organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-hy­dr­oxy-2,6-di­phenyl-1-[2-(piperidin-1-yl)acet­yl]-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 23 June 2010; accepted 6 July 2010; online 14 July 2010)

In the title compound, C27H32N2O4, the piperidine and tetra­hydro­pyridine rings adopt chair and half-chair conformations, respectively. The dihedral angle between the two phenyl rings is 32.9 (1)°. The mol­ecular structure is stabilized by a strong intra­molecular O—H⋯O hydrogen bond, generating an S(6) motif. In the crystal, inter­molecular C—H⋯O inter­actions form a ribbon-like structure along the a axis.

Related literature

For the biological activity of piperidines, see: Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.], 2010[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242-2249.]). For related structures, see: Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]); Aridoss et al. (2009a[Aridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009a). Acta Cryst. E65, o3180-o3181.],b[Aridoss, G., Gayathri, D., Ramachandran, R., Lim, K. T. & Jeong, Y. T. (2009b). Acta Cryst. E65, o3232-o3233.]); Parkin et al. (2004[Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219-227.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32N2O4

  • Mr = 448.55

  • Monoclinic, P 21 /n

  • a = 10.7936 (6) Å

  • b = 9.6752 (6) Å

  • c = 23.2335 (13) Å

  • β = 93.213 (3)°

  • V = 2422.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 21907 measured reflections

  • 5870 independent reflections

  • 3631 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.193

  • S = 1.05

  • 5870 reflections

  • 299 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.88 2.598 (3) 145
C2—H2B⋯O1i 0.97 2.43 3.286 (3) 148
C10—H10⋯O1ii 0.93 2.50 3.427 (3) 177
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine class of compounds is the valued heterocyclic compounds in the field of medicinal chemistry. We are interested in the title compound as similar type of derivatives have been found to exhibit remarkable antibacterial and antitumor properties (Aridoss et al., 2008, 2010). Recently, we have reported the crystal structures of few tetrahydropyridine derivatives (Aridoss et al., 2009a, 2009b). As part of our ongoing studies on establishing the conformation of the compounds through X-ray studies, we herein report the crystal structure of the title compound.

In the present structure, the piperidine ring adopts a chair conformation and the tetrahydropyridine ring is in a half-chair conformation. The sum of the bond angles around atoms N1 (357.8 (9)°) and N2 (329.6 (6)°) indicate sp2 and sp3 hybridizations, respectively. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine/tetrahydropyridine ring are q2 = 0.022 (3)/0.354 (4) Å, q3 = -0.572 (3)/0.293 (2) Å, QT = 0.572 (3)/0.459 (2) Å, and θ = 179.2 (3)/50.4 (2)°. The dihedral angle between the two phenyl rings is 32.9 (1)°. The piperidine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C27—C26—O4—C25 = -116.4 (5)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O2 acts as a donor to O3, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O1 as an aceptor. In the crystal structure, the molecules at (x,y,z), (-x,-y,-z) and (1 - x,-y,-z) are linked into a ribbon-like structure along the a axis by C—H···O hydrogen bonds; the ribbons contain R22(12) and R22(16) ring motifs.

Related literature top

For the biological activity of piperidines, see: Aridoss et al. (2008, 2010). For related structures, see: Subha Nandhini et al. (2003); Aridoss et al. (2009a,b); Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of piperidine (1 equiv.), N-chloroacetyl-3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) and anhydrous potassium carbonate (2 equiv.) in benzene was refluxed on an oil bath until its completion (Aridoss et al., 2010). The crude product obtained after usual work-up upon purification by column chromatography followed by re-crystallization in ethanol yielded fine crystals.

Refinement top

H atoms were positioned geometrically (O–H = 0.82 Å and C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Structure description top

Piperidine class of compounds is the valued heterocyclic compounds in the field of medicinal chemistry. We are interested in the title compound as similar type of derivatives have been found to exhibit remarkable antibacterial and antitumor properties (Aridoss et al., 2008, 2010). Recently, we have reported the crystal structures of few tetrahydropyridine derivatives (Aridoss et al., 2009a, 2009b). As part of our ongoing studies on establishing the conformation of the compounds through X-ray studies, we herein report the crystal structure of the title compound.

In the present structure, the piperidine ring adopts a chair conformation and the tetrahydropyridine ring is in a half-chair conformation. The sum of the bond angles around atoms N1 (357.8 (9)°) and N2 (329.6 (6)°) indicate sp2 and sp3 hybridizations, respectively. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the piperidine/tetrahydropyridine ring are q2 = 0.022 (3)/0.354 (4) Å, q3 = -0.572 (3)/0.293 (2) Å, QT = 0.572 (3)/0.459 (2) Å, and θ = 179.2 (3)/50.4 (2)°. The dihedral angle between the two phenyl rings is 32.9 (1)°. The piperidine and tetrahydropyridine rings are connected by the ethanone. The ethyl acetate group shows an extended conformation [C27—C26—O4—C25 = -116.4 (5)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O2 acts as a donor to O3, generating an S(6) motif.

Atoms C2 and C10 act as donors to form hydrogen bonds with atom O1 as an aceptor. In the crystal structure, the molecules at (x,y,z), (-x,-y,-z) and (1 - x,-y,-z) are linked into a ribbon-like structure along the a axis by C—H···O hydrogen bonds; the ribbons contain R22(12) and R22(16) ring motifs.

For the biological activity of piperidines, see: Aridoss et al. (2008, 2010). For related structures, see: Subha Nandhini et al. (2003); Aridoss et al. (2009a,b); Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. For clarity, H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
Ethyl 4-hydroxy-2,6-diphenyl-1-[2-(piperidin-1-yl)acetyl]-1,2,5,6- tetrahydropyridine-3-carboxylate top
Crystal data top
C27H32N2O4F(000) = 960
Mr = 448.55Dx = 1.230 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1525 reflections
a = 10.7936 (6) Åθ = 1.8–28.3°
b = 9.6752 (6) ŵ = 0.08 mm1
c = 23.2335 (13) ÅT = 292 K
β = 93.213 (3)°Block, colourless
V = 2422.5 (2) Å30.25 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5870 independent reflections
Radiation source: fine-focus sealed tube3631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.979, Tmax = 0.984k = 1212
21907 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.5359P]
where P = (Fo2 + 2Fc2)/3
5870 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C27H32N2O4V = 2422.5 (2) Å3
Mr = 448.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7936 (6) ŵ = 0.08 mm1
b = 9.6752 (6) ÅT = 292 K
c = 23.2335 (13) Å0.25 × 0.23 × 0.20 mm
β = 93.213 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5870 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3631 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.025
21907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.193H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
5870 reflectionsΔρmin = 0.37 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C270.3740 (4)0.0409 (8)0.2481 (2)0.206 (3)
H27A0.43230.07510.22180.308*
H27B0.39300.07870.28570.308*
H27C0.37910.05810.24980.308*
C10.08942 (18)0.31589 (19)0.01812 (8)0.0470 (4)
H10.05920.33260.02180.056*
C20.02445 (18)0.2987 (2)0.05340 (9)0.0539 (5)
H2A0.06050.38880.06000.065*
H2B0.08590.24360.03170.065*
C30.00608 (18)0.2312 (2)0.10962 (9)0.0528 (5)
C40.10915 (17)0.1540 (2)0.12035 (8)0.0492 (5)
C50.20372 (17)0.1306 (2)0.07547 (8)0.0455 (4)
H50.21040.03020.07110.055*
C60.33462 (17)0.1815 (2)0.09306 (8)0.0467 (4)
C70.35769 (19)0.2807 (3)0.13484 (9)0.0573 (5)
H70.29150.32220.15210.069*
C80.4785 (2)0.3197 (3)0.15163 (11)0.0733 (7)
H80.49260.38640.18010.088*
C90.5763 (2)0.2598 (3)0.12621 (13)0.0821 (8)
H90.65710.28540.13740.098*
C100.5550 (2)0.1619 (3)0.08418 (14)0.0822 (8)
H100.62150.12170.06670.099*
C110.4350 (2)0.1225 (3)0.06762 (11)0.0645 (6)
H110.42150.05570.03920.077*
C120.17351 (17)0.4373 (2)0.03603 (8)0.0462 (4)
C130.1481 (2)0.5271 (2)0.08002 (10)0.0580 (5)
H130.07990.51070.10180.070*
C140.2225 (2)0.6412 (3)0.09232 (12)0.0725 (7)
H140.20440.70010.12230.087*
C150.3227 (3)0.6673 (3)0.06033 (13)0.0771 (7)
H150.37200.74460.06820.093*
C160.3502 (2)0.5787 (3)0.01649 (13)0.0734 (7)
H160.41860.59560.00510.088*
C170.2763 (2)0.4647 (2)0.00461 (10)0.0591 (5)
H170.29570.40520.02500.071*
C180.15252 (19)0.0927 (2)0.02602 (9)0.0522 (5)
C190.0955 (2)0.1375 (2)0.08475 (9)0.0581 (5)
H19A0.08850.05710.10970.070*
H19B0.01220.17140.07980.070*
C200.2914 (2)0.1989 (3)0.12236 (11)0.0752 (7)
H20A0.28910.11520.14540.090*
H20B0.33340.17770.08540.090*
C210.3637 (3)0.3090 (4)0.15246 (13)0.0973 (10)
H21A0.37130.39050.12820.117*
H21B0.44660.27520.15850.117*
C220.2998 (3)0.3470 (4)0.20973 (12)0.0988 (10)
H22A0.34280.42370.22670.119*
H22B0.30180.26900.23590.119*
C230.1672 (3)0.3868 (4)0.20086 (12)0.0906 (9)
H23A0.12400.40280.23800.109*
H23B0.16580.47220.17900.109*
C240.1010 (2)0.2751 (3)0.16913 (10)0.0691 (6)
H24A0.01690.30490.16310.083*
H24B0.09640.19200.19250.083*
C250.1255 (2)0.0802 (3)0.17438 (9)0.0638 (6)
C260.2522 (3)0.0805 (4)0.22867 (13)0.1089 (12)
H26A0.19400.05650.25740.131*
H26B0.24870.17970.22260.131*
N10.15713 (15)0.18363 (16)0.01878 (6)0.0461 (4)
N20.16459 (16)0.24368 (19)0.11332 (7)0.0543 (4)
O10.19378 (17)0.02442 (17)0.02074 (7)0.0726 (5)
O20.08101 (14)0.2495 (2)0.14807 (7)0.0731 (5)
H20.06130.20690.17770.110*
O30.05991 (18)0.0935 (3)0.21512 (7)0.0941 (7)
O40.21980 (15)0.0091 (2)0.17514 (7)0.0785 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C270.141 (4)0.309 (8)0.158 (4)0.045 (4)0.073 (3)0.136 (5)
C10.0501 (10)0.0474 (11)0.0429 (9)0.0052 (9)0.0033 (8)0.0027 (8)
C20.0427 (10)0.0555 (12)0.0628 (12)0.0028 (9)0.0029 (9)0.0008 (10)
C30.0404 (10)0.0636 (13)0.0547 (11)0.0071 (9)0.0064 (8)0.0044 (9)
C40.0434 (10)0.0597 (12)0.0447 (10)0.0055 (9)0.0030 (8)0.0042 (9)
C50.0479 (10)0.0453 (10)0.0434 (10)0.0053 (8)0.0035 (8)0.0041 (8)
C60.0441 (10)0.0515 (11)0.0447 (10)0.0068 (8)0.0050 (7)0.0113 (8)
C70.0439 (10)0.0746 (14)0.0537 (11)0.0018 (10)0.0044 (8)0.0000 (10)
C80.0549 (13)0.0920 (19)0.0722 (15)0.0139 (13)0.0054 (11)0.0022 (13)
C90.0409 (12)0.105 (2)0.100 (2)0.0045 (13)0.0010 (12)0.0259 (18)
C100.0473 (13)0.094 (2)0.107 (2)0.0206 (13)0.0232 (13)0.0154 (17)
C110.0547 (12)0.0673 (14)0.0727 (14)0.0151 (11)0.0142 (10)0.0038 (12)
C120.0482 (10)0.0447 (10)0.0454 (10)0.0058 (8)0.0013 (8)0.0049 (8)
C130.0555 (12)0.0594 (13)0.0593 (12)0.0022 (10)0.0044 (9)0.0082 (10)
C140.0709 (15)0.0628 (15)0.0828 (16)0.0013 (13)0.0041 (13)0.0187 (13)
C150.0658 (15)0.0561 (14)0.108 (2)0.0080 (12)0.0114 (14)0.0023 (14)
C160.0580 (13)0.0686 (16)0.0944 (18)0.0040 (12)0.0121 (12)0.0157 (14)
C170.0595 (12)0.0563 (13)0.0621 (13)0.0044 (11)0.0102 (10)0.0043 (10)
C180.0551 (11)0.0497 (12)0.0517 (11)0.0046 (10)0.0037 (9)0.0045 (9)
C190.0647 (13)0.0631 (13)0.0458 (11)0.0097 (11)0.0023 (9)0.0083 (9)
C200.0583 (13)0.100 (2)0.0676 (15)0.0072 (13)0.0038 (11)0.0019 (14)
C210.0676 (16)0.146 (3)0.0796 (18)0.0136 (18)0.0192 (14)0.0062 (19)
C220.091 (2)0.140 (3)0.0686 (17)0.0126 (19)0.0291 (15)0.0074 (18)
C230.102 (2)0.110 (2)0.0614 (15)0.0077 (19)0.0183 (14)0.0161 (15)
C240.0640 (14)0.0943 (18)0.0491 (12)0.0090 (13)0.0041 (10)0.0018 (12)
C250.0497 (11)0.0903 (17)0.0512 (12)0.0120 (12)0.0019 (9)0.0152 (11)
C260.105 (2)0.141 (3)0.0776 (18)0.011 (2)0.0199 (16)0.061 (2)
N10.0521 (9)0.0445 (9)0.0413 (8)0.0040 (7)0.0006 (6)0.0013 (7)
N20.0528 (10)0.0681 (11)0.0420 (8)0.0018 (9)0.0040 (7)0.0044 (8)
O10.0955 (12)0.0527 (9)0.0690 (10)0.0110 (9)0.0002 (9)0.0110 (8)
O20.0484 (8)0.1009 (13)0.0718 (10)0.0021 (8)0.0196 (7)0.0005 (9)
O30.0797 (12)0.1485 (19)0.0562 (10)0.0009 (12)0.0214 (9)0.0255 (11)
O40.0676 (10)0.1049 (14)0.0628 (10)0.0032 (10)0.0005 (8)0.0414 (9)
Geometric parameters (Å, º) top
C27—C261.418 (4)C14—H140.93
C27—H27A0.96C15—C161.376 (4)
C27—H27B0.96C15—H150.93
C27—H27C0.96C16—C171.379 (3)
C1—N11.473 (2)C16—H160.93
C1—C21.524 (3)C17—H170.93
C1—C121.528 (3)C18—O11.221 (3)
C1—H10.98C18—N11.361 (3)
C2—C31.481 (3)C18—C191.528 (3)
C2—H2A0.97C19—N21.452 (3)
C2—H2B0.97C19—H19A0.97
C3—O21.344 (2)C19—H19B0.97
C3—C41.352 (3)C20—N21.463 (3)
C4—C251.446 (3)C20—C211.514 (4)
C4—C51.516 (3)C20—H20A0.97
C5—N11.475 (2)C20—H20B0.97
C5—C61.530 (3)C21—C221.509 (4)
C5—H50.98C21—H21A0.97
C6—C71.378 (3)C21—H21B0.97
C6—C111.386 (3)C22—C231.508 (4)
C7—C81.392 (3)C22—H22A0.97
C7—H70.93C22—H22B0.97
C8—C91.367 (4)C23—C241.510 (4)
C8—H80.93C23—H23A0.97
C9—C101.371 (4)C23—H23B0.97
C9—H90.93C24—N21.465 (3)
C10—C111.384 (4)C24—H24A0.97
C10—H100.93C24—H24B0.97
C11—H110.93C25—O31.220 (3)
C12—C131.381 (3)C25—O41.335 (3)
C12—C171.388 (3)C26—O41.448 (3)
C13—C141.385 (3)C26—H26A0.97
C13—H130.93C26—H26B0.97
C14—C151.369 (4)O2—H20.82
C26—C27—H27A109.5C15—C16—H16120.0
C26—C27—H27B109.5C17—C16—H16120.0
H27A—C27—H27B109.5C16—C17—C12121.2 (2)
C26—C27—H27C109.5C16—C17—H17119.4
H27A—C27—H27C109.5C12—C17—H17119.4
H27B—C27—H27C109.5O1—C18—N1121.68 (19)
N1—C1—C2108.30 (16)O1—C18—C19118.64 (19)
N1—C1—C12112.21 (15)N1—C18—C19119.68 (18)
C2—C1—C12114.98 (17)N2—C19—C18114.65 (17)
N1—C1—H1107.0N2—C19—H19A108.6
C2—C1—H1107.0C18—C19—H19A108.6
C12—C1—H1107.0N2—C19—H19B108.6
C3—C2—C1112.11 (16)C18—C19—H19B108.6
C3—C2—H2A109.2H19A—C19—H19B107.6
C1—C2—H2A109.2N2—C20—C21111.6 (2)
C3—C2—H2B109.2N2—C20—H20A109.3
C1—C2—H2B109.2C21—C20—H20A109.3
H2A—C2—H2B107.9N2—C20—H20B109.3
O2—C3—C4123.3 (2)C21—C20—H20B109.3
O2—C3—C2113.52 (18)H20A—C20—H20B108.0
C4—C3—C2123.13 (18)C22—C21—C20110.9 (3)
C3—C4—C25119.49 (19)C22—C21—H21A109.5
C3—C4—C5122.28 (17)C20—C21—H21A109.5
C25—C4—C5117.99 (18)C22—C21—H21B109.5
N1—C5—C4110.69 (15)C20—C21—H21B109.5
N1—C5—C6112.96 (15)H21A—C21—H21B108.0
C4—C5—C6114.55 (16)C23—C22—C21109.4 (2)
N1—C5—H5106.0C23—C22—H22A109.8
C4—C5—H5106.0C21—C22—H22A109.8
C6—C5—H5106.0C23—C22—H22B109.8
C7—C6—C11118.2 (2)C21—C22—H22B109.8
C7—C6—C5122.69 (17)H22A—C22—H22B108.2
C11—C6—C5119.04 (19)C22—C23—C24111.3 (3)
C6—C7—C8121.1 (2)C22—C23—H23A109.4
C6—C7—H7119.5C24—C23—H23A109.4
C8—C7—H7119.5C22—C23—H23B109.4
C9—C8—C7119.8 (3)C24—C23—H23B109.4
C9—C8—H8120.1H23A—C23—H23B108.0
C7—C8—H8120.1N2—C24—C23111.7 (2)
C8—C9—C10119.9 (2)N2—C24—H24A109.3
C8—C9—H9120.1C23—C24—H24A109.3
C10—C9—H9120.1N2—C24—H24B109.3
C9—C10—C11120.4 (2)C23—C24—H24B109.3
C9—C10—H10119.8H24A—C24—H24B107.9
C11—C10—H10119.8O3—C25—O4122.2 (2)
C10—C11—C6120.6 (2)O3—C25—C4125.0 (2)
C10—C11—H11119.7O4—C25—C4112.78 (19)
C6—C11—H11119.7C27—C26—O4108.6 (3)
C13—C12—C17117.8 (2)C27—C26—H26A110.0
C13—C12—C1123.09 (18)O4—C26—H26A110.0
C17—C12—C1118.96 (18)C27—C26—H26B110.0
C12—C13—C14121.2 (2)O4—C26—H26B110.0
C12—C13—H13119.4H26A—C26—H26B108.4
C14—C13—H13119.4C18—N1—C1123.80 (16)
C15—C14—C13120.1 (2)C18—N1—C5117.01 (16)
C15—C14—H14120.0C1—N1—C5117.08 (14)
C13—C14—H14120.0C19—N2—C20111.43 (19)
C14—C15—C16119.8 (2)C19—N2—C24108.92 (17)
C14—C15—H15120.1C20—N2—C24109.31 (17)
C16—C15—H15120.1C3—O2—H2109.5
C15—C16—C17120.0 (2)C25—O4—C26117.9 (2)
N1—C1—C2—C347.4 (2)C13—C12—C17—C160.6 (3)
C12—C1—C2—C379.0 (2)C1—C12—C17—C16175.4 (2)
C1—C2—C3—O2161.99 (18)O1—C18—C19—N2112.8 (2)
C1—C2—C3—C420.6 (3)N1—C18—C19—N266.8 (3)
O2—C3—C4—C253.4 (3)N2—C20—C21—C2257.8 (3)
C2—C3—C4—C25173.7 (2)C20—C21—C22—C2353.9 (4)
O2—C3—C4—C5177.68 (19)C21—C22—C23—C2453.7 (4)
C2—C3—C4—C50.6 (3)C22—C23—C24—N257.3 (3)
C3—C4—C5—N18.9 (3)C3—C4—C25—O38.8 (4)
C25—C4—C5—N1165.46 (18)C5—C4—C25—O3176.7 (2)
C3—C4—C5—C6120.3 (2)C3—C4—C25—O4169.4 (2)
C25—C4—C5—C665.4 (2)C5—C4—C25—O45.0 (3)
N1—C5—C6—C7106.2 (2)O1—C18—N1—C1168.4 (2)
C4—C5—C6—C721.8 (3)C19—C18—N1—C112.1 (3)
N1—C5—C6—C1176.2 (2)O1—C18—N1—C55.5 (3)
C4—C5—C6—C11155.77 (19)C19—C18—N1—C5175.05 (17)
C11—C6—C7—C80.7 (3)C2—C1—N1—C18102.4 (2)
C5—C6—C7—C8176.9 (2)C12—C1—N1—C18129.59 (19)
C6—C7—C8—C90.4 (4)C2—C1—N1—C560.5 (2)
C7—C8—C9—C100.2 (4)C12—C1—N1—C567.5 (2)
C8—C9—C10—C110.5 (4)C4—C5—N1—C18123.85 (19)
C9—C10—C11—C60.2 (4)C6—C5—N1—C18106.2 (2)
C7—C6—C11—C100.4 (3)C4—C5—N1—C140.3 (2)
C5—C6—C11—C10177.3 (2)C6—C5—N1—C189.7 (2)
N1—C1—C12—C13125.6 (2)C18—C19—N2—C2058.5 (2)
C2—C1—C12—C131.2 (3)C18—C19—N2—C24179.17 (19)
N1—C1—C12—C1758.6 (2)C21—C20—N2—C19179.7 (2)
C2—C1—C12—C17177.07 (17)C21—C20—N2—C2459.2 (3)
C17—C12—C13—C140.2 (3)C23—C24—N2—C19179.1 (2)
C1—C12—C13—C14175.7 (2)C23—C24—N2—C2058.9 (3)
C12—C13—C14—C150.6 (4)O3—C25—O4—C266.9 (4)
C13—C14—C15—C160.9 (4)C4—C25—O4—C26174.8 (2)
C14—C15—C16—C170.5 (4)C27—C26—O4—C25116.4 (5)
C15—C16—C17—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.882.598 (3)145
C2—H2B···O1i0.972.433.286 (3)148
C10—H10···O1ii0.932.503.427 (3)177
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H32N2O4
Mr448.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)10.7936 (6), 9.6752 (6), 23.2335 (13)
β (°) 93.213 (3)
V3)2422.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
21907, 5870, 3631
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.193, 1.05
No. of reflections5870
No. of parameters299
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.37

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.882.598 (3)145
C2—H2B···O1i0.972.433.286 (3)148
C10—H10···O1ii0.932.503.427 (3)177
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

GA and YTJ are grateful for the support provided by the Corporate-affiliated Research Institute of Academic–Industrial–Institutional Cooperation Improvement Business No. S7080008110. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC–SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242–2249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAridoss, G., Gayathri, D., Park, K. S., Kim, J. T. & Jeong, Y. T. (2009a). Acta Cryst. E65, o3180–o3181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Gayathri, D., Ramachandran, R., Lim, K. T. & Jeong, Y. T. (2009b). Acta Cryst. E65, o3232–o3233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds