (2)
C100.0493 (17)0.090 (2)0.104 (3)0.0202 (16)0.0206 (17)0.014 (2)
C110.0561 (16)0.0626 (17)0.0726 (18)0.0134 (13)0.0131 (13)0.0026 (14)
C120.0491 (13)0.0402 (12)0.0422 (11)0.0059 (10)0.0014 (9)0.0066 (10)
C130.0545 (14)0.0551 (15)0.0537 (13)0.0040 (12)0.0035 (11)0.0063 (12)
C140.0706 (19)0.0600 (17)0.0775 (19)0.0073 (15)0.0081 (15)0.0180 (15)
C150.0669 (19)0.0492 (16)0.098 (2)0.0057 (14)0.0158 (17)0.0008 (16)
C160.0587 (17)0.0653 (18)0.086 (2)0.0083 (14)0.0083 (15)0.0139 (17)
C170.0602 (16)0.0533 (15)0.0562 (14)0.0028 (12)0.0096 (12)0.0024 (12)
C180.0461 (14)0.083 (2)0.0528 (14)0.0113 (14)0.0002 (11)0.0193 (14)
C190.090 (2)0.122 (3)0.074 (2)0.001 (2)0.0136 (18)0.054 (2)
C200.161 (6)0.285 (9)0.170 (6)0.070 (6)0.097 (5)0.132 (6)
C210.0545 (14)0.0468 (14)0.0512 (13)0.0051 (11)0.0032 (11)0.0029 (11)
C220.0628 (16)0.0607 (16)0.0457 (13)0.0097 (13)0.0010 (11)0.0088 (12)
C230.0533 (15)0.085 (2)0.0649 (17)0.0086 (15)0.0013 (13)0.0027 (15)
C240.0572 (17)0.115 (3)0.0716 (19)0.0078 (18)0.0067 (14)0.003 (2)
C250.075 (2)0.125 (3)0.0650 (18)0.014 (2)0.0171 (16)0.027 (2)
C260.0517 (15)0.100 (2)0.0464 (13)0.0049 (15)0.0036 (11)0.0035 (14)
N10.0541 (11)0.0394 (10)0.0407 (9)0.0032 (8)0.0006 (8)0.0025 (8)
N20.0490 (11)0.0620 (13)0.0415 (10)0.0003 (10)0.0031 (8)0.0024 (9)
O10.0481 (10)0.0906 (15)0.0588 (11)0.0004 (10)0.0102 (8)0.0043 (10)
O20.0701 (14)0.153 (2)0.0575 (12)0.0105 (15)0.0187 (10)0.0351 (14)
O30.0670 (12)0.0914 (15)0.0606 (11)0.0040 (11)0.0022 (9)0.0363 (11)
O40.0921 (15)0.0517 (12)0.0667 (12)0.0117 (10)0.0025 (11)0.0090 (9)
S10.0735 (6)0.1382 (9)0.0589 (5)0.0044 (5)0.0220 (4)0.0086 (5)
Geometric parameters (Å, º) top
C1—N11.477 (3)C16—C171.383 (4)
C1—C21.521 (3)C16—H160.93
C1—C121.521 (3)C17—H170.93
C1—H10.98C18—O21.209 (3)
C2—C31.483 (3)C18—O31.336 (4)
C2—H2A0.97C19—O31.442 (3)
C2—H2B0.97C19—C201.452 (4)
C3—O11.346 (3)C19—H19A0.97
C3—C41.348 (3)C19—H19B0.97
C4—C181.451 (3)C20—H20A0.96
C4—C51.508 (3)C20—H20B0.96
C5—N11.474 (3)C20—H20C0.96
C5—C61.533 (3)C21—O41.217 (3)
C5—H50.98C21—N11.359 (3)
C6—C71.377 (4)C21—C221.524 (4)
C6—C111.379 (4)C22—N21.458 (3)
C7—C81.389 (4)C22—H22A0.97
C7—H70.93C22—H22B0.97
C8—C91.362 (5)C23—N21.462 (3)
C8—H80.93C23—C241.517 (5)
C9—C101.366 (5)C23—H23A0.97
C9—H90.93C23—H23B0.97
C10—C111.394 (5)C24—S11.791 (4)
C10—H100.93C24—H24A0.97
C11—H110.93C24—H24B0.97
C12—C131.385 (3)C25—C261.509 (5)
C12—C171.385 (4)C25—S11.789 (3)
C13—C141.383 (4)C25—H25A0.97
C13—H130.93C25—H25B0.97
C14—C151.368 (5)C26—N21.463 (3)
C14—H140.93C26—H26A0.97
C15—C161.370 (5)C26—H26B0.97
C15—H150.93O1—H1A0.82
N1—C1—C2108.19 (19)C12—C17—H17119.5
N1—C1—C12111.88 (19)O2—C18—O3122.5 (3)
C2—C1—C12115.2 (2)O2—C18—C4125.1 (3)
N1—C1—H1107.1O3—C18—C4112.4 (2)
C2—C1—H1107.1O3—C19—C20108.1 (3)
C12—C1—H1107.1O3—C19—H19A110.1
C3—C2—C1111.97 (19)C20—C19—H19A110.1
C3—C2—H2A109.2O3—C19—H19B110.1
C1—C2—H2A109.2C20—C19—H19B110.1
C3—C2—H2B109.2H19A—C19—H19B108.4
C1—C2—H2B109.2C19—C20—H20A109.5
H2A—C2—H2B107.9C19—C20—H20B109.5
O1—C3—C4124.3 (2)H20A—C20—H20B109.5
O1—C3—C2113.0 (2)C19—C20—H20C109.5
C4—C3—C2122.7 (2)H20A—C20—H20C109.5
C3—C4—C18119.3 (2)H20B—C20—H20C109.5
C3—C4—C5122.7 (2)O4—C21—N1121.5 (2)
C18—C4—C5117.8 (2)O4—C21—C22118.3 (2)
N1—C5—C4111.03 (18)N1—C21—C22120.2 (2)
N1—C5—C6112.77 (18)N2—C22—C21114.6 (2)
C4—C5—C6114.10 (19)N2—C22—H22A108.6
N1—C5—H5106.1C21—C22—H22A108.6
C4—C5—H5106.1N2—C22—H22B108.6
C6—C5—H5106.1C21—C22—H22B108.6
C7—C6—C11118.5 (2)H22A—C22—H22B107.6
C7—C6—C5122.6 (2)N2—C23—C24112.5 (3)
C11—C6—C5118.8 (2)N2—C23—H23A109.1
C6—C7—C8121.1 (3)C24—C23—H23A109.1
C6—C7—H7119.4N2—C23—H23B109.1
C8—C7—H7119.4C24—C23—H23B109.1
C9—C8—C7119.8 (3)H23A—C23—H23B107.8
C9—C8—H8120.1C23—C24—S1112.8 (2)
C7—C8—H8120.1C23—C24—H24A109.0
C8—C9—C10120.0 (3)S1—C24—H24A109.0
C8—C9—H9120.0C23—C24—H24B109.0
C10—C9—H9120.0S1—C24—H24B109.0
C9—C10—C11120.4 (3)H24A—C24—H24B107.8
C9—C10—H10119.8C26—C25—S1113.3 (3)
C11—C10—H10119.8C26—C25—H25A108.9
C6—C11—C10120.1 (3)S1—C25—H25A108.9
C6—C11—H11119.9C26—C25—H25B108.9
C10—C11—H11119.9S1—C25—H25B108.9
C13—C12—C17118.2 (2)H25A—C25—H25B107.7
C13—C12—C1122.8 (2)N2—C26—C25112.8 (3)
C17—C12—C1118.9 (2)N2—C26—H26A109.0
C14—C13—C12120.4 (3)C25—C26—H26A109.0
C14—C13—H13119.8N2—C26—H26B109.0
C12—C13—H13119.8C25—C26—H26B109.0
C15—C14—C13120.7 (3)H26A—C26—H26B107.8
C15—C14—H14119.7C21—N1—C5117.2 (2)
C13—C14—H14119.7C21—N1—C1123.8 (2)
C14—C15—C16119.7 (3)C5—N1—C1116.92 (18)
C14—C15—H15120.2C22—N2—C23111.0 (2)
C16—C15—H15120.2C22—N2—C26108.1 (2)
C15—C16—C17120.1 (3)C23—N2—C26110.4 (2)
C15—C16—H16119.9C3—O1—H1A109.5
C17—C16—H16119.9C18—O3—C19117.6 (3)
C16—C17—C12120.9 (3)C25—S1—C2496.42 (16)
C16—C17—H17119.5
N1—C1—C2—C348.5 (3)C13—C12—C17—C161.0 (4)
C12—C1—C2—C377.5 (3)C1—C12—C17—C16174.8 (2)
C1—C2—C3—O1159.7 (2)C3—C4—C18—O211.3 (5)
C1—C2—C3—C422.2 (3)C5—C4—C18—O2172.8 (3)
O1—C3—C4—C183.2 (4)C3—C4—C18—O3167.2 (2)
C2—C3—C4—C18174.5 (2)C5—C4—C18—O38.8 (3)
O1—C3—C4—C5179.0 (2)O4—C21—C22—N2114.2 (3)
C2—C3—C4—C51.2 (4)N1—C21—C22—N266.5 (3)
C3—C4—C5—N18.2 (3)N2—C23—C24—S163.1 (3)
C18—C4—C5—N1167.6 (2)S1—C25—C26—N262.4 (3)
C3—C4—C5—C6120.6 (3)O4—C21—N1—C55.6 (4)
C18—C4—C5—C663.6 (3)C22—C21—N1—C5173.6 (2)
N1—C5—C6—C7105.9 (3)O4—C21—N1—C1168.7 (2)
C4—C5—C6—C722.0 (3)C22—C21—N1—C110.6 (4)
N1—C5—C6—C1177.1 (3)C4—C5—N1—C21125.2 (2)
C4—C5—C6—C11155.0 (2)C6—C5—N1—C21105.3 (2)
C11—C6—C7—C80.4 (4)C4—C5—N1—C139.1 (3)
C5—C6—C7—C8176.5 (2)C6—C5—N1—C190.4 (2)
C6—C7—C8—C90.2 (4)C2—C1—N1—C21103.0 (2)
C7—C8—C9—C100.3 (5)C12—C1—N1—C21129.1 (2)
C8—C9—C10—C110.6 (5)C2—C1—N1—C560.1 (3)
C7—C6—C11—C100.2 (4)C12—C1—N1—C567.8 (2)
C5—C6—C11—C10176.9 (3)C21—C22—N2—C2359.2 (3)
C9—C10—C11—C60.3 (5)C21—C22—N2—C26179.6 (2)
N1—C1—C12—C13126.8 (2)C24—C23—N2—C22175.6 (2)
C2—C1—C12—C132.8 (3)C24—C23—N2—C2664.6 (3)
N1—C1—C12—C1757.6 (3)C25—C26—N2—C22174.2 (2)
C2—C1—C12—C17178.3 (2)C25—C26—N2—C2364.2 (3)
C17—C12—C13—C141.1 (4)O2—C18—O3—C197.2 (4)
C1—C12—C13—C14174.5 (2)C4—C18—O3—C19174.3 (3)
C12—C13—C14—C150.3 (4)C20—C19—O3—C18110.8 (6)
C13—C14—C15—C160.6 (5)C26—C25—S1—C2451.6 (3)
C14—C15—C16—C170.7 (5)C23—C24—S1—C2551.8 (3)
C15—C16—C17—C120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.922.627 (3)144
C2—H2A···O4i0.972.463.306 (3)145
C10—H10···O4ii0.932.413.339 (4)178
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H30N2O4S
Mr466.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)10.9561 (6), 9.5665 (6), 22.9011 (12)
β (°) 93.575 (3)
V3)2395.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.957, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
21473, 5677, 3669
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.217, 1.04
No. of reflections5677
No. of parameters299
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.56

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.922.627 (3)144
C2—H2A···O4i0.972.463.306 (3)145
C10—H10···O4ii0.932.413.339 (4)178
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

GA and YTJ are grateful for the support provided by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242–2249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009). Acta Cryst. E65, o3180–o3181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChow, Y. L., Colon, C. J. & Tam, J. N. S. (1968). Can. J. Chem. 46, 2821–2825.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds