organic compounds
Bis(2-amino-4-methylpyridinium) terephthalate tetrahydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the 6H9N2+·C8H4O42−·4H2O, the terephthalate carboxylate groups interacts with the 2-amino-4-methylpyridinium cations via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The water molecules form an R66(12) ring motif through O—H⋯O hydrogen bonds and these motifs are fused, forming a supramolecular chain along the c axis. The R22(8) and R66(12) ring motifs are connected via O—H⋯O hydrogen bonds. In addition, π–π stacking interactions are observed between the pyridinium rings [centroid–centroid distance = 3.522 (12) Å].
of the title salt, 2CRelated literature
For details of non-covalent interactions, see: Desiraju (2007); Corna et al. (2004); Aakeröy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For the applications of terephthalic acid, see: Serre et al. (2007); Mukherjee et al. (2004); Sun et al. (2000); Lynch & Jones (2004); Spencer et al. (2004); Devi & Muthiah (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810025651/ci5123sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025651/ci5123Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and terephthalic acid (83 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
O- and N-bound H atoms were located from a difference Fourier map and were refined freely [N–H= 0.83 (3)–1.01 (5) Å and O–H = 0.75 (3)–0.92 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant
2680 Friedel pairs were merged before the final refinement.Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, π–π stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna et al., 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Terephthalic acid (H2TPA), a rod-like aromatic diacid, has often been used in the synthesis of metal-organic frameworks as a linker molecule (Serre et al., 2007; Mukherjee et al., 2004; Sun et al., 2000). Recently, with the increase in interest in controlling the crystalline structures of organic-based solid-state materials, H2TPA is being increasingly employed in constructing supramolecular structures (Lynch & Jones, 2004; Spencer et al., 2004; Devi & Muthiah, 2007). Since our aim is to study some interesting hydrogen-bonding interactions, the of the title compound is presented here.
The
of the title salt contains two 2-amino-4-methylpyridinium cations (A and B), one terephthalate anion and four water molecules (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.008 (2) Å for atom C2A (molecule A) and 0.005 (2) Å for atom C3B (molecule B). The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.10 (16)°] and C1B—N1B—C5B [122.09 (16)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.In the π–π interactions between N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings at (x, y, z) [centroid-to-centroid distance = 3.522 (1) Å].
the terephthalate carboxylate groups interacts with 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). An R66(12) ring motif is formed by water molecules through O—H···O (Table 1) hydrogen bonds and these motifs fuse to form a one-dimensional supramolecular chain along the c-axis (Fig. 2). Further, the R22(8) and R66(12) motifs are connected via O—H···O hydrogen bonds (Fig. 3). The is further stabilized byFor details of non-covalent interactions, see: Desiraju (2007); Corna et al. (2004); Aakeröy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For the applications of terephthalic acid, see: Serre et al. (2007); Mukherjee et al. (2004); Sun et al. (2000); Lynch & Jones (2004); Spencer et al. (2004); Devi & Muthiah (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. View of the supramolecular chain made up of water molecules along the c-axis. | |
Fig. 3. Hydrogen bonding pattern in the title compound. |
2C6H9N2+·C8H4O42−·4H2O | F(000) = 968 |
Mr = 454.48 | Dx = 1.343 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 4430 reflections |
a = 17.6290 (16) Å | θ = 2.3–30.0° |
b = 13.8091 (13) Å | µ = 0.11 mm−1 |
c = 9.2518 (9) Å | T = 100 K |
β = 93.940 (2)° | Plate, colourless |
V = 2246.9 (4) Å3 | 0.45 × 0.27 × 0.07 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 3275 independent reflections |
Radiation source: fine-focus sealed tube | 3004 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 30.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −21→24 |
Tmin = 0.955, Tmax = 0.992 | k = −19→13 |
12651 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2622P] where P = (Fo2 + 2Fc2)/3 |
3275 reflections | (Δ/σ)max = 0.001 |
347 parameters | Δρmax = 0.46 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
2C6H9N2+·C8H4O42−·4H2O | V = 2246.9 (4) Å3 |
Mr = 454.48 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 17.6290 (16) Å | µ = 0.11 mm−1 |
b = 13.8091 (13) Å | T = 100 K |
c = 9.2518 (9) Å | 0.45 × 0.27 × 0.07 mm |
β = 93.940 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 3275 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3004 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 0.992 | Rint = 0.031 |
12651 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 2 restraints |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.46 e Å−3 |
3275 reflections | Δρmin = −0.20 e Å−3 |
347 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.73749 (9) | 0.27051 (12) | 0.16796 (17) | 0.0163 (3) | |
N2A | 0.75478 (10) | 0.43694 (12) | 0.17137 (18) | 0.0204 (3) | |
C1A | 0.73275 (10) | 0.35697 (14) | 0.09938 (19) | 0.0163 (4) | |
C2A | 0.70424 (11) | 0.35868 (15) | −0.0481 (2) | 0.0187 (4) | |
H2AA | 0.7016 | 0.4170 | −0.0983 | 0.022* | |
C3A | 0.68056 (10) | 0.27471 (14) | −0.11685 (19) | 0.0173 (4) | |
C4A | 0.68604 (11) | 0.18620 (14) | −0.0396 (2) | 0.0188 (4) | |
H4AA | 0.6702 | 0.1286 | −0.0841 | 0.023* | |
C5A | 0.71489 (11) | 0.18657 (15) | 0.1009 (2) | 0.0202 (4) | |
H5AA | 0.7192 | 0.1285 | 0.1518 | 0.024* | |
C6A | 0.64919 (12) | 0.27652 (16) | −0.2720 (2) | 0.0230 (4) | |
H6AA | 0.6584 | 0.3389 | −0.3133 | 0.034* | |
H6AB | 0.5954 | 0.2645 | −0.2762 | 0.034* | |
H6AC | 0.6736 | 0.2274 | −0.3257 | 0.034* | |
N1B | 0.48583 (10) | 0.31843 (13) | −0.04463 (18) | 0.0195 (3) | |
N2B | 0.49724 (10) | 0.15247 (12) | −0.02353 (17) | 0.0184 (3) | |
C1B | 0.50869 (11) | 0.23962 (14) | 0.03428 (19) | 0.0169 (4) | |
C2B | 0.54266 (11) | 0.25447 (16) | 0.1759 (2) | 0.0183 (4) | |
H2BA | 0.5582 | 0.2015 | 0.2326 | 0.022* | |
C3B | 0.55264 (11) | 0.34599 (15) | 0.2296 (2) | 0.0200 (4) | |
C4B | 0.52752 (12) | 0.42658 (16) | 0.1435 (2) | 0.0230 (4) | |
H4BA | 0.5336 | 0.4894 | 0.1788 | 0.028* | |
C5B | 0.49433 (12) | 0.41005 (15) | 0.0082 (2) | 0.0220 (4) | |
H5BA | 0.4773 | 0.4622 | −0.0487 | 0.026* | |
C6B | 0.58818 (13) | 0.36063 (18) | 0.3806 (2) | 0.0271 (5) | |
H6BA | 0.6173 | 0.3043 | 0.4099 | 0.041* | |
H6BB | 0.5490 | 0.3707 | 0.4461 | 0.041* | |
H6BC | 0.6210 | 0.4162 | 0.3822 | 0.041* | |
O1 | 0.79418 (8) | 0.41120 (10) | 0.47912 (14) | 0.0196 (3) | |
O2 | 0.80222 (9) | 0.25260 (10) | 0.43950 (15) | 0.0196 (3) | |
O3 | 0.95157 (10) | 0.35431 (12) | 1.18466 (16) | 0.0258 (3) | |
O4 | 0.93553 (9) | 0.19471 (11) | 1.17111 (15) | 0.0227 (3) | |
C7 | 0.87740 (10) | 0.39144 (13) | 0.75006 (19) | 0.0156 (3) | |
H7A | 0.8791 | 0.4520 | 0.7063 | 0.019* | |
C8 | 0.90527 (10) | 0.37998 (14) | 0.89289 (19) | 0.0158 (3) | |
H8A | 0.9248 | 0.4331 | 0.9447 | 0.019* | |
C9 | 0.90425 (10) | 0.28948 (14) | 0.95947 (18) | 0.0148 (3) | |
C10 | 0.87640 (10) | 0.20985 (14) | 0.87956 (19) | 0.0153 (3) | |
H10A | 0.8771 | 0.1488 | 0.9219 | 0.018* | |
C11 | 0.84752 (11) | 0.22144 (13) | 0.73637 (19) | 0.0156 (3) | |
H11A | 0.8286 | 0.1681 | 0.6840 | 0.019* | |
C12 | 0.84683 (10) | 0.31250 (13) | 0.67150 (18) | 0.0138 (3) | |
C13 | 0.81214 (10) | 0.32704 (14) | 0.51865 (18) | 0.0147 (3) | |
C14 | 0.93282 (10) | 0.27846 (14) | 1.11620 (19) | 0.0165 (4) | |
O1W | 0.63068 (10) | 0.06139 (12) | 0.38459 (17) | 0.0271 (3) | |
O2W | 0.85423 (10) | 0.02585 (12) | 0.18024 (18) | 0.0268 (3) | |
O3W | 0.56061 (10) | 0.01269 (12) | 0.63491 (16) | 0.0242 (3) | |
O4W | 0.78771 (9) | 0.05874 (11) | 0.43863 (16) | 0.0224 (3) | |
H1NA | 0.7560 (17) | 0.265 (2) | 0.267 (3) | 0.024 (7)* | |
H2NA | 0.7743 (15) | 0.432 (2) | 0.255 (3) | 0.022 (6)* | |
H3NA | 0.7636 (14) | 0.489 (2) | 0.115 (3) | 0.019 (6)* | |
H1NB | 0.463 (3) | 0.307 (3) | −0.147 (5) | 0.077 (14)* | |
H2NB | 0.4765 (19) | 0.150 (2) | −0.115 (4) | 0.038 (8)* | |
H3NB | 0.5148 (17) | 0.100 (2) | 0.032 (3) | 0.033 (8)* | |
H1W1 | 0.6143 (17) | 0.050 (2) | 0.456 (4) | 0.025 (7)* | |
H2W1 | 0.680 (2) | 0.051 (2) | 0.404 (4) | 0.040 (9)* | |
H1W2 | 0.8800 (16) | 0.080 (2) | 0.172 (3) | 0.025 (7)* | |
H2W2 | 0.8348 (16) | 0.035 (2) | 0.264 (3) | 0.025 (7)* | |
H1W3 | 0.529 (2) | 0.049 (3) | 0.649 (4) | 0.059 (12)* | |
H2W3 | 0.5807 (17) | −0.003 (2) | 0.719 (4) | 0.034 (8)* | |
H1W4 | 0.7949 (18) | 0.123 (3) | 0.461 (3) | 0.035 (8)* | |
H2W4 | 0.8036 (18) | 0.029 (2) | 0.508 (4) | 0.031 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0186 (7) | 0.0172 (7) | 0.0128 (7) | −0.0016 (6) | −0.0011 (6) | 0.0010 (5) |
N2A | 0.0271 (8) | 0.0185 (7) | 0.0147 (7) | −0.0044 (6) | −0.0042 (6) | 0.0014 (6) |
C1A | 0.0166 (8) | 0.0170 (8) | 0.0151 (8) | −0.0016 (7) | −0.0005 (6) | 0.0016 (6) |
C2A | 0.0203 (9) | 0.0220 (9) | 0.0136 (7) | −0.0013 (7) | −0.0008 (6) | 0.0026 (6) |
C3A | 0.0146 (8) | 0.0234 (9) | 0.0140 (8) | 0.0014 (7) | 0.0007 (6) | 0.0006 (7) |
C4A | 0.0200 (9) | 0.0182 (8) | 0.0182 (8) | −0.0020 (7) | 0.0015 (7) | −0.0031 (7) |
C5A | 0.0209 (9) | 0.0184 (9) | 0.0215 (9) | 0.0021 (7) | 0.0024 (7) | 0.0027 (7) |
C6A | 0.0234 (10) | 0.0321 (11) | 0.0125 (8) | −0.0007 (8) | −0.0051 (7) | −0.0014 (7) |
N1B | 0.0219 (8) | 0.0207 (8) | 0.0153 (7) | −0.0009 (6) | −0.0021 (6) | 0.0001 (6) |
N2B | 0.0225 (8) | 0.0195 (8) | 0.0127 (7) | −0.0017 (6) | −0.0024 (6) | −0.0006 (6) |
C1B | 0.0162 (8) | 0.0211 (9) | 0.0135 (8) | −0.0020 (6) | 0.0013 (6) | 0.0009 (6) |
C2B | 0.0172 (8) | 0.0240 (9) | 0.0137 (8) | −0.0006 (7) | 0.0002 (6) | 0.0005 (6) |
C3B | 0.0174 (9) | 0.0295 (10) | 0.0133 (8) | −0.0029 (7) | 0.0020 (6) | −0.0019 (7) |
C4B | 0.0250 (10) | 0.0221 (9) | 0.0217 (9) | −0.0004 (8) | −0.0004 (7) | −0.0039 (7) |
C5B | 0.0232 (9) | 0.0227 (9) | 0.0198 (9) | 0.0027 (7) | −0.0003 (7) | −0.0001 (7) |
C6B | 0.0282 (11) | 0.0370 (12) | 0.0151 (9) | 0.0003 (9) | −0.0048 (8) | −0.0064 (8) |
O1 | 0.0276 (7) | 0.0164 (6) | 0.0140 (6) | 0.0043 (5) | −0.0034 (5) | 0.0006 (5) |
O2 | 0.0293 (7) | 0.0149 (6) | 0.0138 (6) | 0.0008 (5) | −0.0032 (5) | −0.0006 (5) |
O3 | 0.0373 (8) | 0.0238 (7) | 0.0151 (6) | −0.0085 (6) | −0.0064 (6) | 0.0005 (5) |
O4 | 0.0309 (8) | 0.0196 (7) | 0.0165 (6) | −0.0048 (6) | −0.0053 (5) | 0.0033 (5) |
C7 | 0.0165 (8) | 0.0154 (8) | 0.0146 (8) | 0.0003 (6) | −0.0007 (6) | 0.0007 (6) |
C8 | 0.0160 (8) | 0.0173 (8) | 0.0138 (7) | −0.0027 (6) | −0.0014 (6) | −0.0012 (6) |
C9 | 0.0143 (8) | 0.0198 (8) | 0.0103 (7) | 0.0005 (6) | −0.0001 (6) | 0.0015 (6) |
C10 | 0.0183 (8) | 0.0152 (8) | 0.0124 (8) | 0.0010 (7) | 0.0002 (6) | 0.0017 (6) |
C11 | 0.0180 (8) | 0.0161 (8) | 0.0126 (8) | 0.0004 (7) | −0.0006 (6) | −0.0006 (6) |
C12 | 0.0136 (8) | 0.0166 (8) | 0.0112 (7) | 0.0015 (6) | 0.0010 (6) | 0.0009 (6) |
C13 | 0.0163 (8) | 0.0177 (8) | 0.0099 (7) | −0.0002 (6) | −0.0003 (6) | 0.0006 (6) |
C14 | 0.0177 (8) | 0.0203 (9) | 0.0109 (7) | −0.0035 (7) | −0.0028 (6) | 0.0009 (6) |
O1W | 0.0280 (8) | 0.0343 (9) | 0.0189 (7) | −0.0029 (7) | −0.0002 (6) | 0.0039 (6) |
O2W | 0.0357 (9) | 0.0214 (7) | 0.0236 (7) | −0.0049 (6) | 0.0044 (6) | −0.0045 (6) |
O3W | 0.0289 (8) | 0.0237 (7) | 0.0197 (7) | 0.0027 (6) | 0.0002 (6) | −0.0012 (5) |
O4W | 0.0306 (8) | 0.0169 (7) | 0.0194 (7) | −0.0007 (6) | −0.0007 (6) | 0.0001 (5) |
N1A—C1A | 1.352 (2) | C4B—H4BA | 0.93 |
N1A—C5A | 1.361 (3) | C5B—H5BA | 0.93 |
N1A—H1NA | 0.95 (3) | C6B—H6BA | 0.96 |
N2A—C1A | 1.334 (2) | C6B—H6BB | 0.96 |
N2A—H2NA | 0.83 (3) | C6B—H6BC | 0.96 |
N2A—H3NA | 0.91 (3) | O1—C13 | 1.253 (2) |
C1A—C2A | 1.421 (2) | O2—C13 | 1.267 (2) |
C2A—C3A | 1.374 (3) | O3—C14 | 1.256 (2) |
C2A—H2AA | 0.93 | O4—C14 | 1.263 (2) |
C3A—C4A | 1.416 (3) | C7—C8 | 1.387 (2) |
C3A—C6A | 1.503 (2) | C7—C12 | 1.398 (2) |
C4A—C5A | 1.363 (3) | C7—H7A | 0.93 |
C4A—H4AA | 0.93 | C8—C9 | 1.394 (3) |
C5A—H5AA | 0.93 | C8—H8A | 0.93 |
C6A—H6AA | 0.96 | C9—C10 | 1.395 (2) |
C6A—H6AB | 0.96 | C9—C14 | 1.510 (2) |
C6A—H6AC | 0.96 | C10—C11 | 1.395 (2) |
N1B—C1B | 1.356 (2) | C10—H10A | 0.93 |
N1B—C5B | 1.361 (3) | C11—C12 | 1.393 (2) |
N1B—H1NB | 1.01 (5) | C11—H11A | 0.93 |
N2B—C1B | 1.327 (3) | C12—C13 | 1.515 (2) |
N2B—H2NB | 0.90 (3) | O1W—H1W1 | 0.75 (3) |
N2B—H3NB | 0.93 (3) | O1W—H2W1 | 0.89 (3) |
C1B—C2B | 1.418 (2) | O2W—H1W2 | 0.88 (3) |
C2B—C3B | 1.365 (3) | O2W—H2W2 | 0.88 (3) |
C2B—H2BA | 0.93 | O3W—H1W3 | 0.76 (5) |
C3B—C4B | 1.421 (3) | O3W—H2W3 | 0.86 (3) |
C3B—C6B | 1.505 (3) | O4W—H1W4 | 0.92 (3) |
C4B—C5B | 1.364 (3) | O4W—H2W4 | 0.79 (3) |
C1A—N1A—C5A | 122.10 (16) | C4B—C3B—C6B | 120.57 (19) |
C1A—N1A—H1NA | 121.5 (17) | C5B—C4B—C3B | 118.71 (19) |
C5A—N1A—H1NA | 116.4 (17) | C5B—C4B—H4BA | 120.6 |
C1A—N2A—H2NA | 118.8 (19) | C3B—C4B—H4BA | 120.6 |
C1A—N2A—H3NA | 115.1 (16) | N1B—C5B—C4B | 121.01 (18) |
H2NA—N2A—H3NA | 122 (2) | N1B—C5B—H5BA | 119.5 |
N2A—C1A—N1A | 119.37 (16) | C4B—C5B—H5BA | 119.5 |
N2A—C1A—C2A | 122.50 (17) | C3B—C6B—H6BA | 109.5 |
N1A—C1A—C2A | 118.13 (16) | C3B—C6B—H6BB | 109.5 |
C3A—C2A—C1A | 120.45 (18) | H6BA—C6B—H6BB | 109.5 |
C3A—C2A—H2AA | 119.8 | C3B—C6B—H6BC | 109.5 |
C1A—C2A—H2AA | 119.8 | H6BA—C6B—H6BC | 109.5 |
C2A—C3A—C4A | 119.13 (16) | H6BB—C6B—H6BC | 109.5 |
C2A—C3A—C6A | 120.58 (18) | C8—C7—C12 | 120.35 (17) |
C4A—C3A—C6A | 120.29 (18) | C8—C7—H7A | 119.8 |
C5A—C4A—C3A | 119.09 (17) | C12—C7—H7A | 119.8 |
C5A—C4A—H4AA | 120.5 | C7—C8—C9 | 120.59 (16) |
C3A—C4A—H4AA | 120.5 | C7—C8—H8A | 119.7 |
N1A—C5A—C4A | 121.08 (18) | C9—C8—H8A | 119.7 |
N1A—C5A—H5AA | 119.5 | C8—C9—C10 | 119.16 (15) |
C4A—C5A—H5AA | 119.5 | C8—C9—C14 | 120.08 (15) |
C3A—C6A—H6AA | 109.5 | C10—C9—C14 | 120.77 (16) |
C3A—C6A—H6AB | 109.5 | C11—C10—C9 | 120.31 (16) |
H6AA—C6A—H6AB | 109.5 | C11—C10—H10A | 119.8 |
C3A—C6A—H6AC | 109.5 | C9—C10—H10A | 119.8 |
H6AA—C6A—H6AC | 109.5 | C12—C11—C10 | 120.29 (16) |
H6AB—C6A—H6AC | 109.5 | C12—C11—H11A | 119.9 |
C1B—N1B—C5B | 122.09 (16) | C10—C11—H11A | 119.9 |
C1B—N1B—H1NB | 118 (3) | C11—C12—C7 | 119.24 (15) |
C5B—N1B—H1NB | 120 (3) | C11—C12—C13 | 120.85 (15) |
C1B—N2B—H2NB | 117 (2) | C7—C12—C13 | 119.90 (16) |
C1B—N2B—H3NB | 116.5 (19) | O1—C13—O2 | 124.18 (16) |
H2NB—N2B—H3NB | 126 (3) | O1—C13—C12 | 118.25 (16) |
N2B—C1B—N1B | 118.66 (16) | O2—C13—C12 | 117.57 (16) |
N2B—C1B—C2B | 123.14 (18) | O3—C14—O4 | 124.01 (16) |
N1B—C1B—C2B | 118.19 (18) | O3—C14—C9 | 117.32 (16) |
C3B—C2B—C1B | 120.39 (19) | O4—C14—C9 | 118.66 (16) |
C3B—C2B—H2BA | 119.8 | H1W1—O1W—H2W1 | 103 (3) |
C1B—C2B—H2BA | 119.8 | H1W2—O2W—H2W2 | 101 (3) |
C2B—C3B—C4B | 119.60 (17) | H1W3—O3W—H2W3 | 106 (4) |
C2B—C3B—C6B | 119.81 (19) | H1W4—O4W—H2W4 | 106 (3) |
C5A—N1A—C1A—N2A | 179.05 (18) | C3B—C4B—C5B—N1B | −0.6 (3) |
C5A—N1A—C1A—C2A | −1.0 (3) | C12—C7—C8—C9 | 0.9 (3) |
N2A—C1A—C2A—C3A | −178.48 (19) | C7—C8—C9—C10 | 1.5 (3) |
N1A—C1A—C2A—C3A | 1.6 (3) | C7—C8—C9—C14 | −178.37 (18) |
C1A—C2A—C3A—C4A | −1.0 (3) | C8—C9—C10—C11 | −2.2 (3) |
C1A—C2A—C3A—C6A | 178.99 (18) | C14—C9—C10—C11 | 177.62 (17) |
C2A—C3A—C4A—C5A | −0.2 (3) | C9—C10—C11—C12 | 0.5 (3) |
C6A—C3A—C4A—C5A | 179.84 (18) | C10—C11—C12—C7 | 1.9 (3) |
C1A—N1A—C5A—C4A | −0.2 (3) | C10—C11—C12—C13 | −176.98 (17) |
C3A—C4A—C5A—N1A | 0.8 (3) | C8—C7—C12—C11 | −2.6 (3) |
C5B—N1B—C1B—N2B | 178.77 (19) | C8—C7—C12—C13 | 176.24 (17) |
C5B—N1B—C1B—C2B | −0.2 (3) | C11—C12—C13—O1 | 161.04 (18) |
N2B—C1B—C2B—C3B | −179.74 (19) | C7—C12—C13—O1 | −17.8 (3) |
N1B—C1B—C2B—C3B | −0.8 (3) | C11—C12—C13—O2 | −18.0 (3) |
C1B—C2B—C3B—C4B | 1.1 (3) | C7—C12—C13—O2 | 163.16 (17) |
C1B—C2B—C3B—C6B | 179.48 (19) | C8—C9—C14—O3 | 5.2 (3) |
C2B—C3B—C4B—C5B | −0.4 (3) | C10—C9—C14—O3 | −174.63 (18) |
C6B—C3B—C4B—C5B | −178.8 (2) | C8—C9—C14—O4 | −175.75 (19) |
C1B—N1B—C5B—C4B | 0.9 (3) | C10—C9—C14—O4 | 4.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O2 | 0.95 (3) | 1.75 (3) | 2.698 (2) | 172 (3) |
N2A—H2NA···O1 | 0.83 (3) | 2.10 (3) | 2.906 (2) | 165 (3) |
N2A—H3NA···O1i | 0.91 (3) | 1.97 (3) | 2.866 (2) | 171 (2) |
N1B—H1NB···O4ii | 1.02 (5) | 1.72 (5) | 2.723 (2) | 169 (3) |
N2B—H2NB···O3ii | 0.90 (4) | 1.88 (4) | 2.765 (2) | 170 (3) |
N2B—H3NB···O3Wiii | 0.93 (3) | 1.97 (3) | 2.894 (2) | 174 (3) |
O1W—H1W1···O3W | 0.76 (4) | 2.03 (3) | 2.781 (2) | 174 (4) |
O1W—H2W1···O4W | 0.89 (4) | 1.91 (4) | 2.779 (2) | 167 (3) |
O2W—H1W2···O4iv | 0.88 (3) | 1.86 (3) | 2.741 (2) | 175 (3) |
O2W—H2W2···O4W | 0.88 (3) | 1.90 (3) | 2.772 (2) | 176 (3) |
O3W—H1W3···O3v | 0.77 (4) | 1.95 (4) | 2.721 (2) | 178 (5) |
O3W—H2W3···O1Wvi | 0.86 (4) | 1.89 (3) | 2.742 (2) | 168 (3) |
O4W—H1W4···O2 | 0.92 (4) | 1.81 (4) | 2.689 (2) | 161 (3) |
O4W—H2W4···O2Wvi | 0.80 (3) | 1.93 (3) | 2.716 (2) | 171 (3) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x−1/2, −y+1/2, z−3/2; (iii) x, −y, z−1/2; (iv) x, y, z−1; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | 2C6H9N2+·C8H4O42−·4H2O |
Mr | 454.48 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 100 |
a, b, c (Å) | 17.6290 (16), 13.8091 (13), 9.2518 (9) |
β (°) | 93.940 (2) |
V (Å3) | 2246.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.45 × 0.27 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.955, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12651, 3275, 3004 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.101, 1.06 |
No. of reflections | 3275 |
No. of parameters | 347 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.20 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O2 | 0.95 (3) | 1.75 (3) | 2.698 (2) | 172 (3) |
N2A—H2NA···O1 | 0.83 (3) | 2.10 (3) | 2.906 (2) | 165 (3) |
N2A—H3NA···O1i | 0.91 (3) | 1.97 (3) | 2.866 (2) | 171 (2) |
N1B—H1NB···O4ii | 1.02 (5) | 1.72 (5) | 2.723 (2) | 169 (3) |
N2B—H2NB···O3ii | 0.90 (4) | 1.88 (4) | 2.765 (2) | 170 (3) |
N2B—H3NB···O3Wiii | 0.93 (3) | 1.97 (3) | 2.894 (2) | 174 (3) |
O1W—H1W1···O3W | 0.76 (4) | 2.03 (3) | 2.781 (2) | 174 (4) |
O1W—H2W1···O4W | 0.89 (4) | 1.91 (4) | 2.779 (2) | 167 (3) |
O2W—H1W2···O4iv | 0.88 (3) | 1.86 (3) | 2.741 (2) | 175 (3) |
O2W—H2W2···O4W | 0.88 (3) | 1.90 (3) | 2.772 (2) | 176 (3) |
O3W—H1W3···O3v | 0.77 (4) | 1.95 (4) | 2.721 (2) | 178 (5) |
O3W—H2W3···O1Wvi | 0.86 (4) | 1.89 (3) | 2.742 (2) | 168 (3) |
O4W—H1W4···O2 | 0.92 (4) | 1.81 (4) | 2.689 (2) | 161 (3) |
O4W—H2W4···O2Wvi | 0.80 (3) | 1.93 (3) | 2.716 (2) | 171 (3) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x−1/2, −y+1/2, z−3/2; (iii) x, −y, z−1/2; (iv) x, y, z−1; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y, z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407. CrossRef CAS Web of Science Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Corna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). Nature (London), 431, 287–290. Web of Science PubMed Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. Web of Science CrossRef CAS Google Scholar
Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 2464–2473. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828–1831. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spencer, E. C., Baby Mariyatra, M., Howard, J. A. K. & Panchanatheswaran, K. (2004). Acta Cryst. C60, o839–o842. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sun, D., Cao, R., Liang, Y., Hong, M., Su, W. & Weng, J. (2000). Acta Cryst. C56, e240–e241. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, π–π stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna et al., 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Terephthalic acid (H2TPA), a rod-like aromatic diacid, has often been used in the synthesis of metal-organic frameworks as a linker molecule (Serre et al., 2007; Mukherjee et al., 2004; Sun et al., 2000). Recently, with the increase in interest in controlling the crystalline structures of organic-based solid-state materials, H2TPA is being increasingly employed in constructing supramolecular structures (Lynch & Jones, 2004; Spencer et al., 2004; Devi & Muthiah, 2007). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit of the title salt contains two 2-amino-4-methylpyridinium cations (A and B), one terephthalate anion and four water molecules (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.008 (2) Å for atom C2A (molecule A) and 0.005 (2) Å for atom C3B (molecule B). The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.10 (16)°] and C1B—N1B—C5B [122.09 (16)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal structure, the terephthalate carboxylate groups interacts with 2-amino-4-methylpyridinium cations via a pair of N—H···O hydrogen bonds, forming an R22(8) ring motif (Bernstein et al., 1995). An R66(12) ring motif is formed by water molecules through O—H···O (Table 1) hydrogen bonds and these motifs fuse to form a one-dimensional supramolecular chain along the c-axis (Fig. 2). Further, the R22(8) and R66(12) motifs are connected via O—H···O hydrogen bonds (Fig. 3). The crystal structure is further stabilized by π–π interactions between N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings at (x, y, z) [centroid-to-centroid distance = 3.522 (1) Å].